Category Archives: Newton

Did Isaac leap or was he pushed?

In 2016 2017 it would not be too much to expect a professor of philosophy at an American university to have a working knowledge of the evolution of science in the seventeenth century, particularly given that said evolution had a massive impact on the historical evolution of philosophy. One might excuse a freshly baked adjunct professor at a small liberal arts college, in his first year, if they were not au fait with the minutiae of the history of seventeenth-century astronomy but one would expect better from an established and acknowledged expert. Andrew Janiak is just that, an established and acknowledged expert. Creed C. Black Professor of Philosophy and Chair of Department at Duke University; according to Wikipedia, “Duke is consistently included among the best universities in the world by numerous university rankings”. Janiak is also an acknowledge expert on Isaac Newton and author of Isaac Newton in the Blackwell Great Minds series, so one is all the more dumbfounded to read the following in his article entitled Newton’s Leap on the Institute of Arts and Ideas: Philosophy for our times website:

Newton_-_1677.jpeg

Isaac Newton 1677 after Peter Lely Source: Wikimedia Commons Comment from CJ Schilt (a Newton expert) on Facebook: On another note, that picture is probably not Newton, despite what Finegold thinks.

 

But wait a minute: what could be more amazing than a young man discovering a fundamental force of nature while sitting under a tree? For starters, we have to recognize how foreign Newton’s ultimate idea about gravity was to philosophers, astronomers and mathematicians in the era of the Scientific Revolution. Newton provided an answer to a question that hadn’t even been asked yet. The problem with understanding the distant past is that we take our twenty-first century ideas and attitudes for granted. We think, for example, that the following is obvious: if the planets, like the Earth and Jupiter, regularly orbit the Sun, there must be something that causes them to follow their orbits. After all, if nothing caused them to orbit the Sun, they would fly off into deep space. [my emphasis]That seems so obvious to us, it’s hard to imagine that for centuries, the world’s leading thinkers, from Aristotle to Ptolemy and onwards, did not have that idea at all. Instead, for many generations, leading philosophers and mathematicians thought this: the circle is a perfect mathematical form, and the planetary orbits are circular, so they are ever-lasting aspects of the natural world. To them, the orbits were so perfect that nothing caused them to occur. They simply were. [my emphasis] The question of what caused the planetary orbits was not even on the table for astronomers in those days. [my emphasis] Down on earth, apples fell from trees throughout history just as they do now. But philosophers and mathematicians didn’t have any reason to think that whatever causes apples to fall to the ground might somehow be connected to anything going on in the heavens. After all, the heavens were thought to be the home of everlasting motions, of perfect circles, and were therefore nothing like the constantly changing, messy world down below, where worms eat through apples as they rot on the ground.

So what is wrong with this piece of #histSTM prose? Let us start with the second of my bold emphasised segments:

Instead, for many generations, leading philosophers and mathematicians thought this: the circle is a perfect mathematical form, and the planetary orbits are circular, so they are ever-lasting aspects of the natural world. To them, the orbits were so perfect that nothing caused them to occur. They simply were.

Whilst it is true that, following Empedocles, Western culture adopted the so-called Platonic axioms, which stated that celestial motion was uniform and circular, it is not true that they claimed this motion to be without cause. Aristotle, whose system became dominant for a time in the Middle Ages, hypothesised a system of nested crystalline spheres, which working from the outside to the centre drove each other through direct contact; a system that probably would not have worked due to friction. His outer-most sphere was moved by the unmoved mover, who remained unnamed, making the theory very attractive for Christian theologians in the High Middle Ages, who simple called the unmoved mover God. Interestingly the expression love makes the world go round originates in the Aristotelian belief that that driving force was love. In the Middle Ages we also find the beliefs that each of the heavenly bodies has a soul, which propels it through space or alternatively an angel pushing it around its orbit.

All of this is all well and good but of course doesn’t have any real relevance for Newton because by the time he came on the scene the Platonic axioms were well and truly dead, killed off by one Johannes Kepler. You might have heard of him? Kepler published the first two of his planetary laws, number one: that the planetary orbits are ellipses and that the sun is at one focus of the ellipse and number two: that a line connecting the sun to the planet sweeps out equal areas in equal time periods in 1609, that’s thirty-three years before Newton was born. Somewhat later Cassini proved with the support of his teachers, Riccioli and Grimaldi, using a heliometer they had constructed in the San Petronio Basilica in Bologna, that the earth’s orbit around the sun or the sun’s around the earth, (the method couldn’t decide which) was definitely elliptical.

Part of the San Petronio Basilica heliometer.
The meridian line sundial inscribed on the floor at the San Petronio Basilica in Bologna, Emilia Romagna, northern Italy. An image of the Sun produced by a pinhole gnomon in the churches vaults 66.8 meters (219 ft) away fills this 168×64 cm oval at noon on the winter solstice.
Source Wikimedia Commons

By the time Newton became interested in astronomy it was accepted by all that the planetary orbits were Keplerian ellipses and not circles. Kepler’s first and third laws were accepted almost immediately being based on observation and solid mathematics but law two remained contentious until about 1670, when it was newly derived by Nicholas Mercator. The dispute over alternatives to Kepler’s second law between Ismaël Boulliau and Seth Ward was almost certainly Newton’s introduction to Kepler’s theories.

Turning to the other two bold emphasised claims we have:

 Newton provided an answer to a question that hadn’t even been asked yet. The problem with understanding the distant past is that we take our twenty-first century ideas and attitudes for granted. We think, for example, that the following is obvious: if the planets, like the Earth and Jupiter, regularly orbit the Sun, there must be something that causes them to follow their orbits. After all, if nothing caused them to orbit the Sun, they would fly off into deep space.

And:

The question of what caused the planetary orbits was not even on the table for astronomers in those days.

I’m afraid that Herr Kepler would disagree rather strongly with these claims. Not only had he asked this question he had also supplied a fairly ingenious and complex answer to it. Also quite famously his teacher Michael Maestlin rebuked him quite strongly for having done so. Kepler is usually credited with being the first to reject vitalist explanations of planetary motion by souls, spirits or angels (anima) and suggest instead a non-vitalist force (vir). His theory, based on the magnetic theories of Gilbert, was some sort of magnetic attraction emanating from the sun that weakened the further out it got. Kepler’s work started a debate that wound its way through the seventeenth century.

Ismaël Boulliau, a Keplerian, in his Astronomia philolaica from 1645 discussed Kepler’s theory of planetary force, which he rejected but added that if it did exist it would be an inverse-square law in analogy to Kepler’s law of the propagation of light. Newton was well aware of Boulliau’s suggestion of an inverse-square law. In 1666 Giovanni Alfonso Borelli, a disciple of Galileo, published his Theoricae Mediceorum planetarum ex causis physicis deductae in which he suggested that planetary motion was the result of three forces.

Famously in 1684 in a London coffee house Christopher Wren posed the question to Robert Hooke and Edmond Halley, if the force driving the planets was an inverse-square force would the orbits be Keplerian ellipses, offering a book token as prize to the first one to solve the problem. This, as is well known, led to Halley asking Newton who answered in the positive and wrote his Principia to prove it; in the Principia Newton shows that he is fully aware of both Kepler’s and Borelli’s work on the subject. What Newton deliberately left out of the Principia is that in an earlier exchange it had in fact been Hooke who first posited a universal force of gravity.

As this all too brief survey of the history shows, far from Newton providing an answer to a question that hadn’t been asked yet, he was, so to speak, a Johnny-come-lately to a debate that when he added his contribution was already eighty years old.

The Institute of Arts and Ideas advertises itself as follows:

So the IAI seeks to challenge the notion that our present accepted wisdom is the truth. It aims to uncover the flaws and limitations in our current thinking in search of alternative and better ways to hold the world.

Personally I don’t see how having a leading philosopher of science propagating the lone genius myth by spouting crap about the history of science fulfils that aim.

 

 

 

 

 

Advertisements

5 Comments

Filed under History of Astronomy, History of science, Myths of Science, Newton

Why doesn’t he just shut up?

Neil deGrasse Tyson (NdGT), probably the most influential science communicator in the world, spends a lot of time spouting out the message that learning science allows you to better detect bullshit, charlatans, fake news etc. etc. However it apparently doesn’t enable you to detect bullshit in the history of science, at least judging by NdGT’s own record on the subject. Not for the first time, I was tempted recently to throw my computer through the window upon witnessing NdGT pontificating on the history of science.

On a recent video recorded for Big Think, and also available on Youtube and already viewed by 2.6 million sycophants, he answers the question “Who’s the greatest physicist in history?” His answer appears under the title My Man, Sir Isaac Newton. Thoughtfully, Big Think have provided a transcription of NdGT’s blathering that I reproduce below for your delectation before I perform a Hist_Sci Hulk autopsy upon it.

Question: Who’s the greatest physicist in history?DeGrasse Tyson:    Isaac Newton.  I mean, just look… You read his writings.  Hair stands up… I don’t have hair there but if I did, it would stand up on the back of my neck.  You read his writings, the man was connected to the universe in ways that I never seen another human being connected.  It’s kind of spooky actually.  He discovers the laws of optics, figured out that white light is composed of colors.  That’s kind of freaky right there.  You take your colors of the rainbow, put them back together, you have white light again.  That freaked out the artist of the day.  How does that work?  Red, orange, yellow, green, blue, violet gives you white.  The laws of optics.  He discovers the laws of motion and the universal law of gravitation.  Then, a friend of his says, “Well, why do these orbits of the planets… Why are they in a shape of an ellipse, sort of flattened circle?  Why aren’t… some other shape?”  He said, you know, “I can’t… I don’t know.  I’ll get back to you.”  So he goes… goes home, comes back couple of months later, “Here’s why.  They’re actually conic sections, sections of a cone that you cut.”  And… And he said, “Well, how did find this out?  How did you determine this?”  “Well, I had to invent integral and differential calculus to determine this.”  Then, he turned 26.  Then, he turned 26.  We got people slogging through calculus in college just to learn what it is that Isaac Newtown invented on a dare, practically.  So that’s my man, Isaac Newton. 

“WHO’S THIS BLATHERING TYSON FOOL?”

Let us examine the actual history of science content of this stream of consciousness bullshit. We get told, “He discovers the laws of optic…!” Now Isaac Newton is indeed a very important figure in the history of physical optics but he by no means discovered the laws of optics. By the time he started doing his work in optics he stood at the end of a two thousand year long chain of researchers, starting with Euclid in the fourth century BCE, all of whom had been uncovering the laws of optics. This chain includes Ptolemaeus, Hero of Alexandria, al-Kindi, Ibn al-Haytham, Ibn Sahl, Robert Grosseteste, Roger Bacon, John Pecham, Witelo, Kamal al-Din al-Farisi, Theodoric of Freiberg, Francesco Maurolico, Giovanni Battista Della Porta, Friedrich Risner, Johannes Kepler, Thomas Harriot, Marco Antonio de Dominis, Willebrord Snellius, René Descartes, Christiaan Huygens, Francesco Maria Grimaldi, Robert Hooke, James Gregory and quite a few lesser known figures, much of whose work Newton was well acquainted with. Here we have an example of a generalisation that is so wrong it borders on the moronic.

What comes next is on safer ground, “…figured out that white light is composed of colors…” Newton did in fact, in a series of groundbreaking experiment, do exactly that. However NdGT, like almost everybody else is apparently not aware that Newton was by no means the first to make this discovery. The Bohemian Jesuit scholar Jan Marek (or Marcus) Marci (1595–1667) actually made this discovery earlier than Newton but firstly his explanation of the phenomenon was confused and largely wrong and secondly almost nobody knew of his work so the laurels go, probably correctly, to Newton.

NdGT’s next statement is for a physicist quite simply mindboggling he says, “That freaked out the artist of the day.  How does that work?  Red, orange, yellow, green, blue, violet gives you white.” Apparently NdGT is not aware of the fact that the rules for mixing coloured light and those for mixing pigments are different. I got taught this in primary school; NdGT appears never to have learnt it.

Up next are Newton’s contributions to mechanics, “He discovers the laws of motion and the universal law of gravitation.  Then, a friend of his says, “Well, why do these orbits of the planets… Why are they in a shape of an ellipse, sort of flattened circle?  Why aren’t… some other shape?”  He said, you know, “I can’t… I don’t know.  I’ll get back to you.”  So he goes… goes home, comes back couple of months later, “Here’s why.  They’re actually conic sections, sections of a cone that you cut.””

Where to begin? First off Newton did not discover either the laws of motion or the law of gravity. He borrowed all of them from others; his crowing achievement lay not in discovering them but in the way that he combined them. The questioning friend was of course Edmond Halley in what is one of the most famous and well document episodes in the history of physics, so why can’t NdGT get it right? What Halley actually asked was, assuming an inverse squared law of attraction what would be the shape of aa planetary orbit? This goes back to a question posed earlier by Christopher Wren in a discussion with Halley and Robert Hooke, “would an inverse squared law of attraction lead to Kepler’s laws of planetary motion?” Halley could not solve the problem so took the opportunity to ask Newton, at that time an acquaintance rather than a friend, who supposedly answered Halley’s question spontaneously with, “an ellipse.” Halley then asked how he knew it and Newton supposedly answered, “I have calculated it.” Newton being unable to find his claimed calculation sent Halley away and after some time supplied him with the nine-page manuscript De motu corporum in gyrum, which in massively expanded form would become Newton’s Principia.

NdGT blithely ignoring the, as I’ve said, well documented historical facts now continues his #histsigh fairy story, “And he said, “Well, how did find this out?  How did you determine this?”  “Well, I had to invent integral and differential calculus to determine this.”” This is complete an utter bullshit! This is in no way what Newton did and as such he also never claimed to have done it. In fact one of the most perplexing facts in Newton’s biography is that although he was a co-discoverer/co-inventor of the calculus (we’ll ignore for the moment the fact that even this is not strictly true, read the story here) there is no evidence that he used calculus to write Principia.

NdGT now drops his biggest historical clangour! He says, “Then, he turned 26.  Then, he turned 26.  We got people slogging through calculus in college just to learn what it is that Isaac Newtown invented on a dare, practically.  So that’s my man, Isaac Newton.” Newton was twenty-six going on twenty seven when he carried out the optics research that led to his theory of colours in 1666-67 but the episode with Halley concerning the shape of planetary orbits took place in 1682 when he was forty years old and he first delivered up De motu corporum in gyrum two years later in 1684. NdGT might, as an astro-physicist, be an expert on a telescope but he shouldn’t telescope time when talking about historical events.

24 Comments

Filed under History of Optics, History of science, Myths of Science, Newton

On an excursion

If you wish to read the latest words of wisdom, this time on the conception and invention of the reflecting telescope, then you will have to take an excursion to AEON magazine, where you can peruse:

How many great minds does it take to invent a telescope?

Isaac Newton’s reflecting telescope of 1671. Photo ©The Royal Society, London

2 Comments

Filed under History of Astronomy, History of Optics, History of Technology, Newton

Christmas Trilogy 2016 Part 1: Is Newtonian physics Newton’s physics?

Nature and nature’s laws lay hid in night;

God said “Let Newton be” and all was light.

Isaac Newton's Tomb in Westminster Abbey Photo: Klaus-Dieter Keller Source: Wikimedia Commons

Isaac Newton’s Tomb in Westminster Abbey
Photo: Klaus-Dieter Keller
Source: Wikimedia Commons

Alexander Pope’s epitaph sets the capstone on the myth of Newton’s achievements that had been under construction since the publication of the Principia in 1687. Newton had single-handedly delivered up the core of modern science – mechanics, astronomy/cosmology, optics with a side order of mathematics – all packed up and ready to go, just pay at the cash desk on your way out. We, of course, know (you do know don’t you?) that Pope’s claim is more than somewhat hyperbolic and that Newton’s achievements have, over the centuries since his death, been greatly exaggerated. But what about the mechanics? Surely that is something that Newton delivered up as a finished package in the Principia? We all learnt Newtonian physics at school, didn’t we, and that – the three laws of motion, the definition of force and the rest – is all straight out of the Principia, isn’t it? Newtonian physics is Newton’s physics, isn’t it? There is a rule in journalism/blogging that if the title of an article/post is in the form of a question then the answer is no. So Newtonian physics is not Newton’s physics, or is it? The answer is actually a qualified yes, Newtonian physics is Newton’s physics, but it’s very qualified.

Newton's own copy of his Principia, with hand-written corrections for the second edition Source: Wikimedia Commons

Newton’s own copy of his Principia, with hand-written corrections for the second edition
Source: Wikimedia Commons

The differences begin with the mathematics and this is important, after all Newton’s masterwork is The Mathematical Principles of Natural Philosophy with the emphasis very much on the mathematical. Newton wanted to differentiate his work, which he considered to be rigorously mathematical, from other versions of natural philosophy, in particular that of Descartes, which he saw as more speculatively philosophical. In this sense the Principia is a real change from much that went before and was rejected by some of a more philosophical and literary bent for exactly that reason. However Newton’s mathematics would prove a problem for any modern student learning Newtonian mechanics.

Our student would use calculus in his study of the mechanics writing his work either in Leibniz’s dx/dy notation or the more modern F’(x) = f(x) notation of the French mathematician, Lagrange (1736–1813). He won’t be using the dot notation developed by Newton and against which Babbage, Peacock, Herschel and the Analytical Society campaigned so hard at the beginning of the nineteenth century. In fact if our student turns to the Principia, he won’t find Newton’s dot notation calculus there either, as I explained in an earlier post Newton didn’t use calculus when writing the Principia, but did all of his mathematics with Euclidian geometry. This makes the Principia difficult to read for the modern reader and at times impenetrable. It should also be noted that although both Leibniz and Newton, independently of each other, codified a system of calculus – they didn’t invent it – at the end of the seventeenth century, they didn’t produce a completed system. A lot of the calculus that our student will be using was developed in the eighteenth century by such mathematicians as Pierre Varignon (1654–1722) in France and various Bernoullis as well as Leonard Euler (1707­1783) in Switzerland. The concept of limits that are so important to our modern student’s calculus proofs was first introduced by Bernard Bolzano (1781–1848), Augustin-Louis Cauchy (1789–1857) and above all Karl Theodor Wilhelm Weierstrass (1815–1897) in the nineteenth century.

Turning from the mathematics to the physics itself, although the core of what we now know as Newtonian mechanics can be found in the Principia, what we actually use/ teach today is actually an eighteenth-century synthesis of Newton’s work with elements taken from the works of Descartes and Leibniz; something our Isaac would definitely not have been very happy about, as he nursed a strong aversion to both of them.

A notable example of this synthesis concerns the relationship between mass, velocity and energy and was brought about one of the very few women to be involved in these developments in the eighteenth century, Gabrielle-Émilie Le Tonnelier de Breteuil, Marquise du Châtelet, the French aristocrat, lover of Voltaire and translator of the first French edition of the Principia.

In the frontispiece to Voltaire's book on Newton's philosophy, du Châtelet appears as Voltaire's muse, reflecting Newton's heavenly insights down to Voltaire. Source: Wikimedia Commons

In the frontispiece to Voltaire’s book on Newton’s philosophy, du Châtelet appears as Voltaire’s muse, reflecting Newton’s heavenly insights down to Voltaire.
Source: Wikimedia Commons

One should remember that mechanics doesn’t begin with Newton; Simon Stevin, Galileo Galilei, Giovanni Alfonso Borelli, René Descartes, Christiaan Huygens and others all produced works on mechanics before Newton and a lot of their work flowed into the Principia. One of the problems of mechanics discussed in the seventeenth century was the physics of elastic and inelastic collisions, sounds horribly technical but it’s the physics of billiard and snooker for example, which Descartes famously got wrong. Part of the problem is the value of the energy[1] imparted upon impact by an object of mass m travelling at a velocity v upon impact.

Newton believed that the solution was simply mass times velocity, mv and belief is the right term his explanation being surprisingly non-mathematical and rather religious. Leibniz, however, thought that the solution was mass times velocity squared, again with very little scientific justification. The support for the two theories was divided largely along nationalist line, the Germans siding with Leibniz and the British with Newton and it was the French Newtonian Émilie du Châtelet who settled the dispute in favour of Leibniz. Drawing on experimental results produced by the Dutch Newtonian, Willem Jacob ‘s Gravesande (1688–1742), she was able to demonstrate the impact energy is indeed mv2.

Willem Jacob 's Gravesande (1688-1745) Portrait by Hendrik van Limborch (1681-1759) Source: Wikimedia Commons

Willem Jacob ‘s Gravesande (1688-1745) Portrait by Hendrik van Limborch (1681-1759)
Source: Wikimedia Commons

The purpose of this brief excurse into eighteenth-century physics is intended to show that contrary to Pope’s epitaph not even the great Isaac Newton can illuminate a whole branch of science in one sweep. He added a strong beam of light to many beacons already ignited by others throughout the seventeenth century but even he left many corners in the shadows for other researchers to find and illuminate in their turn.

 

 

 

 

[1] The use of the term energy here is of course anachronistic

9 Comments

Filed under History of Physics, History of science, Myths of Science, Newton, Uncategorized

A spirited defence

After I had, in my last blog post, mauled his Scientific American essay in my usual uncouth Rambo style, Michael Barany responded with great elegance and courtesy in a spirited defence of his historical claims to which I now intend to add some comments, thus extending this exchange by a fourth part.

On early practical mathematicians Michael Barany acknowledges that their work is for the public good but argues correctly that that doesn’t then a “public good”. I acknowledge that there is a difference and accept his point however I have a sneaky feeling that something is only referred to as a “public good” when somebody in power is trying to put one over on the great unwashed.

Barany thinks that the Liber Abbaci and per definition all the other abbacus books, only exist for a closed circle of insider and not for the general public. In fact abbacus books were used as textbooks in so-called abbacus schools, which were small private schools that taught the basics of arithmetic, algebra, geometry and bookkeeping open to all who could pay the fees demanded by the schoolteacher, who was very often the author of the abbacus book that he used for his teaching. It is true that the pupils were mostly the apprentices of tradesmen, builders and artists but they were at least in theory open to all and were not quite the closed shop that Michael Barany seems to be implying. In this context Michael Barany says that Recorde’s Pathway to Knowledge, a book on elementary Euclidean geometry, is eminently impractical. However elementary Euclidean geometry was part of the syllabus of all abbacus schools considered part of the necessary knowledge required by artist and builder/architect apprentices. In fact the first Italian vernacular translation of Euclid was made by Tartaglia, an abbacus schoolteacher.

Michael Barany makes some plausible but rather stretched argument to justify his couterpositioning of Recorde and Dee, which I don’t find totally convincing but slips into his argument the following gem. If you don’t like Dee as your English standard bearer for keeping mathematics close to one’s chest, try Thomas Harriot. Now I assume that this flippant comment was written tongue in cheek but just in case.

Michael Barany’s whole essay contrasts what he sees as two approaches to mathematics, those who see mathematics as a topic for everyone and those who view mathematics as a topic for an elitist clique. In the passage that I criticised in his original essay he presented Robert Recorde as an example of the former and John Dee as a representative of the latter. A contrast that he tries to defend in his reply, where this statement about Harriot turns up. Now his elitist argument is very much dependent on a clique or closed circle of trained experts or adepts who exchanged their arcane knowledge amongst themselves but not with outsiders. A good example of such behaviour in the history of science is alchemy and the alchemists. Harriot as an example of such behaviour is a complete flop. Thomas Harriot made significant discoveries in various fields of scientific endeavour, mathematics, dynamics, chemistry, optics, cartography and astronomy, however he never published any of his work and although he corresponded with other leading Renaissance scholars he also didn’t share his discoveries with these people. A good example of this is his correspondence with Kepler, where he discussed over several letters the problem of refraction but never once mentioned that he had already discovered what we now know as Snell’s Law. Harriot remained throughout his life a closed circle with exactly one member, not a very good example to illustrate Michael Barany’s thesis.

I claimed that there was no advance mathematics in Europe from late antiquity till the fifteenth century. Michael Barany counters this by saying: This cuts, for instance, the rich history of Islamic court mathematics out of the European history in which it emphatically belongs; it doesn’t cut it. Ignoring Islamic Andalusia, Islamic mathematics was developed outside of Europe and although it started to reappear in Europe during the twelfth and thirteen centuries during the translator period nobody within Europe was really capable of doing much with those advanced aspects of it before the fifteenth century, so I stand by my claim.

We now turn to Michael Barany’s defence of his original: In the seventeenth century’s Scientific Revolution, the new promoters of an experimental science that was (at least in principle) open to any observer were suspicious of mathematical arguments as inaccessible, tending to shut down diverse perspectives with a false sense of certainty. This he contrast with a, in his opinion, eighteenth century where mathematicians help sway over the scientific community. I basically implied that this claim was rubbish and I still stand by that to that, so what does Michael Barany produce in his defence.

In my original post I listed seven leading scholars of the seventeenth century who were mathematicians and whose very substantive contributions to the so-called scientific revolution was mathematical, on this Barany writes:

Thony pretends that naming some figures remembered today both for mathematics and for their contributions to the scientific revolution contradicts this well-established historical claim.

The, without any doubt, principle figures of the so-called scientific revolution are just some figures! Interesting? So what is Michael Barany’s well-established historical claim? We get offered the following:

Following Steven Shapin and many who have written since his classic 1988 article on Boyle’s relationship to mathematics, I chose to emphasize the conflicts between the experimental program associated with the scientific revolution and competing views on the role of mathematics in natural philosophy.

What we have here is an argument by authority, that of Steven Shapin, whose work and the conclusions that he draws are by no means undisputed, and one name Robert Boyle! Curiously a few days before I read this, science writer, John Gribbin, commentated on Facebook that Robert Hooke had to work out Boyle’s Law because Boyle was lousy at mathematics, might this explain his aversion to it? However Michael Barany does offer us a second argument:

But to take just his most famous example, Newton’s prestige in the Royal Society is generally seen today to have had at least as much to do with his Opticks and his other non-mathematical pursuits as with his calculus, which contemporaries almost uniformly found impenetrable.

Really? I seem to remember that twenty years before he published his Opticks, Old Isaac wrote another somewhat significant tome entitled Philosophiæ Naturalis Principia Mathematica [my emphasis], which was published by the Royal Society. It was this volume of mathematical physics that established Newton’s reputation, not only with the fellows of the Royal Society, but with the entire scientific community of Europe, even with those who rejected Newton’s central concept of gravity as action at a distance. This book led to Newton being elected President of the Royal Society, in 1704, the same year as the Opticks was published. The Opticks certainly enhanced Newton’s reputation but he was already considered almost universally by then to be the greatest living natural philosopher.

Is the Opticks truly non-mathematical? Well, actually no! When it was published it was the culmination of two thousand years of geometrical optics, a mathematical discipline that begins with Euclid, Hero and Ptolemaeus in antiquity and was developed by various Islamic scholars in the Middle Ages, most notably Ibn al-Haytham. One of the first mathematical sciences to re-enter Europe in the High Middle Ages it was propagated by Robert Grosseteste, Roger Bacon, John Peckham and Witelo. In the seventeenth-century it was one of the mainstream disciplines contributing to the so-called scientific revolution developed by Thomas Harriot, Johannes Kepler, Willebrord van Roijen Snell, Christoph Scheiner, René Descartes, Pierre Fermat, Christiaan Huygens, Robert Hooke, James Gregory and others. Newton built on and developed the work of all these people and published his results in his Opticks in 1706. Yes, some of his results are based on experiments but that does not make the results non-mathematical and if you bother to read the book you will find more than a smidgen of geometry there in.

In my opinion trying to recruit Newton as an example of non-mathematical experimental science is an act of desperation.

To be fair to Michael Barany the division between those who favoured non-mathematical experimental science and the mathematician really did exist in the seventeenth century, however it was largely confined to England and most prominently in the Royal Society. This is the conflict between the Baconians and the Newtonians that I have blogged about on several occasions in the past. Boyle, Hooke and Flamsteed, for example, were all Baconians who, following Francis Bacon, were not particularly fond of mathematical proofs. This conflict has an interesting history within the Royal Society, which led to disadvantages for the development of the mathematical sciences in England in the eighteenth century.

When the Royal Society was initially founded some mathematician did not become members because of the dominance of the Baconians and that despite the fact that the first President, William Brouncker, was a mathematician. Later under Newton’s presidency the mathematicians gained the ascendency, but first in 1712 after an eight-year guerrilla conflict between Newton and Hans Sloane, a Baconian and the society’s secretary. Following Newton’s death in 1727 (ns) the Baconians regained power and the result was that, whereas on the continent the mathematical sciences flourished and evolved throughout the eighteenth century, in England they withered and died, leading to a new power struggle in the nineteenth century featuring such figures as Charles Babbage and John Herschel.

To claim as Michael Barany does that this conflict within the English scientific community meant that mathematics played an inferior role in the seventeenth century is a bridge too far and contradicts the available historical facts. Yes, the mathematization of nature was not the only game in town and interestingly non-mathematical experimental science was not the only alternative. In fact the seventeenth century was a wonderful cuddle-muddle of conflicting meta-physical views on the sciences. However whatever Steven Shapin might or might not claim the seventeenth century was a very mathematical century and mathematics was the principle driving force behind the so-called scientific revolution. As a footnote I would point out that many of the leading experimental natural philosophers of the seventeenth century, such as Galileo, Pascal, Stevin and Newton, were mathematicians who interpreted and presented their results mathematically.

24 Comments

Filed under History of Mathematics, History of science, Newton

Isaac and the apple – the story and the myth

The tale of Isaac Newton and the apple is, along with Archimedes’ bath time Eureka-ejaculation and Galileo defiantly mumbling ‘but it moves’ whilst capitulating before the Inquisition, is one of the most widely spread and well known stories in the history of science. Visitors to his place of birth in Woolsthorpe get to see a tree from which the infamous apple is said to have fallen, inspiring the youthful Isaac to discover the law of gravity.

The Woolsthorpe Manor apple tree Source:Wikimedia Commons

The Woolsthorpe Manor apple tree
Source:Wikimedia Commons

Reputed descendants of the tree exist in various places, including Trinity College Cambridge, and apple pips from the Woolsthorpe tree was taken up to the International Space Station for an experiment by the ‘first’ British ISS crew member, Tim Peake. Peake’s overalls also feature a Principia patch displaying the apple in fall.

Tim Peake's Mission Logo

Tim Peake’s Mission Logo

All of this is well and good but it leads automatically to the question, is the tale of Isaac and the apple a real story or is it just a myth? The answer is that it is both.

Modern historians of Early Modern science tend to contemptuously dismiss the whole story as a myth. One who vehemently rejects it is Patricia Fara, who is an expert on Newtonian mythology and legend building having researched and written the excellent book, Newton: The Making of Genius[1]. In her Science: A Four Thousand Year History she has the following to say about the apple story[2]:

More than any other scientific myth, Newton’s falling apple promotes the romantic notion that great geniuses make momentous discoveries suddenly and in isolation […] According to simplistic accounts of its [Principia’s] impact, Newton founded modern physics by introducing gravity and simultaneously implementing two major transformations in methodology: unification and mathematization. By drawing a parallel between an apple and the Moon, he linked an everyday event on Earth with the motion of the planets through the heavens, thus eliminating the older, Aristotelian division between the terrestrial and celestial realms.

[…]

Although Newton was undoubtedly a brilliant man, eulogies of a lone genius fail to match events. Like all innovators, he depended on the earlier work of Kepler, Galileo, Descartes and countless others […]

[…]

The apple story was virtually unknown before Byron’s time. [Fara opens the chapter with a Byron poem hailing Newton’s discovery of gravity by watching the apple fall].

Whilst I would agree with almost everything that Fara says, here I think she is, to quote Kepler, guilty of throwing out the baby with the bath water. But before I explain why I think this let us pass review of the myth that she is, in my opinion, quite rightly rejecting.

The standard simplistic version of the apple story has Newton sitting under the Woolsthorpe Manor apple tree on a balmy summer’s day meditation on mechanics when he observes an apple falling. Usually in this version the apple actually hits him on the head and in an instantaneous flash of genius he discovers the law of gravity.

This is of course, as Fara correctly points out, a complete load of rubbish. We know from Newton’s notebooks and from the draughts of Principia that the path from his first studies of mechanics, both terrestrial and celestial, to the finished published version of his masterpiece was a very long and winding one, with many cul-de-sacs, false turnings and diversions. It involved a long and very steep learning curve and an awful lot of very long, very tedious and very difficult mathematical calculations. To modify a famous cliché the genius of Principia and the theories that it contains was one pro cent inspiration and ninety-nine pro cent perspiration.

If all of this is true why do I accuse Fara of throwing out the baby with the bath water? I do so because although the simplistic story of the apple is a complete myth there really was a story of an apple told by Newton himself and in the real versions, which differ substantially from the myth, there is a core of truth about one step along that long and winding path.

Having quoted Fara I will now turn to, perhaps Newton’s greatest biographer, Richard Westfall. In his Never at Rest, Westfall of course addresses the apple story:

What then is one to make of the story of the apple? It is too well attested to be thrown out of court. In Conduitt’s version one of four independent ones, …

Westfall tells us that the story is in fact from Newton and he told to on at least four different occasions to four different people. The one Westfall quotes is from John Conduitt, who was Newton’s successor at the Royal Mint, married his niece and house keeper Catherine Barton and together with her provided Newton with care in his last years. The other versions are from the physician and antiquarian William Stukeley, who like Newton was from Lincolnshire and became his friend in the last decade of Newton’s life, the Huguenot mathematician Abraham DeMoivre, a convinced Newtonian and Robert Greene who had the story from Martin Folkes, vice-president of the Royal Society whilst Newton was president. There is also an account from Newton’s successor as Lucasian professor, William Whiston, that may or may not be independent. The account published by Newton’s first published biographer, Henry Pemberton, is definitely dependent on the accounts of DeMoivre and Whiston. The most well known account is that of Voltaire, which he published in his Letters Concerning the English Nation, London 1733 (Lettres philosophiques sur les Anglais, Rouen, 1734), and which he says he heard from Catherine Conduitt née Barton. As you can see there are a substantial number of sources for the story although DeMoivre’s account, which is very similar to Conduitt’s doesn’t actually mention the apple, so as Westfall says to dismiss it out of hand is being somewhat cavalier, as a historian.

To be fair to Fara she does quote Stukeley’s version before the dismissal that I quoted above, so why does she still dismiss the story. She doesn’t, she dismisses the myth, which has little in common with the story as related by the witnesses listed above. Before repeating the Conduitt version as quoted by Westfall we need a bit of background.

In 1666 Isaac, still an undergraduate, had, together with all his fellow students, been sent down from Cambridge because of an outbreak of the plague. He spent the time living in his mother’s house, the manor house in Woolsthorpe, teaching himself the basics of the modern terrestrial mechanics from the works of Descartes, Huygens and the Salisbury English translation of Galileo’s Dialogo. Although he came nowhere near the edifice that was the Principia, he did make quite remarkable progress for a self-taught twenty-four year old. It was at this point in his life that the incident with the apple took place. We can now consider Conduitt’s account:

In the year 1666 he retired again from Cambridge … to his mother in Lincolnshire & whilst he was musing in a garden it came to his thought that the power of gravity (wch brought an apple from the tree to the ground) was not limited to a certain distance from the earth but that this power must extend much further than was normally thought. Why not as high as the moon said he to himself & if so that must influence her motion & and perhaps retain her in her orbit, where-upon he fell to calculating what would be the effect of this supposition but being absent from books & taking common estimate in use among Geographers & our seamen before Norwood had measured the earth, that 60 English miles were contained in one degree latitude on the surface of the Earth his computation did not agree with his theory & inclined him to entertain a notion that together with the force of gravity there might be a mixture of that force wch the moon would have if it was carried along in a vortex…[3]

As you can see the account presented here by Conduitt differs quite substantially from the myth. No tree, no apple on the head, no instantaneous discovery of the theory of gravity. What we have here is a young man who had been intensely studying the theory of forces, in particular forces acting on a body moving in a circle, applying what he had learnt to an everyday situation the falling apple and asking himself if those forces would also be applicable to the moon. What is of note here is the fact that his supposition didn’t work out. Based on the data he was using, which was inaccurate, his calculations showed that the forces acting on the apple and those acting on the moon where not the same! An interesting thought but it didn’t work out. Oh well, back to the drawing board. Also of note here is the reference to a vortex, revealing Newton to be a convinced Cartesian. By the time he finally wrote the Principia twenty years later he had turned against Descartes and in fact Book II of Principia is devoted to demolishing Descartes’ vortex theory.

In 1666 Newton dropped his study of mechanics for the meantime and moved onto optics, where his endeavours would prove more fruitful, leading to his discoveries on the nature of light and eventually to his first publication in 1672, as well as the construction of his reflecting telescope.

The Newtonian Reflector Source: Wikimedia Commons

The Newtonian Reflector
Source: Wikimedia Commons

Over the next two decades Newton developed and extended his knowledge of mechanics, whilst also developing his mathematical skills so that when Halley came calling in 1684 to ask what form a planetary orbit would take under an inverse squared law of gravity, Newton was now in a position to give the correct answer. At Halley’s instigation Newton now turned that knowledge into a book, his Principia, which only took him the best part of three years to write! As can be seen even with this briefest of outlines there was definitely nothing instantaneous or miraculous about the creation of Newton’ masterpiece.

So have we said all that needs to be said about Newton and his apple, both the story and the myth? Well no. There still remains another objection that has been raised by historians, who would definitely like to chuck the baby out with the bath water. Although there are, as noted above, multiple sources for the apple-story all of them date from the last decade of Newton’s life, fifty years after the event. There is a strong suspicion that Newton, who was know to be intensely jealous of his priorities in all of his inventions and discoveries, made up the apple story to establish beyond all doubt that he and he alone deserved the credit for the discovery of universal gravitation. This suspicion cannot be simply dismissed as Newton has form in such falsification of his own history. As I have blogged on an earlier occasion, he definitely lied about having created Principia using the, from himself newly invented, calculus translating it back into conventional Euclidian geometry for publication. We will probably never know the final truth about the apple-story but I for one find it totally plausible and am prepared to give Isaac the benefit of the doubt and to say he really did take a step along the road to his theory of universal gravitation one summer afternoon in Woolsthorpe in the Year of Our Lord 1666.

[1] Patricia Fara, Newton: The Making of Genius, Columbia University Press, 2002

[2] Patricia Fara, Science: A Four Thousand Year History, ppb. OUP, 2010, pp. 164-165

[3] Richard S. Westfall, Never at Rest: A Biography of Isaac Newton, ppb. CUP, 1980 p. 154

39 Comments

Filed under History of Astronomy, History of Mathematics, History of Optics, History of Physics, History of science, Myths of Science, Newton

The Huygens Enigma

The seventeenth century produced a large number of excellent scientific researches and mathematicians in Europe, several of whom have been elevated to the status of giants of science or even gods of science by the writers of the popular history of science. Regular readers of this blog should be aware that I don’t believe in the gods of science, but even I am well aware that not all researches are equal and the contributions of some of them are much greater and more important than those of others, although the progress of science is dependent on the contributions of all the players in the science game. Keeping to the game analogy, one could describe them as playing in different leagues. One thing that has puzzled me for a number of years is what I regard as the Huygens enigma. There is no doubt in my mind whatsoever that the Dutch polymath Christiaan Huygens, who was born on the 14 April 1629, was a top premier league player but when those pop history of science writers list their gods they never include him, why not?

Christiaan Huygens by Caspar Netscher, Museum Hofwijck, Voorburg Source: Wikimedia Commons

Christiaan Huygens by Caspar Netscher, Museum Hofwijck, Voorburg
Source: Wikimedia Commons

Christiaan was the second son of Constantijn Huygens poet, composer, civil servant and diplomat and was thus born into the highest echelons of Dutch society. Sent to university to study law by his father Christiaan received a solid mathematical education from Frans van Schooten, one of the leading mathematicians in Europe and an expert on the new analytical mathematics of Descartes and Fermat. Already as a student Christiaan had contacts to top European intellectuals, including corresponding with Marine Mersenne, who confirmed his mathematical talent to his father. Later in his student life he also studied under the English mathematician John Pell.

Already at the age of twenty-five Christiaan dedicated himself to the scientific life, the family wealth sparing him the problem of having to earn a living. Whilst still a student he established himself as a respected mathematician with an international reputation and would later serve as one of Leibniz’s mathematics teachers. In his first publication at the age of twenty-two Huygens made an important contribution to the then relatively new discipline of probability. In physics Huygens originated what would become Newton’s second law of motion and in a century that saw the development of the concept of force it was Huygens’ work on centripetal force that led Christopher Wren and Isaac Newton to the derivation of the inverse square law of gravity. In fact in Book I of Principia, where Newton develops the physics that he goes on to use for his planetary theory in Book III, he only refers to centripetal force and never to the force of gravity. Huygens contribution to the Newtonian revolution in physics and astronomy was substantial and essential.

In astronomy Christiaan with his brother Constantijn ground their own lenses and constructed their own telescopes. He developed one of the early multiple lens eyepieces that improved astronomical observation immensely and which is still known as a Huygens eyepiece. He established his own reputation as an observational astronomer by discovering Titan the largest moon of Saturn. He also demonstrated that all the peculiar observations made over the years of Saturn since Galileo’s first observations in 1610 could be explained by assuming that Saturn had a system of rings, their appearance varying depending on where Saturn and the Earth were in their respective solar orbits at the time of observations. This discovery was made by theoretical analysis and not, as is often wrongly claimed, because he had a more powerful telescope.

In optics Huygens was, along with Robert Hooke, the co-creator of a wave theory of light, which he used to explain the phenomenon of double refraction in calcite crystals. Unfortunately Newton’s corpuscular theory of light initially won out over Huygens’ wave theory until Young and others confirmed Huygens’ theory in the nineteenth century.

Many people know Huygens best for his contributions to the history of clocks. He developed the first accurate pendulum clocks and was again along with Robert Hooke, who accused him of plagiarism, the developer of the balance spring watch. There were attempts to use his pendulum clocks to determine longitude but they proved not to be reliable enough under open sea conditions.

Huygens’ last book published posthumously, Cosmotheoros, is a speculation about the possibility of alien life in the cosmos.

Huygens made important contributions to many fields of science during the second half of the seventeenth century of which the above is but a brief and inadequate sketch and is the intellectual equal of any other seventeenth century researcher with the possible exceptions of Newton and Kepler but does not enjoy the historical reputation that he so obviously deserve, so why?

I personally think it is because there exists no philosophical system or magnum opus associated with his contributions to the development of science. He work is scattered over a series of relatively low-key publications and he offers no grand philosophical concept to pull his work together. Galileo had his Dialogo and his Discorsi, Descartes his Cartesian philosophy, Newton his Principia and his Opticks. It seems to be regarded as one of the gods of science it is not enough to be a top class premier league player who makes vital contributions across a wide spectrum of disciplines, one also has to have a literary symbol or philosophical methodology attached to ones name to be elevated into the history of science Olympus.

P.S. If you like most English speakers think that his name is pronounced something like Hoi-gens then you are wrong, it being Dutch is nothing like that as you can hear in this splendid Youtube video!

12 Comments

Filed under History of Astronomy, History of Optics, History of Physics, History of science, Newton