Category Archives: History of Physics

The emergence of modern astronomy – a complex mosaic: Part XXVIII

One of the central problems in the transition from the traditional geocentric astronomy/cosmology to a heliocentric one was that the system that the Early Modern astronomers inherited from their medieval predecessors was not just an uneasy amalgam of Aristotelian cosmology and Ptolemaic astronomy but it also included Aristotle’s (384–322 BCE) theories of terrestrial and celestial motion all tied together in a complete package. Aristotle’s theory of motion was part of his more general theory of change and differentiated between natural motion and unnatural or violent motion.

The celestial realm in Aristotle’s cosmology was immutable, unchanging, and the only form of motion was natural motion that consisted of uniform, circular motion; a theory that he inherited from Plato (c. 425 – c.347 BCE), who in turn had adopted it from Empedocles (c. 494–c. 434 BCE).

His theory of terrestrial motion had both natural and unnatural motion. Natural motion was perpendicular to the Earth’s surface, i.e. when something falls to the ground. Aristotle explained this as a form of attraction, the falling object returning to its natural place. Aristotle also claimed that the elapsed time of a falling body was inversely proportional to its weight. That is, the heavier an object the faster it falls. All other forms of motion were unnatural. Aristotle believed that things only moved when something moved them, people pushing things, draught animals pulling things. As soon as the pushing or pulling ceased so did the motion.  This produced a major problem in Aristotle’s theory when it came to projectiles. According to his theory when a stone left the throwers hand or the arrow the bowstring they should automatically fall to the ground but of course they don’t. Aristotle explained this apparent contradiction away by saying that the projectile parted the air through which it travelled, which moved round behind the projectile and pushed it further. It didn’t need a philosopher to note the weakness of this more than somewhat ad hoc theory.

If one took away Aristotle’s cosmology and Ptolemaeus’ astronomy from the complete package then one also had to supply new theories of celestial and terrestrial motion to replace those of Aristotle. This constituted a large part of the development of the new physics that took place during the so-called scientific revolution. In what follows we will trace the development of a new theory, or better-said theories, of terrestrial motion that actually began in late antiquity and proceeded all the way up to Isaac Newton’s (1642–1726) masterpiece Principia Mathematica in 1687.

The first person to challenge Aristotle’s theories of terrestrial motion was John Philoponus (c. 490–c. 570 CE). He rejected Aristotle’s theory of projectile motion and introduced the theory of impetus to replace it. In the impetus theory the projector imparts impetus to the projected object, which is used up during its flight and when the impetus is exhausted the projectile falls to the ground. As we will see this theory was passed on down to the seventeenth century. Philoponus also rejected Aristotle’s quantitative theory of falling bodies by apparently carrying out the simple experiment usually attributed erroneously to Galileo, dropping two objects of different weights simultaneously from the same height:

but this [view of Aristotle] is completely erroneous, and our view may be completely corroborated by actual observation more effectively than by any sort of verbal argument. For if you let fall from the same height two weights, one many times heavier than the other you will see that the ratio of the times required for the motion does not depend [solely] on the weights, but that the difference in time is very small. …

Philoponus also removed Aristotle’s distinction between celestial and terrestrial motion in that he attributed impetus to the motion of the planets. However, it was mainly his terrestrial theory of impetus that was picked up by his successors.

In the Islamic Empire, Ibn Sina (c. 980–1037), known in Latin as Avicenne, and Abu’l-Barakāt Hibat Allah ibn Malkā al-Baghdādī (c. 1080–1164) modified the theory of impetus in the eleventh century.


Avicenne Portrait (1271) Source: Wikimedia Commons

Nur ad-Din al-Bitruji (died c. 1204) elaborated it at the end of the twelfth century. Like Philoponus, al-Bitruji thought that impetus played a role in the motion of the planets.


Brought into European thought during the scientific Renaissance of the twelfth and thirteenth centuries by the translators it was developed by Jean Buridan  (c. 1301–c. 1360), who gave it the name impetus in the fourteenth century:

When a mover sets a body in motion he implants into it a certain impetus, that is, a certain force enabling a body to move in the direction in which the mover starts it, be it upwards, downwards, sidewards, or in a circle. The implanted impetus increases in the same ratio as the velocity. It is because of this impetus that a stone moves on after the thrower has ceased moving it. But because of the resistance of the air (and also because of the gravity of the stone) which strives to move it in the opposite direction to the motion caused by the impetus, the latter will weaken all the time. Therefore the motion of the stone will be gradually slower, and finally the impetus is so diminished or destroyed that the gravity of the stone prevails and moves the stone towards its natural place. In my opinion one can accept this explanation because the other explanations prove to be false whereas all phenomena agree with this one.


Jean Buridan Source

The impetus theory was now a part of medieval Aristotelian natural philosophy, which as Edward Grant pointed out was not Aristotle’s natural philosophy.

In the sixteenth century the self taught Italian mathematician Niccolò Fontana (c. 1500–1557), better known by his nickname, Tartaglia, who is best known for his dispute with Cardanoover the general solution of the cubic equation.


Niccolò Fontana Tartaglia Source: Wikimedia Commons

published the first mathematical analysis of ballistics his, Nova scientia (1537).


His theory of projectile trajectories was wrong because he was still using the impetus theory.


However, he was the first to demonstrate that an angle of 45° for a canon gives the widest range.


His book was massively influential in the sixteenth century and it also influenced Galileo, who owned a heavily annotated copy of the book.

We have traced the path of the impetus theory from its inception by John Philoponus up to the second half of the sixteenth century. Unlike the impetus theory Philoponus’ criticism of Aristotle’s theory of falling bodies was not taken up directly by his successors. However, in the High Middle Ages Aristotelian scholars in Europe did begin to challenge and question exactly those theories and we shall be looking at that development in the next section.







Leave a comment

Filed under History of Islamic Science, History of Mathematics, History of Physics, Mediaeval Science, Renaissance Science

Stylish writing is not necessarily good science

I have become somewhat infamous for writing #histSTM blog posts that are a predominately negative take on the scientific achievements of Galileo Galilei. In fact I think I probably made my breakthrough as a #histsci blogger with my notorious Extracting the Stopper post, deflating Galileo’s popular reputation. I actually got commissioned to write a toned down version of that post for AEON several years later. In my opinion Galileo was an important figure in the evolution of science during the early seventeenth century but his reputation has been blown up out of all proportion, well beyond his actual contributions. To make a simple comparison, in the same period of time the contributions of Johannes Kepler were immensely greater and more significant than those made by Galileo but whereas Galileo is regarded as one of the giants of modern science and is probably one of the three most well known historical practitioners of the mathematical sciences, alongside Newton and Einstein, Kepler is at best an also ran, whose popular image is not even a fraction of that of Galileo’s. This of course raises the question, why? What does/did Galileo have that Kepler didn’t? I think the answer lies in Galileo’s undeniable talents as a writer.

Galileo was a master stylist, a brilliant polemicist and science communicator, whose major works are still a stimulating pleasure to read. If you ask people about Galileo they will more often than not quote one of his well-known turns of phrase rather than his scientific achievements. The two books trope with its ‘mathematics is the language of nature’, which in the original actually reads: Philosophy is written in this grand book, which stands continually open before our eyes (I say the ‘Universe’), but can not be understood without first learning to comprehend the language and know the characters as it is written. It is written in mathematical language, and its characters are triangles, circles and other geometric figures, without which it is impossible to humanly understand a word; without these one is wandering in a dark labyrinth. Or the much-loved, the Bible shows the way to go to heaven, not the way the heavens go, which again in the original reads: The intention of the Holy Ghost is to teach us how one goes to heaven, not how heaven goes. It is a trivial truth that Galileo had a way with words.

This cannot be said of Johannes Kepler. I shall probably bring the wrath of a horde of Kepler scholars on my head for saying this but even in translation, Johannes Kepler is anything but an easy read. Galileo even commented on this. When confronted with Kepler’s Dioptrice (1611), one of the most important books on optics ever written, Galileo complained that it was turgid and unreadable. Having ploughed my way through it in German translation, I sympathise with Galileo’s negative judgement. However, in his rejection Galileo failed to realise just how scientifically important the Dioptrice actually was. Nobody in their right mind would describe Kepler as a master stylist or a brilliant polemicist.

I think this contrast in literary abilities goes a long way to explaining the very different popular conceptions of the two men. People read Galileo’s major works or selections from them and are stimulated and impressed by his literary mastery, whereas Kepler’s major works are not even presented, as something to be read by anyone, who is not a historian of science. One just gets his three laws of planetary motion served up in modern guise, as a horribly mathematical side product of heliocentricity.

Of course, a serious factor in their respective notorieties is Galileo’s infamous trial by the Roman Inquisition. This was used to style him as a martyr for science, a process that only really began at the end of the eighteenth and beginning of the nineteenth centuries. Kepler’s life, which in many ways was far more spectacular and far more tragic than Galileo’s doesn’t have such a singular defining moment in it.

Returning to the literary theme I think that what has happened is that non-scientists and non-historians of science have read Galileo and impressed by his literary abilities, his skill at turning a phrase, his adroit, and oft deceitful, presentation of pro and contra arguments often fail to notice that they are being sold a pup. As I tried to make clear in the last episode of my continuing ‘the emergence of modern astronomy’ series although Galileo’s Dialogo has an awesome reputation in Early Modern history, its scientific value is, to put it mildly, negligible. To say this appears to most people as some form of sacrilege, “but the Dialogo is an important defence of science against the forces of religious ignorance” or some such they would splutter. But in reality it isn’t, as I hope I made clear the work contributed nothing new to the on going debate and all that Galileo succeeded in doing was getting up the Pope’s nose.

The same can be said of Il Saggiatore, another highly praised work of literature. As I commented in another post the, oft quoted line on mathematics, which had led to Galileo being praised as the man, who, apparently single handed, mathematized the physical science was actually, when he wrote it, old hat and others had been writing the book of nature in the language of mathematics for at least one hundred years before Galileo put pen to paper but none of them had taken the time to express what they were doing poetically. In fact it took historians of science a long time to correct this mistaken perception, as they also tended to suffer from a serious dose of Galileo adoration. The core of Il Saggiatore is as I have explained elsewhere is total rubbish, as Galileo is arguing against the scientific knowledge of his time with very spurious assertions merely so that he doesn’t have to acknowledge that Grassi is right and he is wrong. An admission that very few Galileo scholars are prepared to make in public, it might tarnish his reputation.

Interestingly one work that deserves its historical reputation Galileo’s Sidereus Nuncius, also suffers from serious scientific deficits that tend to get overlooked. Written and published in haste to avoid getting beaten to the punch by a potential, unknown rival the book actually reads more like an extended press release that a work of science. It might well be that Galileo intended to write a more scientific evaluation of his telescopic observations and discoveries once he had established his priority but somehow, having become something of a scientific superstar overnight, he never quite got round to it. This is once again a failing that most readers tend to overlook, over awed by the very impressive literary presentation.

Much of Galileo’s written work is actually more appearance than substance, or as the Germans say Mehr Schein als Sein, but ironically, there is one major work of Galileo’s that is both literarily brilliant and scientifically solid but which tends to get mostly overlooked, his Discorsi. The experiments on which part of it is based get described by the book itself remains for most people largely unknown. I shall be taking a closer look at it in a later post.







Filed under History of Astronomy, History of Optics, History of Physics, Myths of Science, Renaissance Science

The Renaissance Mathematicus Christmas Trilogies explained for newcomers


Being new to the Renaissance Mathematicus one might be excused if one assumed that the blogging activities were wound down over the Christmas period. However, exactly the opposite is true with the Renaissance Mathematicus going into hyper-drive posting its annual Christmas Trilogy, three blog posts in three days. Three of my favourite scientific figures have their birthday over Christmas–Isaac Newton 25thDecember, Charles Babbage 26thDecember and Johannes Kepler 27thDecember–and I write a blog post for each of them on their respective birthdays. Before somebody quibbles I am aware that the birthdays of Newton and Kepler are both old style, i.e. on the Julian Calendar, and Babbage new style, i.e. on the Gregorian Calendar but to be honest, in this case I don’t give a shit. So if you are looking for some #histSTM entertainment or possibly enlightenment over the holiday period the Renaissance Mathematicus is your number one address. In case the new trilogy is not enough for you:

The Trilogies of Christmas Past

Christmas Trilogy 2009 Post 1

Christmas Trilogy 2009 Post 2

Christmas Trilogy 2009 Post 3

Christmas Trilogy 2010 Post 1

Christmas Trilogy 2010 Post 2

Christmas Trilogy 2010 Post 3

Christmas Trilogy 2011 Post 1

Christmas Trilogy 2011 Post 2

Christmas Trilogy 2011 Post 3

Christmas Trilogy 2012 Post 1

Christmas Trilogy 2012 Post 2

Christmas Trilogy 2012 Post 3

Christmas Trilogy 2013 Post 1

Christmas Trilogy 2013 Post 2

Christmas Trilogy 2013 Post 3

Christmas Trilogy 2014 Post 1

Christmas Trilogy 2014 Post 2

Christmas Trilogy 2014 Post 3

Christmas Trilogy 2015 Post 1

Christmas Trilogy 2015 Post 2

Christmas Trilogy 2015 Post 3

Christmas Trilogy 2016 Post 1

Christmas Trilogy 2016 Post 2

Christmas Trilogy 2016 Post 3

Christmas Trilogy 2017 Post 1

Christmas Trilogy 2017 Post 2

Christmas Trilogy 2017 Post 3

Christmas Trilogy 2018 Post 1

Christmas Trilogy 2018 Post 2

Christmas Trilogy 2018 Post 3






1 Comment

Filed under History of Astronomy, History of Mathematics, History of Physics, History of science, History of Technology, Uncategorized

Mathematics or Physics–Mathematics vs. Physics–Mathematics and Physics

Graham Farmelo is a British physicist and science writer. He is the author of an excellent and highly praised biography of the British physicist P A M Dirac, The Strangest Man: The Hidden Life of Paul Dirac, Quantum Genius(Faber and Faber, 2009), which won a couple of book awards. He is also the author of a book Winston Churchill role in British war time nuclear research, Churchill’s Bomb:A hidden history of Britain’s first nuclear weapon programme (Faber and Faber, 2014), which was also well received and highly praised. Now he has published a new book on the relationship between mathematics and modern physics, The Universe Speaks in Numbers: How Modern Maths Reveals Nature’s Deepest Secrets (Faber and Faber, 2019).


I must admit that when I first took Farmelo’s new book into my hands it was with somewhat trepidation. Although, I studied mathematics to about BSc level that was quite a few years ago and these days my active knowledge of maths doesn’t extend much beyond A-Level and I never studied physics beyond A-Level and don’t ask what my grade was. However, I did study a lot of the history of early twentieth century physics before I moved back to the Renaissance. Would I be able to cope with Farmelo’s book? I needn’t have worried there are no complex mathematical or physical expressions or formulas. Although I would point out that this is not a book for the beginner with no knowledge; if your mind baulks at terms like gauge theory, string theory or super symmetry then you should approach this text with caution.

The book is Farmelo’s contribution to the debate about the use of higher mathematics to create advanced theories in physics that are not based on experimental evidence or even worse confirmable through experiment. It might well be regarded as a counterpoint to Sabine Hossenfelder’s much discussed Lost in Math: How Beauty Leads Physics Astray(Basic Books, 2018), which Farmelo actually mentions on the flyleaf to his book; although he obviously started researching and writing his volume long before the Hossenfelder tome appeared on the market. The almost concurrent appearance of the two contradictory works on the same topic shows that the debate that has been simmering just below the surface for a number of years has now boiled over into the public sphere.

Farmelo’s book is a historical survey of the relationship between advanced mathematics and theoretical physics since the seventeenth century, with an emphasis on the developments in the twentieth century. He is basically asking the questions, is it better when mathematics and physics develop separately or together and If together should mathematics or physics take the lead in that development. He investigated this questions using the words of the physicists and mathematicians from their published papers, from public lectures and from interviews, many of which for the most recent developments he conducted himself. He starts in the early seventeenth century with Kepler and Galileo, who, although they used mathematics to express their theories, he doesn’t think really understand or appreciate the close relationship between mathematics and physics. I actually disagree with him to some extent on this, as he knows. Disclosure: I actually read and discussed the opening section of the book with him, at his request, when he was writing it but I don’t think my minuscule contribution disqualifies me from reviewing it.

For Farmelo the true interrelationship between higher mathematics and advanced theories in physics begins with Isaac Newton. A fairly conventional viewpoint, after all Newton did title his magnum opus The Mathematical Principles of Natural Philosophy. I’m not going to give a decade by decade account of the contents, for that you will have to read the book but he, quite correctly, devotes a lot of space to James Clerk Maxwell in the nineteenth century, who can, with justification, be described as having taken the relationship between mathematics and physics to a whole new level.

Maxwell naturally leads to Albert Einstein, a man, who with his search for a purely mathematical grand unification theory provoked the accusation of having left the realm of experiment based and experimentally verifiable physics; an accusation that led many to accuse him of having lost the plot. As the author of a biography of Paul Dirac, Farmelo naturally devote quite a lot of space to the man, who might be regarded as the mathematical theoretical physicist par excellence and who, as Farmelo emphasises, preached a gospel of the necessity of mathematically beautiful theories, as to some extent Einstein had also done.

Farmelo takes us through the creation of quantum mechanics and the attempts to combine it with the theories of relativity, which takes the reader up to the early decades following the Second World War, roughly the middle of the book. Here the book takes a sharp turn away from the historical retelling of the emergence of modern theoretical physics to the attempts to create a fundamental theory of existence using purely mathematical methods, read string theory, M theory, supersymmetry and everything associated with them. This is exactly the development in modern physics that Hossenfelder rejects in her book.

Farmelo is very sympathetic to the mathematicians and physicists, who have taken this path but he is in his account very even handed, letting the critics have their say and not just the supporters. His account is very thorough and documents both the advances and the disappointments in the field over the most recent decades. He gives much emphasis to the fruitful co-operations and exchanges that have taken place between mathematicians and theoretical physicists. I must say that as somebody who has followed the debate at a distance, having read Farmelo’s detailed account I came out of it more sympathetic to Hossenfelder’s standpoint than his.

As always with his books Farmelo’s account is excellently researched, much of the more recent material is based on interviews he conducted with the participants, and very elegantly written. Despite the density of the material he is dealing with, his prose is light and often witty, which makes it easier to grapple with the complex themes he is discussing. I would certainly recommend this book to anybody interested in the developments in modern theoretical physics; maybe to be read together with Hossenfelder’s volume. I would also make an excellent present for any young school leaver contemplating studying physics or one that had already started on down that path.


Filed under Book Reviews, History of Mathematics, History of Physics

Conversations in a sixteenth century prison cell

Science writer Michael Brooks has thought up a delightful conceit for his latest book.* The narrative takes place in a sixteenth century prison cell in Bologna in the form of a conversation between a twenty-first century quantum physicist (the author) and a Renaissance polymath. What makes this conversation particularly spicy is that the Renaissance polymath is physician, biologist, chemist, mathematician, astronomer, astrologer, philosopher, inventor, writer, auto-biographer, gambler and scoundrel Girolamo Cardano, although Brooks calls him by the English translation of his name Jerome. In case anybody is wondering why I listed autobiographer separately after writer, it is because Jerome was a pioneer in the field writing what is probably the first autobiography by a mathematician/astronomer/etc. in the Early Modern Period.


Portrait of Cardano on display at the School of Mathematics and Statistics, University of St Andrews. Source: Wikimedia Commons

So what do our unlikely pair talk about? We gets fragments of conversation about Jerome’s current situation; a broken old man rotting away the end of his more than extraordinary life in a prison cell with very little chance of reprieve. This leads to the visitor from the future, relating episodes out of that extraordinary life. The visitor also picks up some of Jerome’s seemingly more strange beliefs and relates them to some of the equally, seemingly strange phenomena of quantum mechanics. But why should anyone link the misadventures of an, albeit brilliant, Renaissance miscreant to quantum mechanics. Because our author sees Jerome the mathematician, and he was a brilliant one, as the great-great-great-great-great-great-great-great-great-great-great-great-great grandfather of quantum mechanics!


As most people know quantum mechanics is largely non-deterministic in the conventional sense and relies heavily on probability theory for its results. Jerome wrote the first mathematical tome on probability theory, a field he entered because of his professional gambling activities. He even included a section about how to cheat at cards. I said he was a scoundrel. The other thing turns up in his Ars Magna (printed and published by Johannes Petreius the publisher of Copernicus’ De revolutionibus in Nürnberg and often called, by maths historians, the first modern maths book); he was the first person to calculate with so-called imaginary numbers. That’s numbers using ‘i’ the square root of minus one. Jerome didn’t call it ‘i’ or the numbers imaginary, in fact he didn’t like them very much but realised one could use them when determining the roots of cubic equation, so, holding his nose, that is exactly what he did. Like probability theory ‘i’ plays a very major role in quantum mechanics.

What Michael Brooks offers up for his readers is a mixture of history of Renaissance science together with an explanation of many of the weird phenomena and explanations of those phenomena in quantum mechanics. A heady brew but it works; in fact it works wonderfully.

This is not really a history of science book or a modern physics science communications volume but it’s a bit of both served up as science entertainment for the science interested reader, lay or professional. Michael Brooks has a light touch, spiced with some irony and a twinkle in his eyes and he has produced a fine piece of science writing in a pocket-sized book just right for that long train journey, that boring intercontinental flight or for the week in hospital that this reviewer used to read it. If this was a five star reviewing system I would be tempted to give it six.

*  Michael Brooks, The Quantum Astrologer’s Handbook, Scribe, Melbourne & London, 2017


Filed under Book Reviews, Early Scientific Publishing, History of Astrology, History of Astronomy, History of Physics, Renaissance Science, Uncategorized

Christmas Trilogy 2017 Part 1: Isaac the Imperator

Isaac Newton came from a fairly humble although not poor background. His father was a yeoman farmer in Lincolnshire, who unfortunately died before he was born. A yeoman farmer owned his own land and in fact the Newton’s were the occupants of the manor house of Woolsthorpe-by-Colsterworth.

Woolsthorpe Manor, Woolsthorpe-by-Colsterworth, Lincolnshire, England. This house was the birthplace and the family home of Isaac Newton.
Source: Wikimedia Commons

Destined to become a farmer until he displayed little aptitude for life on the land, his mother was persuaded by the local grammar school master to let him complete his education and he was duly dispatched off to Cambridge University in 1661. Although anything but poor, when Newton inherited the family estates they generated an income of £600 per annum, at a time when the Astronomer Royal received an income of £100 per annum, his mother enrolled him at Cambridge as a subsizar, that is a student who earned his tuition by working as a servant. I personally think this reflects the family’s puritan background rather than any meanness on the mother’s part.

In 1664 Newton received a scholarship at Trinity and in 1667 he became a fellow of the college. In 1669 he was appointed Lucasian professor of mathematics. Cambridge was in those days a small market town and a bit of a backwater. The university did not enjoy a good reputation and the Lucasian professorship even less of one. Newton lived in chambers in Trinity College and it was certainly anything but a life of luxury.

Trinity College Great Court
Source: Wikimedia Commons

There is an amusing anecdote about David Hilbert writing to the authorities of Trinity at the beginning of the twentieth century to complain about the fact that Godfrey Hardy, whom he regarded as one of the greatest living mathematicians, was living in what he regarded as a squalid room without running water or adequate heating. What Hilbert didn’t realise was that Hardy would never give up this room because it was the one that Newton had inhabited.

Newton remained an obscure and withdrawn Cambridge don until he presented the Royal Society with his reflecting telescope and published his first paper on optics in 1672. Although it established his reputation, Newton was anything but happy about the negative reactions to his work and withdrew even further into his shell. He only re-emerged in 1687 and then with a real bombshell his Philosophiæ Naturalis Principia Mathematica, which effectively established him overnight as Europe’s leading natural philosopher, even if several of his major competitors rejected his gravitational hypothesis of action at a distance.

Having gained fame as a natural philosopher Newton, seemingly having tired of the provinces, began to crave more worldly recognition and started to petition his friends to help him find some sort of appropriate position in London. His lobbying efforts were rewarded in 1696 when his friend and ex-student, Charles Montagu, 1st Earl of Halifax, had him appointed to the political sinecure, Warden of the Mint.

Newton was no longer a mere university professor but occupant of one of the most important political sinecures in London. He was also a close friend of Charles Montagu one of the most influential political figures in England. By the time Montagu fell from grace Newton was so well established that it had little effect on his own standing. Although Montagu’s political opponents tried to bribe him to give up his, now, Mastership of the Mint he remained steadfast and his fame was such that there was nothing they could do to remove him from office. They wanted to give the post to one of their own. Newton ruled the Mint with an iron hand like a despot and it was not only here that the humble Lincolnshire farm lad had given way to man of a completely different nature.

As a scholar, Newton held court in the fashionable London coffee houses, surrounded by his acolytes, for whom the term Newtonians was originally minted, handing out unpublished manuscripts to the favoured few for their perusal and edification. Here he was king of the roost and all of London’s intellectual society knew it.

He became President of the Royal Society in 1703 and here with time his new personality came to the fore. When he became president the society had for many years been served by absentee presidents, office holders in name only, and the power in the society lay not with the president but with the secretary. When Newton was elected president, Hans Sloane was secretary and had already been so for ten years and he was not about to give up his power to Newton. There then followed a power struggle, mostly behind closed doors, until Newton succeeded in gaining power in about 1610 1710, Sloane, defeated resigned from office in 1613 1713 but got his revenge by being elected president on Newton’s death. Now Newton let himself be almost literally enthroned as ruler of the Royal Society.

Isaac Newton’s portrait as Royal Society President Charles Jervas 1717
Source: Royal Society

The president of the society sat at table on a raised platform and on 20 January 1711 the following Order of the Council was made and read to the members at the next meeting.

That no Body Sit at the Table but the President at the head and the two Secretaries towards the lower end one on the one Side and the other Except Some very Honoured Stranger, at the discretion of the President.

When the society was first given its royal charter in 1660, although Charles II gave them no money he did give them an old royal mace as a symbol of their royal status. Newton established the custom that the mace was only displayed on the table when the president was in the chair. When Sloane became president his first act was to decree that the mace was to be displayed at all meetings, whether the president was present or not. Newton ruled over the meetings with the same iron hand with which he ruled over the Mint. Meeting were conducted solemnly with no chit chat or other disturbances as William Stukeley put it:

Indeed his presence created a natural awe in the assembly; they appear’d truly as a venerable consessus Naturae Consliariorum without any levity or indecorum.

Perhaps Newton’s view of himself in his London years in best reflected in his private habitat. Having lived the life of a bachelor scholar in college chambers for twenty odd years he now obtained a town house in London. He installed his niece Catherine Barton, who became a famous society beauty, as his housekeeper and lived the life of a London gentleman, albeit a fairly quiet one. However his personal furnishings seem to me to speak volumes about how he now viewed himself. When he died an inventory of his personal possessions was made for the purpose of valuation, as part of his testament. On the whole his household goods were ordinary enough with one notable exception. He possessed crimson draperies, a crimson mohair bed with crimson curtains, crimson hangings, a crimson settee. Crimson was the only colour mentioned in the inventory. He lived in an atmosphere of crimson. Crimson is of course the colour of emperors, of kings, of potentates and of cardinals. Did the good Isaac see himself as an imperator in his later life?


All the quotes in this post are taken from Richard S, Westfall’s excellent Newton biography Never at Rest.




Filed under History of Astronomy, History of Mathematics, History of Optics, History of Physics, History of science, Newton

School days

It is the middle of August and also the middle of what in German is known as Saure-Gurken-Zeit, in English as the silly season and in American as the dog days. It’s that time when parliaments are in recess, the politicians on holiday and the press is full of silly man bites dog stories. Even the history of science community is in a sort of half sleep with little happening and many of its members conspicuous by their absence. This being the case I though I would write a somewhat frivolous post this week before I too disappear off on holiday or a gathering of the clan in the beautiful city of Bath to be more precise.

It is common practice for schools to boast about the famous politicians, sports persons and show business celebrities who once, as snotty nosed kids, ran screaming through their corridors but what about the scientists? Which notable or significant scientist got their education at the pedagogical institution where you acquired the ability to write grammatical sentences and to find the derivatives of simple trigonometrical functions? To start the ball rolling I shall tell you of my historical scientific school chums and I hope you will tell me of yours in the comments.

I will admit to having an advantage as the grammar school that I attended has a somewhat more than eight hundred year history giving them lots of time to have educated one or other scientific luminary. From September 1963 till July 1969 I was a pupil of Colchester Royal Grammar School (CRGS) for boys, one of England’s most elite state schools; the first four years as a day boy, the last to as a boarder. Founded at the beginning of the thirteenth century, 1206 to be precise, and adorned with not one but two royal charters, Henry VIII (1539) and Elizabeth I (1584), it has boasted one of the highest Oxbridge entrance rates and best A-level averages almost every year since the WWII. It would be very surprising if this august educational institution had not thrown up a notable scientist over the centuries and in fact it can boast at least three.

School House CRGS pre-1908. The first floor window to the left of the main entrance in the middle was my bedroom for two years.
Source Wikimedia Commons

CRGS’s first and possibly most famous scientist (if you’ll excuse the anachronistic use of the term) was William Gilbert (1544–1603). Born in Colchester he followed his time at the school by becoming one of those Oxbridge statistics in 1558, St. John’s College Cambridge to be precise, where he graduated BA in 1561, MA in 1564 and MD in 1569. He moved to London where he followed a successful medical career. Elected a Fellow of the Royal College of Physicians he became their president in 1600. He became personal physician to Elizabeth I in 1601 and to James IV and I and 1603 the year of his death.

William Gilbert (1544–1603) artist unknown.
Source: Wellcome Library via Wikimedia Commons

Gilbert is of course most famous for his De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure (On the Magnet and Magnetic Bodies, and on That Great Magnet the Earth) published in London in 1600, regarded as one of the first ‘modern’ science books. This legendary scientific publication was much admired in its time and exercised a great influence on the development of experimental physics in the first half of the seventeenth century. Galileo praised it but thought it had too little mathematics and Kepler based his theory of a planetary force holding/driving the planets in their orbits on a magnetic monopole theory derived from Gilbert’s book. Based on his false belief that a terrella (a spherical magnet) revolves on its axis and his correct assumption that the earth is a large spherical magnet, Gilbert hypothesised a diurnal rotation for the earth. His theory had a major influence on the acceptance of a helio-geocentric system with diurnal rotation (as opposed to one without) in the first half of the seventeenth century.

There is a certain irony in the fact that although Gilbert is thought to have attended CRGS, as his name is attached to another school in Colchester, The Gilberd School. Gilberd is an alternative spelling of the family name.

We fast-forward almost a century to CRGS’s next scientific luminary, Francis Hauksbee (1660-1730). Not as famous as Gilbert, Hauksbee is still a notable figure in the history of science. Also a born Colcestrian, Hauksbee original apprenticed as a draper to his older brother in 1678 but at some point he became an assistant to Isaac Newton. In 1703 he became Robert Hooke’s successor as curator, experimentalist and instrument maker at the Royal Society.

From 1705 onwards he concentrated his experimental efforts on the phenomenon of electricity, a word coined by Gilbert in his De Magnete, publishing his investigations in his Physico-Mechanical Experiments on Various Subjects in 1709. In 1708 he independently discovered Charles’s law of gasses. Being something of an unsung hero of science it is fitting that in 2009 the Royal Society created the Hauksbee Awards to recognise “the unsung heroes of science, technology, engineering and maths for their work and commitment.”

We now spring into the nineteenth century to a scientist who whilst probably not as well known as Gilbert was truly one of the giants of science in his time, George Biddle Airy (1801– 1892).

George Biddell Airy (1801-1892)
John Collier / 1883
Source: Wikimedia Commons

Born in Alnwick in Northumberland he attended CRGS after an elementary school in Hereford. Like Gilbert he went up to Cambridge University, in his case Trinity College, in 1819. He graduated senior wrangler in in 1823, became a fellow of Trinity in 1824 and became Lucasian professor of mathematics, Newton’s chair, in 1826. He moved to the Plumian chair of astronomy in 1828 and was appointed director of the new Cambridge observatory. The list of Airy’s appointments and scientific achievements is too long for this light summer post – he published 518(!) scientific papers in his long live – but he was most notably Astronomer Royal from 1835 until his retirement in 1881.

George Biddell Airy caricatured by Ape in Vanity Fair Nov 1875
Source: Wikimedia Commons

As you can see CRGS can boast a trio of notable scientist in its long history, what about your alma mater? I do have to admit that I was expelled from CRGS in 1969 and finished my schooling at Holland Park Comprehensive in the school year 69–70. Much younger than CRGS, Holland Park was in my time as famous as the older establishment, as the flag ship educational establishment in the Labour government’s scheme to turn the English school system into a comprehensive one. I must admit that I know of no famous scientists who have emerged from Holland Park and my own memories of my one year there are largely of getting stoned and dropping acid; come on it was the late 60s and Notting Hill Gate!


Filed under Autobiographical, History of Astronomy, History of Physics, History of science