Category Archives: Newton

Isaac and the apple – the story and the myth

The tale of Isaac Newton and the apple is, along with Archimedes’ bath time Eureka-ejaculation and Galileo defiantly mumbling ‘but it moves’ whilst capitulating before the Inquisition, is one of the most widely spread and well known stories in the history of science. Visitors to his place of birth in Woolsthorpe get to see a tree from which the infamous apple is said to have fallen, inspiring the youthful Isaac to discover the law of gravity.

The Woolsthorpe Manor apple tree Source:Wikimedia Commons

The Woolsthorpe Manor apple tree
Source:Wikimedia Commons

Reputed descendants of the tree exist in various places, including Trinity College Cambridge, and apple pips from the Woolsthorpe tree was taken up to the International Space Station for an experiment by the ‘first’ British ISS crew member, Tim Peake. Peake’s overalls also feature a Principia patch displaying the apple in fall.

Tim Peake's Mission Logo

Tim Peake’s Mission Logo

All of this is well and good but it leads automatically to the question, is the tale of Isaac and the apple a real story or is it just a myth? The answer is that it is both.

Modern historians of Early Modern science tend to contemptuously dismiss the whole story as a myth. One who vehemently rejects it is Patricia Fara, who is an expert on Newtonian mythology and legend building having researched and written the excellent book, Newton: The Making of Genius[1]. In her Science: A Four Thousand Year History she has the following to say about the apple story[2]:

More than any other scientific myth, Newton’s falling apple promotes the romantic notion that great geniuses make momentous discoveries suddenly and in isolation […] According to simplistic accounts of its [Principia’s] impact, Newton founded modern physics by introducing gravity and simultaneously implementing two major transformations in methodology: unification and mathematization. By drawing a parallel between an apple and the Moon, he linked an everyday event on Earth with the motion of the planets through the heavens, thus eliminating the older, Aristotelian division between the terrestrial and celestial realms.

[…]

Although Newton was undoubtedly a brilliant man, eulogies of a lone genius fail to match events. Like all innovators, he depended on the earlier work of Kepler, Galileo, Descartes and countless others […]

[…]

The apple story was virtually unknown before Byron’s time. [Fara opens the chapter with a Byron poem hailing Newton’s discovery of gravity by watching the apple fall].

Whilst I would agree with almost everything that Fara says, here I think she is, to quote Kepler, guilty of throwing out the baby with the bath water. But before I explain why I think this let us pass review of the myth that she is, in my opinion, quite rightly rejecting.

The standard simplistic version of the apple story has Newton sitting under the Woolsthorpe Manor apple tree on a balmy summer’s day meditation on mechanics when he observes an apple falling. Usually in this version the apple actually hits him on the head and in an instantaneous flash of genius he discovers the law of gravity.

This is of course, as Fara correctly points out, a complete load of rubbish. We know from Newton’s notebooks and from the draughts of Principia that the path from his first studies of mechanics, both terrestrial and celestial, to the finished published version of his masterpiece was a very long and winding one, with many cul-de-sacs, false turnings and diversions. It involved a long and very steep learning curve and an awful lot of very long, very tedious and very difficult mathematical calculations. To modify a famous cliché the genius of Principia and the theories that it contains was one pro cent inspiration and ninety-nine pro cent perspiration.

If all of this is true why do I accuse Fara of throwing out the baby with the bath water? I do so because although the simplistic story of the apple is a complete myth there really was a story of an apple told by Newton himself and in the real versions, which differ substantially from the myth, there is a core of truth about one step along that long and winding path.

Having quoted Fara I will now turn to, perhaps Newton’s greatest biographer, Richard Westfall. In his Never at Rest, Westfall of course addresses the apple story:

What then is one to make of the story of the apple? It is too well attested to be thrown out of court. In Conduitt’s version one of four independent ones, …

Westfall tells us that the story is in fact from Newton and he told to on at least four different occasions to four different people. The one Westfall quotes is from John Conduitt, who was Newton’s successor at the Royal Mint, married his niece and house keeper Catherine Barton and together with her provided Newton with care in his last years. The other versions are from the physician and antiquarian William Stukeley, who like Newton was from Lincolnshire and became his friend in the last decade of Newton’s life, the Huguenot mathematician Abraham DeMoivre, a convinced Newtonian and Robert Greene who had the story from Martin Folkes, vice-president of the Royal Society whilst Newton was president. There is also an account from Newton’s successor as Lucasian professor, William Whiston, that may or may not be independent. The account published by Newton’s first published biographer, Henry Pemberton, is definitely dependent on the accounts of DeMoivre and Whiston. The most well known account is that of Voltaire, which he published in his Letters Concerning the English Nation, London 1733 (Lettres philosophiques sur les Anglais, Rouen, 1734), and which he says he heard from Catherine Conduitt née Barton. As you can see there are a substantial number of sources for the story although DeMoivre’s account, which is very similar to Conduitt’s doesn’t actually mention the apple, so as Westfall says to dismiss it out of hand is being somewhat cavalier, as a historian.

To be fair to Fara she does quote Stukeley’s version before the dismissal that I quoted above, so why does she still dismiss the story. She doesn’t, she dismisses the myth, which has little in common with the story as related by the witnesses listed above. Before repeating the Conduitt version as quoted by Westfall we need a bit of background.

In 1666 Isaac, still an undergraduate, had, together with all his fellow students, been sent down from Cambridge because of an outbreak of the plague. He spent the time living in his mother’s house, the manor house in Woolsthorpe, teaching himself the basics of the modern terrestrial mechanics from the works of Descartes, Huygens and the Salisbury English translation of Galileo’s Dialogo. Although he came nowhere near the edifice that was the Principia, he did make quite remarkable progress for a self-taught twenty-four year old. It was at this point in his life that the incident with the apple took place. We can now consider Conduitt’s account:

In the year 1666 he retired again from Cambridge … to his mother in Lincolnshire & whilst he was musing in a garden it came to his thought that the power of gravity (wch brought an apple from the tree to the ground) was not limited to a certain distance from the earth but that this power must extend much further than was normally thought. Why not as high as the moon said he to himself & if so that must influence her motion & and perhaps retain her in her orbit, where-upon he fell to calculating what would be the effect of this supposition but being absent from books & taking common estimate in use among Geographers & our seamen before Norwood had measured the earth, that 60 English miles were contained in one degree latitude on the surface of the Earth his computation did not agree with his theory & inclined him to entertain a notion that together with the force of gravity there might be a mixture of that force wch the moon would have if it was carried along in a vortex…[3]

As you can see the account presented here by Conduitt differs quite substantially from the myth. No tree, no apple on the head, no instantaneous discovery of the theory of gravity. What we have here is a young man who had been intensely studying the theory of forces, in particular forces acting on a body moving in a circle, applying what he had learnt to an everyday situation the falling apple and asking himself if those forces would also be applicable to the moon. What is of note here is the fact that his supposition didn’t work out. Based on the data he was using, which was inaccurate, his calculations showed that the forces acting on the apple and those acting on the moon where not the same! An interesting thought but it didn’t work out. Oh well, back to the drawing board. Also of note here is the reference to a vortex, revealing Newton to be a convinced Cartesian. By the time he finally wrote the Principia twenty years later he had turned against Descartes and in fact Book II of Principia is devoted to demolishing Descartes’ vortex theory.

In 1666 Newton dropped his study of mechanics for the meantime and moved onto optics, where his endeavours would prove more fruitful, leading to his discoveries on the nature of light and eventually to his first publication in 1672, as well as the construction of his reflecting telescope.

The Newtonian Reflector Source: Wikimedia Commons

The Newtonian Reflector
Source: Wikimedia Commons

Over the next two decades Newton developed and extended his knowledge of mechanics, whilst also developing his mathematical skills so that when Halley came calling in 1684 to ask what form a planetary orbit would take under an inverse squared law of gravity, Newton was now in a position to give the correct answer. At Halley’s instigation Newton now turned that knowledge into a book, his Principia, which only took him the best part of three years to write! As can be seen even with this briefest of outlines there was definitely nothing instantaneous or miraculous about the creation of Newton’ masterpiece.

So have we said all that needs to be said about Newton and his apple, both the story and the myth? Well no. There still remains another objection that has been raised by historians, who would definitely like to chuck the baby out with the bath water. Although there are, as noted above, multiple sources for the apple-story all of them date from the last decade of Newton’s life, fifty years after the event. There is a strong suspicion that Newton, who was know to be intensely jealous of his priorities in all of his inventions and discoveries, made up the apple story to establish beyond all doubt that he and he alone deserved the credit for the discovery of universal gravitation. This suspicion cannot be simply dismissed as Newton has form in such falsification of his own history. As I have blogged on an earlier occasion, he definitely lied about having created Principia using the, from himself newly invented, calculus translating it back into conventional Euclidian geometry for publication. We will probably never know the final truth about the apple-story but I for one find it totally plausible and am prepared to give Isaac the benefit of the doubt and to say he really did take a step along the road to his theory of universal gravitation one summer afternoon in Woolsthorpe in the Year of Our Lord 1666.

[1] Patricia Fara, Newton: The Making of Genius, Columbia University Press, 2002

[2] Patricia Fara, Science: A Four Thousand Year History, ppb. OUP, 2010, pp. 164-165

[3] Richard S. Westfall, Never at Rest: A Biography of Isaac Newton, ppb. CUP, 1980 p. 154

31 Comments

Filed under History of Astronomy, History of Mathematics, History of Optics, History of Physics, History of science, Myths of Science, Newton

The Huygens Enigma

The seventeenth century produced a large number of excellent scientific researches and mathematicians in Europe, several of whom have been elevated to the status of giants of science or even gods of science by the writers of the popular history of science. Regular readers of this blog should be aware that I don’t believe in the gods of science, but even I am well aware that not all researches are equal and the contributions of some of them are much greater and more important than those of others, although the progress of science is dependent on the contributions of all the players in the science game. Keeping to the game analogy, one could describe them as playing in different leagues. One thing that has puzzled me for a number of years is what I regard as the Huygens enigma. There is no doubt in my mind whatsoever that the Dutch polymath Christiaan Huygens, who was born on the 14 April 1629, was a top premier league player but when those pop history of science writers list their gods they never include him, why not?

Christiaan Huygens by Caspar Netscher, Museum Hofwijck, Voorburg Source: Wikimedia Commons

Christiaan Huygens by Caspar Netscher, Museum Hofwijck, Voorburg
Source: Wikimedia Commons

Christiaan was the second son of Constantijn Huygens poet, composer, civil servant and diplomat and was thus born into the highest echelons of Dutch society. Sent to university to study law by his father Christiaan received a solid mathematical education from Frans van Schooten, one of the leading mathematicians in Europe and an expert on the new analytical mathematics of Descartes and Fermat. Already as a student Christiaan had contacts to top European intellectuals, including corresponding with Marine Mersenne, who confirmed his mathematical talent to his father. Later in his student life he also studied under the English mathematician John Pell.

Already at the age of twenty-five Christiaan dedicated himself to the scientific life, the family wealth sparing him the problem of having to earn a living. Whilst still a student he established himself as a respected mathematician with an international reputation and would later serve as one of Leibniz’s mathematics teachers. In his first publication at the age of twenty-two Huygens made an important contribution to the then relatively new discipline of probability. In physics Huygens originated what would become Newton’s second law of motion and in a century that saw the development of the concept of force it was Huygens’ work on centripetal force that led Christopher Wren and Isaac Newton to the derivation of the inverse square law of gravity. In fact in Book I of Principia, where Newton develops the physics that he goes on to use for his planetary theory in Book III, he only refers to centripetal force and never to the force of gravity. Huygens contribution to the Newtonian revolution in physics and astronomy was substantial and essential.

In astronomy Christiaan with his brother Constantijn ground their own lenses and constructed their own telescopes. He developed one of the early multiple lens eyepieces that improved astronomical observation immensely and which is still known as a Huygens eyepiece. He established his own reputation as an observational astronomer by discovering Titan the largest moon of Saturn. He also demonstrated that all the peculiar observations made over the years of Saturn since Galileo’s first observations in 1610 could be explained by assuming that Saturn had a system of rings, their appearance varying depending on where Saturn and the Earth were in their respective solar orbits at the time of observations. This discovery was made by theoretical analysis and not, as is often wrongly claimed, because he had a more powerful telescope.

In optics Huygens was, along with Robert Hooke, the co-creator of a wave theory of light, which he used to explain the phenomenon of double refraction in calcite crystals. Unfortunately Newton’s corpuscular theory of light initially won out over Huygens’ wave theory until Young and others confirmed Huygens’ theory in the nineteenth century.

Many people know Huygens best for his contributions to the history of clocks. He developed the first accurate pendulum clocks and was again along with Robert Hooke, who accused him of plagiarism, the developer of the balance spring watch. There were attempts to use his pendulum clocks to determine longitude but they proved not to be reliable enough under open sea conditions.

Huygens’ last book published posthumously, Cosmotheoros, is a speculation about the possibility of alien life in the cosmos.

Huygens made important contributions to many fields of science during the second half of the seventeenth century of which the above is but a brief and inadequate sketch and is the intellectual equal of any other seventeenth century researcher with the possible exceptions of Newton and Kepler but does not enjoy the historical reputation that he so obviously deserve, so why?

I personally think it is because there exists no philosophical system or magnum opus associated with his contributions to the development of science. He work is scattered over a series of relatively low-key publications and he offers no grand philosophical concept to pull his work together. Galileo had his Dialogo and his Discorsi, Descartes his Cartesian philosophy, Newton his Principia and his Opticks. It seems to be regarded as one of the gods of science it is not enough to be a top class premier league player who makes vital contributions across a wide spectrum of disciplines, one also has to have a literary symbol or philosophical methodology attached to ones name to be elevated into the history of science Olympus.

P.S. If you like most English speakers think that his name is pronounced something like Hoi-gens then you are wrong, it being Dutch is nothing like that as you can hear in this splendid Youtube video!

9 Comments

Filed under History of Astronomy, History of Optics, History of Physics, History of science, Newton

Well no, actually he didn’t.

Ethan Siegel has written a reply to my AEON Galileo opinion piece on his Forbes blog. Ethan makes his opinion very clear in the title of his post, Galileo Didn’t Invent Astronomy, But He DID Invent Mechanical Physics! My response is also contained in my title above and no, Galileo did not invent mechanical physics. For a change we’ll start with something positive about Galileo, his inclined plane experiments to determine the laws of fall, the description of which form the bulk of Ethan’s post, are in fact one of the truly great pieces of experimental physics and are what makes Galileo justifiably famous. However the rest of Ethan’s post leaves much to be desired.

Ethan starts off by describing the legendary Leaning Tower of Pisa experiment, in which Galileo supposedly dropped two ball of unequal weight of the tower and measured how long they took to fall. The major problem with this is that Galileo almost certainly never did carry out this experiment, however both John Philoponus in the sixth century CE and Simon Stevin in 1586 did so, well before Galileo considered the subject. The laws of fall were also investigated theoretically by the so-called Oxford Calculatores, who developed the mean speed theory, the foundation of the laws of fall, and the Paris Physicists, who represented the results graphically, both in the fourteenth century CE. Galileo knew of the work of John Philoponus, the Oxford Calculatores and the Paris Physicists, even using the same graph to represent the laws of fall in his Two New Sciences, as Oresme had used four hundred years earlier. In the sixteenth centuries the Italian mathematician Tartaglia investigated the path of projectiles, publishing the results in his Nova Scientia, his work was partially validated, partially refuted by Galileo. His landsman Benedetti anticipated most of Galileo’s results on the laws of fall. With the exception of Stevin’s work Galileo knew of all this work and built his own researches on it thus rather challenging Ethan’s claim that Galileo invented mechanical physics.

Galileo’s central achievement was to provide empirical proof of the laws of fall with his ingenious ramp experiments but even here there are problems. Galileo’s results are simply too good, not displaying the expected experimental deviations, leading Alexander Koyré, the first great historian of Galileo’s work, to conclude that Galileo never did the experiments at all. The modern consensus is that he did indeed do the experiments but probably massaged his results, a common practice. The second problem is that any set of empirical results requires confirmation by other independent researchers. Mersenne, a great supporter and propagator of Galileo’s physics, complains of the difficulties of reproducing Galileo’s experimental results and it was first Riccioli, who finally succeeded in doing so, publishing the results in 1651.

A small complaint is Ethan’s claim that Galileo’s work on the laws of fall “was the culmination of a lifetime of work”. In fact although Galileo first published his Two New Sciences in 1638 his work on mechanics was carried out early in his life and completed well before he made his telescopic discoveries.

The real problem with Ethan’s post is what follows the quote above, he writes:

…and the equations of motion derived from Newton’s laws are essentially a reformulation of the results of Galileo. Newton indeed stood on the shoulders of giants when he developed the laws of gravitation and mechanics, but the biggest titan of all in the field before him was Galileo, completely independent of what he contributed to astronomy.

This is quite simply wrong. After stating his first two laws of motion in the Principia Newton writes:

The principles I have set forth are accepted by mathematicians and confirmed by experiments of many kinds. By means of the first two laws and the first two corollaries Galileo found that the decent of heavy bodies is the squared ratio of the time that the motion of projectiles occurs in a parabola, as experiment confirms, except insofar as these motion are somewhat retarded by the resistance of the air.

As Bernard Cohen points out, in the introduction to his translation of the Principia from which I have taken the quote, this is wrong because, Galileo certainly did not know Newton’s first law. As to the second law, Galileo would not have known the part about change in momentum in the Newtonian sense, since this concept depends on the concept of mass which was invented by Newton and first made public in the Principia.

I hear Galileo’s fans protesting that Newton’s first law is the law of inertia, which was discovered by Galileo, so he did know it. However Galileo’s version of the law of inertia is flawed, as he believes natural unforced motion to be circular and not linear. In fact Newton takes his first law from Descartes who in turn took it from Isaac Beeckman. Newton’s Principia, or at least his investigation leading up to it, are in fact heavily indebted to the work of Descartes rather than that of Galileo and Descartes in turn owes his greatest debts in physics to the works of Beeckman and Stevin and not Galileo.

An interesting consequence of Newton’s false attribution to Galileo in the quote above is that it shows that Newton had almost certainly never read Galileo’s masterpiece and only knew of it through hearsay. Galileo’s laws of fall are only minimally present in the Principia and then only mentioned in passing as asides, whereas the parabola law occurs quite frequently whenever Newton is resolving forces in orbits but then only as Galileo has shown.

One small irony remains in Ethan’s post. He loves to plaster his efforts with lots of pictures and diagrams and videos. This post does the same and includes a standard physics textbook diagram showing the force vectors of a heavy body sliding down an inclined plane. You can search Galileo’s work in vain for a similar diagram but you will find an almost identical one in the work of Simon Stevin, who worked on physical mechanics independently of and earlier than Galileo. Galileo made some very important contributions to the development of mechanical physics but he certainly didn’t invent the discipline.

5 Comments

Filed under History of Mathematics, History of Physics, Myths of Science, Newton

We’re British not European – Really?

Yesterday evening my #histsci soul sister Becky Higgitt tweeted the following:

Scientists for Britain on #bbcnews – we had Newton therefore we don’t want to be in Europe

As #histsci bloggers both Becky and I have been here before, Becky here on her H-Word blog at the Guardian and myself here on the Renaissance Mathematicus but as it’s something that can’t be said too often, I thought I would point out once again that science is collaborative and international and all attempts to claim it for some sort of lone genius, as is often the case with Newton, or to make nationalist claims on its behalf are a massive distortion of the history of science.

Becky’s tweet specifically mentions Britain’s science icon ‘numero uno’ Isaac Newton, so let’s take a look at his scientific achievements and the foundations on which they were built. As Newton, paraphrasing Bernard of Chartres, famously wrote in a letter to Robert Hooke: If I have seen further, it is by standing on the shoulders of giants. So who were these giants on whose shoulders Newton was perched? What follows is a bit shopping list I’m afraid and is by no means exhaustive, listing only the better known names of the predecessors in each area of study where Newton made a contribution.

Newton’s mathematics built on the work in algebra of Cardano and Bombelli, both Italians, and Stifel, a German, from the sixteenth century. Their work was built on the efforts of quite a large number of Islamic mathematicians who in turn owed a debt to the Indians and Babylonians. Moving on into the seventeenth century we have Viète, Fermat, Pascal and Descartes, all of them Frenchmen, as well as Oughtred, Wallis and Barrow representing the English and James Gregory the Scots. Italy is represented by Cavalieri. The Dutch are represented by Huygens and Van Schooten, whose expanded Latin edition of Descartes Géométrie was Newton’s chief source on the continental mathematics.

We see a similar pattern in Newton’s optics where the earliest influence is the 10/11th century Islamic scholar Ibn al-Haytham, although largely filtered through the work of others. In the seventeenth century we have Kepler and Schiener, both Germans, Descartes, the Frenchman, and Huygens, the Dutchman, pop up again along with Grimaldi, an Italian, Gassendi, another Frenchman, and James Gregory a Scot and last but by no means least Robert Hooke.

In astronomy we kick off in the fifteenth century with Peuerbach and Regiomontanus, an Austrian and a German, followed in the sixteenth century by Copernicus, another German. All three of course owed a large debt to numerous earlier Islamic astronomers. Building on Copernicus we have Tycho, a Dane, Kepler, a German, and of course Galileo, a Tuscan. France is once again represented by Descartes along with Ismael Boulliau. Also very significant are Cassini, an Italian turned Frenchman, and once again the ubiquitous Huygens. At last we can throw in a gaggle of Englishmen with Horrocks, Wren, Flamsteed, Halley and Hooke.

In physics we have the usual suspects with Kepler and Galileo to which we can add the two Dutchmen Stevin and Beeckman. Descartes and Pascal are back for the French and Borelli joins Galileo in representing Italy. Huygens once again plays a central role and one should not forget Hooke’s contributions on gravity.

As I said at the beginning these lists are by no means exhaustive but I think that they demonstrate very clearly that Newton’s achievements were very much a pan-European affair and thus cannot in anyway be used as an argument for an English or British science existing without massive European cooperation.

If we look at Newton’s scientific inheritance then things look rather bad for the British in the eighteenth century with the developments being made by a whole battalion of French, Swiss, German, Dutch and Italian researchers with not a Brit in sight anywhere. Things improved somewhat in the nineteenth century but even here the progress is truly international. If we take just one small example the dethroning of Newton’s corpuscular theory of light by the wave theory. Originated by Huygens and Hooke in the seventeenth century it was championed by Ampère, Fresnel, Poisson and Arago all of whom were French and by Young and Airy for the British in the nineteenth century.

I hope that yet again, with this brief example, I have made clear that science is a collaborative and cooperative enterprise that doesn’t acknowledge or respect national boundaries but wanders through the cultures where and when it pleases, changing nationalities and languages at will. Science is a universal human activity to which many different and varied cultures have made contributions and will continue to do so in the future. Science should have absolutely nothing to do with nationalism and chauvinism and politicians who try and harness it to their nationalist causes by corrupting its history are despicable.

 

11 Comments

Filed under History of science, Myths of Science, Newton

Christmas Trilogy 2015 Part 1: The famous witty Mrs Barton

,

Younger readers might be excused if they thought that the IT Girl phenomenon, as illustrated by the likes of Paris Hilton and Kim Kardashian, was a product of the computer social media age but those of us who are somewhat more mature can remember such as Jacqueline Lee “Jackie” Kennedy Onassis (née Bouvier) and Bianca Jagger (born Bianca Pérez-Mora Macias), who were IT Girls of their respective generations. In fact I assume there have been IT Girls as long as there has been human society. That is young attractive women, who became famous or even infamous purely on the strength of their appearances and social behaviour.

In the Augustan age of London at the beginning of the eighteenth century one such IT Girl was Catherine Barton who’s beauty was celebrated at the Kit-Kat Club, drinking den of the Whig Party grandees, in the following verse[1]:

At Barton’s feet the God of Love

His Arrows and his Quiver lays,

Forgets he has a Throne above,

And with this lovely Creature stays.

Not Venus’ Beauties are more bright,

But each appear so like the other,

That Cupid has mistook the Right,

And takes the Nymph to be his Mother.

Apparently the only image of the young Catherine Barton Source: Wikimedia Commons

Apparently the only image of the young Catherine Barton
Source: Wikimedia Commons

Now those not already in the know are probably wondering why I’m wittering on about an eighteenth-century It Girl instead of the history of science, especially in the first part of my traditional Christmas Trilogy, which is normally dedicated to Isaac Newton who was born 25 December 1642 (os). The answer is very simple, because the charming Catherine Barton was Newton’s niece, the daughter of his half sister Hannah Baton née Smith, and his housekeeper for part of the thirty years that he lived in London.

It is not know for certain when Newton brought his niece, who was born in 1679, from her native Lincolnshire to look after his house in London but not before 1696 when he first moved there himself and probably not later than 1700, however she stayed with her uncle until she married John Conduitt in 1717.

As well as being the toast of London’s high society Catherine Barton played an important part in Newton’s London life. For example she was closely acquainted with the satirist Jonathan Swift and it was through his friendship with Barton that the Tory Swift approached the Whig Newton in 1713 to try to persuade him to relinquish the Mastership of the Mint, an important political sinecure that the Tories wished to bestow on one of their own, in exchange for a state pension of £2,000 per annum, a very large sum of money. An offer than Newton simply refused remaining Master of the Mint until his death.

Catherine’s fame or maybe notoriety extended beyond London to the continent. Rémond de Monmort, a member of the French Regency Council, who met her in 1716 whilst visiting Newton later wrote of her, “I have retained the most magnificent idea in the world of her wit and her beauty”. More famously Voltaire wrote of her:

I thought in my youth that Newton made his fortune by his merit. I supposed that the Court and the city of London named him Master of the Mint by acclamation. No such thing. Isaac Newton had a very charming niece, Madame Conduitt, who made a conquest of the minister Halifax. Fluxions and gravitation would have been of no use without a pretty niece.

Voltaire was wrong. It was indeed Charles Montagu, Lord Halifax, who appointed Newton initially to the Wardenship of the Mint in 1696, the two had been friends when Montagu was a student at Cambridge in the 1680s, but this was before Newton had brought Catherine to London so Montagu could not have known her then. However Voltaire’s quip was almost certainly based on knowledge of a real scandal involving Lord Halifax and Catherine Barton.

Charles Montagu, 1st Earl of Halifax by Sir Godfrey Kneller (NPG) Source: Wikimedia Commons

Charles Montagu, 1st Earl of Halifax by Sir Godfrey Kneller (NPG)
Source: Wikimedia Commons

Halifax had become acquainted with Catherine by 1703 at the latest when he engraved a toasting glass at the Kit-Kat Club with her name and composed the following verse to her:

Stampt with her reigning Charms, this Standard Glass

Shall current through the Realms of Bacchus pass;

Full fraught with beauty shall new Flames impart,

And mint her shining Image on the Heart.

 

Montagu may have been a successful politician and a great economics expert but he was no poet. Toasting a beauty at the Kit-Kat Club does not constitute a scandal but Halifax’s will, originally drafted in 1706, did. In a codicil he bequeathed Catherine £3,000 and all his jewels, “as a small Token of the great Love and Affection I have long had for her”. Faced with this anything but small token, and there was worse to come, Newton’s nineteenth-century biographers were left snapping for air in their attempts to find a not scandalous explanation for this act. Later in the year he even purchased a £200 per annum annuity for her. Was she his lover, his mistress? This explanation seems to offer itself. In 1710 Mrs Mary de la Rivière Manly a Tory satirist published a satire on the Whig’s, which featured a mistress called Bartica for the Halifax figure.

As I said above, the situation got worse in 1713 when Halifax revoked the first codicil and drew up a new one bequeathing £5,000 to Mrs Barton with the grant during her life of the rangership and lodge of Bushey Park and all its furnishings, to enable her to maintain the house and garden, the manor of Apscourt in Surrey. “These Gifts and Legacies, I leave to her as a Token of the sincere Love, Affection, and Esteem I have long had for her Person, and as a small Recompence for the Pleasure and Happiness I have had in her Conversation”.

Flamsteed, always eager to to get in a jibe against Newton, writing to Abraham Sharp on hearing of the bequest after Halifax’s death said sarcastically that it was given to Mrs Barton “for her excellent conversation”. In his desperate attempt to avoid the obvious implications for the morality of the Newton household, Augustus De Morgan, in his Newton biography, constructed a secrete marriage between Catherine and Halifax to explain the level of the bequest, which now, including the worth of the house, stood at about £25,000, a very large sum indeed. However when Catherine married John Conduitt, a retired soldier, following a whirlwind romance in 1717, she gave her status as spinster and not widow. Newton appeared to have no problems with the bequest, ever a shrewd businessman rather than a moralist, as he assisted Catherine with negotiations with Halifax’s heirs to settle the bequest.

Catherine is also one of two sources for the infamous apple story, the other being William Stukeley, Newton’s personal physician in his later life. Her version of the story appears in her husbands never finished or published memoir of Newton’s life and more importantly, it was she who told the story to Voltaire, who published it and thus started the legend.

Newton spent his last days living with the Conduitts and it fell to Catherine’s husband John to divide up the spoils amongst the various half brothers and sisters and their offspring. These eager to screw as much as possible out of Uncle Isaac’s estate forced Conduitt to sell off Newton’s extensive library of almost 2,000 volumes and wanted him to also sell off Newton’s papers convinced that anything connected with the great man would fetch a good price. Conduitt persuaded them to let the papers be sorted and evaluated for publication and in the end only Newton’s Chronology, an original draft of Principia and his Observations upon the Prophecies were printed and published the rest of his papers becoming the property of Catherine and her husband. After their deaths the papers passed to their daughter Catherine, who married the Hon. John Wallop, Viscount Lymington. Their son became the second Earl of Portsmouth and thus Newton’s papers were passed down through the years by the Portsmouth family who eventually disposed of them in the 1930s, but what became of them then is another story.

Female beauty and glamour are not things that one would normally think of if somebody mentions the name of Isaac Newton, but through the famous witty Mrs Barton these things did indeed play a role in Newton’s later life.

 

 

 

 

 

 

 

[1] This and all other quotes, as indeed the meat of the story, are all taken from Richard Westfall’s excellent Newton biography Never at Rest

8 Comments

Filed under History of science, Newton, Uncategorized

The Penny Universities

The Hungarian mathematician Alfréd Rényi famously quipped about his colleague Paul Erdös that, “a mathematician is a machine for turning coffee into theorems”. However this theorem producing process didn’t start with Erdös in the twentieth century but became an established routine as soon the coffee house made its appearance in Restoration England in the second half of the seventeenth century.

The first coffee house in England, The Angel, opened in Oxford in 1650 closely followed by The Queen’s Lane Coffee House in 1654, which is still in existence. London’s first coffee house, owned by Pasqua Rosée opened in 1652. The Temple Bar, London’s second coffee house opened in 1656.

From the very beginning English coffee houses became the favourite haunts of the virtuosi, the new generation of natural philosophers pushing the evolution of science forward in England in the second half of the seventeenth century; the circle around Christopher Wren in Oxford and the members of the Royal Society in London quickly becoming the habitués. The famous discussion between Wren, Hooke and Halley about an inverse square law of gravity and the shape of the planetary orbits took place in a London coffee house. Later, after he moved to London in 1696, Isaac Newton would hold court in the evenings in a coffee house distributing unpublished mathematical manuscripts to favoured acolytes privileged to sit at the feet of the maestro.

However these intellectual exchanges went beyond the informal meetings of the virtuosi in their free time. The coffee house became know as the penny universities, one penny being the going price of a cup of coffee. The proprietors offered courses of study as well as lecture courses in a wide range of subjects to those willing to pay a penny. As well as foreign languages these courses covered the new sciences. William Whiston, Newton’s successor as Lucasian Professor in Cambridge, offered courses in the new natural philosophy in the coffee houses, following his fall from grace and expulsion from Cambridge because of his religious views. Francis Hauksbee, demonstrator of experiments at the Royal Society under Newton’s presidentship, also improved his income with similar courses. Abraham de Moivre, impoverished Huguenot refugee, mathematician and fervent Newtonian eked out a pittance in the coffee houses, teaching chess and mathematics and instructing punters how to calculate gambling odds.

Later in the eighteenth century the group of religious dissenters, radical liberal politicians and scientists, christened by Benjamin Franklin “The Club of Honest Whigs”, which included as well as Franklin, the chemist Joseph Priestly, the mathematician Richard Price, the natural philosopher John Canton, the military physician John Pringle and the physician Benjamin Vaughan held their regular Monday meetings in the London Coffee House in St Paul’s Churchyard.

Many were the scientific and mathematical debates and disputes that were carried out in the eighteenth century coffee houses of England.

I drink my daily cup of coffee at Amir Der KaffeeMann in Erlangen, excellent beverages personally roasted by Amir, the Persian proprietor, and for the price of a cappuccino I will entertain you with a history of science lecture of your choice.

5 Comments

Filed under History of science, Newton

Calendrical confusion or just when did Newton die?

Today there is general agreement throughout the world that for commercial and international political purposes everybody uses the Gregorian calendar, first introduced into the Catholic countries of Europe in 1582. However Europeans should never forget that for other purposes other cultures have their own calendars often wildly at odds with the Gregorian one. Tomorrow is for example the Persian New Year’s a festival, which marks the first day of spring. The Persian calendar is not only used in Iran but in many other countries that were historically under Persian influence. Tomorrow also marks the first day of the year 1394 for Persians. Earlier all cultures used their own calendars a bewildering array of lunar calendars, lunar-solar calendars and pure solar calendars making life very difficult for both astronomers and historians. Trying to find out what a given date in an original document is, or better would have been, on our ‘universal’ Gregorian calendar is often a complex and tortuous problem. Astronomers whose observations of the heavens need to span long periods of time solved the problem for themselves by introducing a standard calendrical scale into which they then converted all historical astronomical data from diverse cultures. Throughout late antiquity, the Islamic Empire and well into the European Early Modern Period astronomers used the Egyptian solar calendar for this purpose. You can still find astronomical dates given according to this system in Copernicus’ De revolutionibus. In modern times they introduced the Julian day count for this purpose.

Within Europe the most famous calendrical confusion occurred in the early centuries following the introduction in Catholic countries of the Gregorian calendar. Exactly because it was Catholic most Protestant states refused, at first, to introduce it, meaning that Europe was running on two different time scales making life difficult for anybody having to do outside of their own national borders, in particular for traders. This problem was particularly acute in The Holy Roman Empire of German States that patchwork of small, medium and large states, principalities and independent cities that occupied most of middle Europe. Neighbouring states were often of conflicting religious affiliation meaning that people living in the border regions only needed to go a couple of kilometres down the road to go ten days backwards or forwards in time. The only people who were happy with this system were the calendar makers who could sell two sets of calendars Gregorian, so-called new style or ‘ns’ and Julian, so-called old-style or ‘os’. Some enterprising printer publishers even printed both calendars in one pamphlet, for a higher price of course.

Within Germany the problem was finally solved at the end of the seventeenth century, largely due to the efforts of Erhard Weigel who campaigned tirelessly to get the Protestant states to adopt the Gregorian calendar, which they finally did on 1 January 1700. England as usual had to go its own way.

Although John Dee, the court advisor on all things mathematical, recommended the adoption of the Gregorian calendar in the sixteenth century the Anglican Bishops blocked its adoption because it came from the Pope and the Anglican Church couldn’t be seen cowing down to the Vatican. Even when the Protestant German states finally accepted that adopting the Gregorian calendar was more rational than any religious prejudices the English still remained obdurate, not prepared to have anything to do with Catholicism. England final came into line in 1752. So what about Isaac Newton?

Many Internet sources are saying that Isaac Newton died on 20 March almost none of them say whether this is new-style or old-style. Most of the sources give 1727 as the year of death a few 1726. Most sources give Newton’s life span as 1642–1727, others 1642–1726 and yet others 1643–1727, what is going on here?

Isaac Newton was born 25 December 1642 according to the Julian calendar that is old-style. If converted to the Georgian calendar, we have to add ten days, and so his date of birth was 4 January 1643 new-style. Things become slightly more complicated with his date of death. Newton died 20 March 1726 according to the Julian calendar that is old-style. Converting to the Georgian calendar we now have to add eleven days because the Julian calendar has slipped another day behind the Gregorian one so his date of death is 31 March 1727 new-style. Wait a minute we just jumped a year what happened here? When Julius Caesar introduced the solar calendar in Rome he moved the New Year from the traditional Roman spring equinox, 25 March, to the first of January. During the Middle Ages the Church moved the New Year back to 25 March. With the adoption of the Gregorian calendar New Year’s Day moved back to 1 January. However England still retaining the medieval version of the Julian calendar kept 25 March as New Year’s Day. Thus at the time of Newton’s death 1727 started on 25 March in England meaning that Newton died 20 March 1726 (os).

Just to summarise if you wish to correctly quote Newton’s dates of birth and death then they are 25 December 1642 – 20 March 1726 (os) or 4 January 1643 – 31 March 1727 (ns).

 

8 Comments

Filed under History of Astronomy, Newton