Category Archives: History of Physics

Ohm Sweet Ohm

This is the story of two brothers born into the working class in a small town in Germany in the late eighteenth century. Both of them were recognised as mathematically gifted whilst still teenagers and went on to study mathematics at university. The younger brother was diligent and studious and completed his doctorate in mathematics with a good grade. There followed a series of good teaching jobs before he obtained a lectureship at the then leading university of Berlin, ten years after graduating. In due course, there followed positions as associate and the full professor. As professor he contributed some small but important proofs to the maths cannon, graduated an impressive list of doctoral students and developed an interesting approach to maths textbooks. He became a respected and acknowledged member of the German mathematical community.

The elder brother’s life ran somewhat differently. He started at the local university but unlike his younger brother he was anything but studious preferring a life of dancing, ice -skating and playing billiards to learning mathematics. His father a hard working craftsman was disgusted by this behaviour and forced him to leave the university and take up a teaching post in Switzerland. On the advice of his mathematics professor he taught himself mathematics by reading the greats. He returned to his home university and obtained his doctorate in the same year as his brother. There then followed a series of dead end jobs first as a badly paid university lecturer with little prospect of promotion and then a series of deadbeat jobs as a schoolteacher. In the last of these he had access to a good physics laboratory and began a series of investigations in a relatively new area of physics. At the age of thirty-eight, something of a failure, he published the results of his investigations in a book, which initially failed to make any impact. At the age of forty-four he obtained an appointment as professor at a polytechnic near to his home town and things began to finally improve in his life. At the age of fifty-two his work received acknowledgement at the highest international levels and finally at the age of sixty-three he was appointed professor for physics at a leading university.

The younger brother whose career path had been so smooth, fairly rapidly disappeared from the history of mathematics after his death in 1872, remembered by only a handful of specialists, whereas the much plagued elder brother went on to lend the family name to one of the most frequently used unit of measure in the physical sciences; a name that can be found on multiple appliances in probably every household in the western world.

The two bothers of my story are Georg Simon Ohm (1789–1854), the discover of Ohm’s Law, and his younger brother, the mathematician, Martin Ohm, who was born on 6 May 1792 and the small German town where they were born is Erlangen where I (almost) live.

The Ohm House, Fahrstraße 11, Erlangen Source: Wikimedia Commons

The Ohm House, Fahrstraße 11, Erlangen
Source: Wikimedia Commons

Georg Simon and Martin were the sons of the locksmith Johann Wolfgang Ohm and his wife Maria Elizabeth Beck, who died when Georg Simon was only ten. Not only did the father bring up his three surviving, of seven, children alone after the death of their mother but he also educated his two sons himself. The son of a locksmith he had enjoyed little formal education but had taught himself philosophy and mathematics, which he now imparted to his sons with great success. As Georg Simon was fifteen he and Martin were examined by the local professor of mathematics, Karl Christian von Langsdorf, who, as already described above, found both boys to be highly gifted and spoke of an Erlanger Bernoulli family.

Plaque on the Ohm House

Plaque on the Ohm House

The plaque reads: The locksmith Johann Wolfgang Ohm (1753–1823) brought up and taught in this house as a true master his later famous sons

Georg Simon Ohm (1789–1854) the great physicist and Martin Ohm (1792–1872) the mathematician

I’ve already outlined the lives of the two Ohm brothers so I’m not going to repeat myself but I will fill in some detail.

Martin Ohm Source: Wikimedia Commons

Martin Ohm
Source: Wikimedia Commons

As above I’ll start with Martin, the mathematician. He made no great discoveries as such and in the world of mathematics his main claim to fame is probably his list of doctoral students several of whom became much more famous than their professor. It was as a teacher that Martin Ohm made his mark, writing a nine volume work that attempted a systematic introduction to the whole of elementary mathematics his, Versuch eines vollkommenen, consequenten Systems der Mathematik (1822–1852) (Attempt at a complete consequent system of mathematics); a book that predates the very similar, but far better known, attempt by Bourbaki by one hundred years and which deserves far more attention than it gets. Martin Ohm also wrote several other elementary textbooks for his students. In his time in Berlin Martin Ohm also taught mathematics for many years at both the School for Architecture and the Artillery Academy.

I first stumbled across Martin Ohm whilst researching nineteenth-century algebraic logics. When it was first published George Boole’s Laws of Thought (1864) received very little attention from the mathematical community. With the exception of a small handful of relatively unknown mathematicians who wrote brief papers on it, it went largely unnoticed. One of that handful was Martin Ohm who wrote two papers in German (the first works in German on Boole’s logic). Thus introducing Boole’s ground-breaking work to the German mathematical public. Boole had written and published other mathematical work in German so he was already known in Germany. Later Ernst Schröder would go on to become the biggest proponent of Boolean logic with his three volume Vorlesungen über die Algebra der Logik (1890-1905). It is perhaps worth noting that Boole like the Ohm brothers was the son of a self-educated tradesman who gave his son his first education.

Martin Ohm has one further claim to notoriety; he is thought to have been the first to use the term “golden section” (goldener Schnitt in German) thus opening the door for hundreds of aesthetic loonies who claim to find evidence of this wonderful ration all over the place.  

Georg Simon Ohm

Georg Simon Ohm

We now move on to the man in whose shadow Martin Ohm will always stand, his elder brother Georg Simon.

House in Erlangen just around the corner from their birth house, where both Georg Simon and Martin worked as poorly paid lecturers for physics Photo: Thony Christie

House in Erlangen just around the corner from their birth house, where both Georg Simon and Martin worked as poorly paid lecturers for physics
Photo: Thony Christie

Plaque on house Photo: Thony Christie

Plaque on house
Photo: Thony Christie

The Plaque reads: In this house the physicist Georg Simon Ohm (1789–1854) taught physics in the years 1811 to 1812 and the mathematician Martin Ohm (1792–1872) in the years 1812 to 1817

The school where Georg Simon began the research work into the physics of electricity was the Jesuit Gymnasium in Cologne, which even granted him a sabbatical in 1826 to intensify his researches. He published those researches as Die galvanische Kette, mathematisch bearbeitet (The Galvanic Circuit Investigated Mathematically) in 1827. It was the Royal Society who started his climb out of obscurity awarding him the Copley Medal, its highest award, in 1842 and appointing him a foreign member in the same year. Membership of other international scientific societies, such as Turin followed. Georg Simon’s first professorial post was at the Königlich Polytechnische Schule (Royal Polytechnic) in Nürnberg in 1833. He became the director of the Polytechnic in 1839 and today the school is a technical university, which bears the name Georg Simon Ohm. Georg Simon ended his career as professor of physics at the University of Munich.

The town of Erlangen is proud of Georg Simon and we have an Ohm Place, with an unfortunately rather derelict fountain, the subject of a long political debate concerning the cost of renovation and one of the town’s high schools is named the Ohm Gymnasium. The city of Munich also has a collection of plaques and statues honouring him. Ohm Straße in Berlin, however, is named after his brother Martin.

Statue of Georg Simon Ohm at the Technical University in Munich Source: Wikimedia Commons

Statue of Georg Simon Ohm at the Technical University in Munich
Source: Wikimedia Commons

Any fans of the history of science with a sweet tooth should note that if they come to Erlangen one half of the Ohm House is now a sweet shop specialising in Gummibärs.

4 Comments

Filed under History of Mathematics, History of Physics, Local Heroes, University History

Unsung? I hardly think so

Recently, New Scientist had an article about Emmy Noether because 2015 is the one hundredth anniversary of Noether’s Theorem. I’m not going to link to it because it’s behind a pay wall. A couple of days later they had an open access follow up article entitled, Unsung heroines: Six women denied scientific glory. This is the latest is a fairly long line of such articles in the Internet, as part of the widespread campaign to increase the profile of women in the history of science. Now in general I approve of these attempts and from time to time make a contribution myself here at the Renaissance Mathematicus, however I think the whole concept is based on a misconception and also the quality of the potted biographies that these post contain are often highly inaccurate or even downright false. I will deal with the particular biography that inspired the title of this post later but first I want to address a more general issue.

Such posts as the New Scientist one are based on the premise that the women they feature have slipped through the net of public awareness because they are women, although this might be a contributory factor, I think the main reason is a very different one that not only affects female scientists but the vast majority of scientists in general. I call this the Einstein-Curie syndrome. The popular history of science is presented as a very short list of exulted geniuses who, usually single-handedly, change the course of (scientific) history. If you ask an averagely intelligent, averagely educated person, who is not a scientist or historian of science, to name a scientist chances are near to certain they will say either Galileo, Newton, Einstein or Stephen Hawking or maybe Darwin and I seriously think even Darwin is a maybe. Alternatively they might name one of the high profile television science presenters, depending on age, Carl Sagan, David Attenborough, Neil deGasse Tyson or Brian Cox. Almost nobody else gets a look in. If you were to specify that they should name a female scientist almost all will respond Marie Curie. In fact the last result has led various women writers to protest that we have much too much Marie Curie as role model for women in STEM. It is not that women in the history of science get ignored, it’s that almost all scientist in the history of science get ignored in favour of the litany of great names.

If we take a brief closer look at this phenomenon with respect to the revolution in physics in the first half of the twentieth century then good old Albert cast a vast shadow over all his contemporaries. He is not just the most well know scientist, he is one of the iconic figures of the twentieth century. Most non-scientists will probably not know where to place the name Max Planck, although here in Germany they might have heard of it because the official German State research institutes are named after him. Schrödinger might fare a little better because of his cat but beyond awareness of the term ‘Schrödinger’s cat’ you would probably draw a blank. The same is true of Heisenberg and his ‘uncertainty principle’, of which the questioned Mr or Mrs Normal will almost certainly have a false conception. Throw in Louis de Broglie, who after all was a Nobel laureate, and you will just provoke a blank stare. People are not ignorant of women in the history of science; people are ignorant of the history of science.

I now want to turn to that which provoked this post and its title, the article in question starts with a potted biography of the great Austrian physicist Lise Meitner, to call Lise Meitner unsung is a straight up abuse of language, which I will come back to later. I first want to deal with some serious inaccuracies in the article and in particular the all too oft repeated Nobel Prize story and why the version that usually gets peddled is highly misleading.

Lise Meitner in 1906 Source: Wikimedia Commons

Lise Meitner in 1906
Source: Wikimedia Commons

The potted biography starts reasonably OK:

As with Noether, Meitner’s career was blighted by discrimination, and not just because of her sex. Meitner studied physics at the University of Vienna, then in the Austro-Hungarian Empire, before moving to Berlin, Germany, to further her education. She attended a series of lectures by Max Planck – the first woman to be allowed to do so – and became his assistant.

It neglects to mention that Meitner got a PhD in physics in Vienna in 1906 as only the second woman to do so. She went to Berlin in 1907, after one year post-doc in Vienna. In Berlin she was only allowed to study as a guest as women were first allowed into the Prussian universities in 1909. She served as Planck’s assistant from 1912 till 1915. In the next paragraph the biography goes for pathos rather than fact: She later began to work with chemist Otto Hahn, but was refused access to his laboratory and was forced to work in a broom cupboard. When Hahn’s research group moved to a different institute, Meitner was offered an unpaid job as his “guest”. The situation for young academics at German universities in the late nineteenth century or early twentieth century was not very rosy no matter what their sex. On the whole you either had rich parents, a rich sponsor or you were the proverbial destitute student. Meitner had wealthy parent, who were prepared to pay for her efforts to become a physicist. Both Meitner and Hahn worked as unpaid guest in the former carpentry shop (not a broom cupboard) of the Chemistry Institute of the Berlin University. In 1912 they got their own research section at the Kaiser Wilhelm Institute for Chemistry although initially Meitner remained an unpaid guest.

Lise Meitner and Otto Hahn in their laboratory. Source: Wikimedia Commons

Lise Meitner and Otto Hahn in their laboratory.
Source: Wikimedia Commons

In 1913 she became a paid member of staff. From 1914 to 1916 she served as a nurse in the First World War. In 1916 she and Hahn returned to the Kaiser Wilhelm Institute and resumed their research work. In 1918 Meitner was appointed head of her own department at the Kaiser Wilhelm Institute. As you can see a slightly different story to the one offered in New Scientist and it doesn’t end here. In 1922 Meitner habilitated on the University of Berlin thus qualifying to be appointed professor and in 1926 she was appointed the first ever female professor of physics at a German university. When the Nazis came to power in 1933 Meitner, a Jew, lost her position at the university but retained her position at the Kaiser Wilhelm Institute until 1938 when she was finally forced to flee the country, greatly assisted by Hahn. She made her way to Sweden where she obtained a position at the Nobel Institute. Meitner was an established physicist who had held important academic teaching and research posts in the thirty years before she fled Germany. She and Hahn had made many important discoveries and had produced a significant list of publications. She was a leading nuclear physicist with an international reputation, not quite the picture that the New Scientist biographer imparts. After she had left Germany she and Hahn continued to work together by post. We have now reached that ominous Nobel Prize story:

In 1938, because of her Jewish heritage, Meitner was forced to leave Nazi Germany. She eventually fled to Sweden, with Hahn’s help. Hahn remained in Germany, but he and Meitner continued to correspond and in 1939 they discovered a process they called nuclear fission. In possibly the most egregious example of a scientist being overlooked for an award, it was Hahn who received the 1944 Nobel prize for the discovery. She was mentioned three times in the presentation speech, however, and Hahn named her nine times in his Nobel lecture.

A clear-cut case of prejudice against women in science, or? Actually if you look at the full facts it isn’t anyway near as clear-cut as it seems, in fact the whole situation was completely different. In 1938 Otto Hahn and Fritz Strassmann carried out a series of experiments in Berlin that led to nuclear fission, at that time completely unknown, Hahn realised that fission must have occurred but could not clearly explain the results of his experiment.

Nuclear Fission Experimental Apparatus 1938: Reconstruction Deutsches Museum München Source: Wikimedia Commons

Nuclear Fission Experimental Apparatus 1938: Reconstruction Deutsches Museum München
Source: Wikimedia Commons

Hahn corresponded with Meitner who together with her nephew Otto Frisch worked out the theory that explained nuclear fission. Hahn published the results of his experiments in a joint paper with Strassmann in 1938. Meitner and Frisch published the theory of nuclear fission in 1939. In 1944 Otto Hahn alone was awarded the Nobel Prize in chemistry for his experiment, which demonstrated the existence of nuclear fission. Meitner had no part in these experiments and so should not have been included in the prize as awarded. Strassmann, however, contributed both to the experiments and the subsequent publication so it is more than justified to ask why he was not included in the award of the prize. It is not unusual in the history of the Nobel Prize for the prize to be jointly awarded to the theory behind a discovery and the discovery itself, so it would also be justified to ask why the Nobel committee did not chose to do so on this occasion. However if they had done so then not only Meitner but also Frisch should have been considered for the prize. If on this assumption we add together all of those who had a right to the prize we come to a total of four, Hahn & Strassmann, and Meitner & Frisch, which of course breaks the Nobel Prize rule of maximal three laureates pro prize. Who gets left out? It would of course also be legitimate to ask why Meitner and Frisch were not awarded the Nobel Prize for physics for the theory of nuclear fission; they had certainly earned it. This is a question that neither I nor anybody else can answer and the Nobel Prize committee does not comment on those who do not receive an award, no matter how justified such an award might be. Whatever, although Meitner can be considered to have been done an injustice in not being awarded a Nobel, she didn’t have a claim on the prize awarded to Hahn in 1944 as is so often claimed by her feminist supporters. We now come to the title of this post.

The New Scientist article claims that Lise Meitner is an unsung heroine who was denied scientific glory. This statement is pure and absolute rubbish. Lise Meitner received five honorary doctorates, was elected to twelve major academic societies, she was elected Woman of the Year in America in 1946.

Lise Meitner 1946 Source: Wikimedia Commons

Lise Meitner 1946
Source: Wikimedia Commons

She received the Max Planck medal of the German Physical Society, the Otto Hahn Prize of the German Chemical Society, the peace class of the Pour le mérite (the highest German State award for scientists), the Enrico Fermi Award of the United States Atomic Energy Commission, awarded personally by President Lyndon B. Johnson and there is a statue of her in the garden of the Humboldt University in Berlin. On top of this she received numerous awards and honours in her native Austria. Somehow that doesn’t quite fit the description unsung. Just to make the point even more obvious an institute at the University of Berlin, a crater on the moon, and another crater on venus, as well as an asteroid all bear the name Meitner in her honour.

Can it be that people put too much emphasis on Nobel prizes, for which Meitner was nominated numerous times but never won? The disproportionality of this way of thinking is shown by Meitner last and greatest honour. Element 109 is named Meiterium in her honour. There are 118 know elements of which 98 are considered to occur naturally and the other twenty are products of the laboratory. Only ten of the elements are named after people so this honour is in every way greater than a mere Nobel Prize. Strangely the New Scientist article mentions this honour in a very off hand way in its final sentence, as if it was of little significance. Otto Hahn does not have an element named after him.

Added 5 May 2015:

Over on his blog John Ptak has a post about a wonderful American comic book that mentions Lise Meitner and her role in the history of the atomic bomb. With John’s permission I have added the the comic panel in question below.

Source: Ptak Science Books

Source: Ptak Science Books

If you don’t already visit Mr Ptak’s delightful Internet book emporium you should, it’s a cornucopia of scientific and technological delight.

14 Comments

Filed under History of Physics, History of science, Ladies of Science, Myths of Science

Preach truth – serve up myths.

Over Christmas I poked a bit of fun at Neil deGrasse Tyson for tweeting that Newton would transform the world by the age of 30, pointing out he was going on forty-five when he published his world transforming work the Principia. The following day NdGT posted a short piece on Face Book praising his own tweet and its success. Here he justified his by the age of thirty claim but in doing so rode himself deeper into the mire of sloppy #histsci. You might ask why this matters, to which the answer is very simple. NdGT is immensely popular especially amongst those with little idea of science and less of the history of science and who hang on his every utterance. Numerous historians of science labour very hard to dismantle the myths of science and to replace them with a reasonable picture of how science evolved throughout its long and convoluted history. NdGT disdains those efforts and perpetuates the myths leading his hordes of admirers up the garden path of delusion. Let us take a brief look at his latest propagation of #histmyth.

NdGT’s post starts off with the news that his Newton birthday tweet is the most RTed tweet he has every posted citing numbers that lesser mortals would not even dare to dream about. This of course just emphasises the danger of NdGT as disseminator of false history of science, his reach is wide and his influence is strong. Apparently some Christians had objected to NdGT celebrating Newton’s birthday on Christ’s birthday and NdGT denies that his tweet was intended to be anti-Christian but then goes on to quote the tweet that he sent out in answer to those accusations:

“Imagine a world in which we are all enlightened by objective truths rather than offended by them.”

Now on the whole I agree with the sentiment expressed in this tweet, although I do have vague vision of Orwellian dystopia when people from the scientism/gnu atheist camp start preaching about ‘objective truth’. Doesn’t Pravda mean truth? However I digress.

I find it increasing strange that NdGT’s craving for objective truth doesn’t stretch to the history of science where he seems to much prefer juicy myths to any form of objectivity. And so also in this case. In his post he expands on the tweet I had previously poked fun at. He writes:

Everybody knows that Christians celebrate the birth of Jesus on December 25th.  I think fewer people know that Isaac Newton shares the same birthday.  Christmas day in England – 1642.  And perhaps even fewer people know that before he turned 30, Newton had discovered the laws of motion, the universal law of gravitation, and invented integral and differential calculus.  All of which served as the mechanistic foundation for the industrial revolution of the 18th and 19th centuries that would forever transform the world.

What we are being served up here is a slightly milder version of the ‘annus mirabilis’ myth. This very widespread myth claims that Newton did all of the things NdGT lists above in one miraculous year, 1666, whilst abiding his time at home in Woolsthorpe, because the University of Cambridge had been closed down due to an outbreak of the plague. NdGT allows Newton a little more time, he turned 30 in 1672, but the principle is the same, look oh yee of little brain and tremble in awe at the mighty immaculate God of science Sir Isaac Newton! What NdGT the purported lover of objective truth chooses to ignore, or perhaps he really is ignorant of the facts, is that a generation of some of the best historians of science who have ever lived, Richard S. Westfall, D. T. Whiteside, Frank Manuel, I. Bernard Cohen, Betty Jo Teeter Dobbs and others, have very carefully researched and studied the vast convolute of Newton’s papers and have clearly shown that the whole story is a myth. To be a little bit fair to NdGT the myth was first put in the world by Newton himself in order to shoot down all his opponents in the numerous plagiarism disputes that he conducted. If he had done it all that early then he definitely had priority and the others were all dastardly scoundrels out to steal his glory. We now know that this was all a fabrication on Newton’s part.

Newton was awarded his BA in 1665 and in the following years he was no different to any highly gifted postgraduate trying to find his feet in the world of academic research. He spread his interests wide reading and absorbing as much of the modern science of the time as he could and making copious notes on what he read as well as setting up ambitious research programmes on a wide range of topics that were to occupy his time for the next thirty years. In the eighteen months before being sent down from Cambridge because of the plague he concentrated his efforts on the new analytical mathematics that had developed over the previous century. Whilst reading widely and bringing himself up to date on material that was not taught at Cambridge he simultaneously extended and developed what he was reading laying the foundations for his version of the calculus. It was no means a completed edifice as NdGT, and unfortunately many others, would have us believe but it was still a very notable mathematical achievement. Over the decades he would return from time to time to his mathematical researches building on and extending that initial foundation. He also didn’t ‘invent’ integral and differential calculus but brought together, codified and extended the work of many others, in particular, Descartes, Fermat, Pascal, Barrow and Wallace, who in turn looked back upon two thousand years of history on the topic.

In the period beginning in 1666 he left off with mathematical endeavours and turned his attention to mechanics mostly addressing the work of Descartes. He made some progress and even wondered, maybe inspired by observing a falling apple in his garden in Woolsthorpe, if the force which causes things to fall the Earth is the same as the force which prevents the Moon from shooting off at a tangent to its orbit. He did some back of an envelope calculations, which showed that they weren’t, due to faulty data and he dropped the matter. He didn’t discover the laws of motion and as he derived the law of gravity from Huygens’ law of centripetal force that was first published in 1673 he certainly didn’t do it before he was thirty. In fact most of the work that went into Newton’s magnum opus the Principia was done in an amazing burst of concentrated effort in the years between 1684 and 1687 when Newton was already over forty.

What Newton did do between 1666 and 1672 was to conduct an extensive experimental programme into physical optics, in particular what he termed the phenomenon of colour. This programme resulted in the construction of the first reflecting telescope and in 1672 Newton’s legendary first paper A Letter of Mr. Isaac Newton, Professor of the Mathematicks in the University of Cambridge; Containing His New Theory about Light and Colors published in the Philosophical Transactions of the Royal Society. Apparently optics doesn’t interest NdGT. Around 1666 Newton also embarked on perhaps his most intensive and longest research programme to discover the secrets of alchemy, whilst starting his life long obsession with the Bible and religion. The last two don’t exactly fit NdGT’s vision of enlightened objective truth.

Newton is without doubt an exceptional figure in the history of science, who has few equals, but like anybody else Newton’s achievements were based on long years of extensive and intensive work and study and are not the result of some sort of scientific miracle in his young years. Telling the truth about Newton’s life and work rather than propagating the myths, as NdGT does, gives students who are potential scientists a much better impression of what it means to be a scientist and is thus in my opinion to be preferred.

As a brief addendum NdGT points out that Newton’s birthday is not actually 25 December (neither is Christ’s by the way) because he was born before the calendar reform was introduced into Britain so we should, if we are logical, be celebrating his birthday on 4 January. NdGT includes the following remark in his explanation, “But the Gregorian Calendar (an awesomely accurate reckoning of Earth’s annual time), introduced in 1584 by Pope Gregory, was not yet adopted in Great Britain.” There is a certain irony in his praise, “an awesomely accurate reckoning of Earth’s annual time”, as this calendar was developed and introduced for purely religious reasons, again not exactly enlightened or objective.

 

 

 

14 Comments

Filed under History of Astronomy, History of Mathematics, History of Physics, History of science, Myths of Science, Renaissance Science

The Queen of Science – The woman who tamed Laplace.

In a footnote to my recent post on the mythologizing of Ibn al-Haytham I briefly noted the inadequacy of the terms Arabic science and Islamic science, pointing out that there were scholars included in these categories who were not Muslims and ones who were not Arabic. In the comments Renaissance Mathematicus friend, the blogger theofloinn, asked, Who were the non-muslim “muslim” scientists? And (aside from Persians) who were the non-Arab “arab” scientists? And then in a follow up comment wrote, I knew about Hunayn ibn Ishaq and the House of Wisdom, but I was not thinking of translation as “doing science.” From the standpoint of the historian of science this second comment is very interesting and reflects a common problem in the historiography of science. On the whole most people regard science as being that which scientists do and when describing its history they tend to concentrate on the big name scientists.

This attitude is a highly mistaken one that creates a falsified picture of scientific endeavour. Science is a collective enterprise in which the ‘scientists’ are only one part of a collective consisting of scientists, technicians, instrument designers and makers, and other supportive workers without whom the scientist could not carry out his or her work. This often includes such ignored people as the secretaries, or in earlier times amanuenses, who wrote up the scientific reports or life partners who, invisible in the background, often carried out much of the drudgery of scientific investigation. My favourite example being William Herschel’s sister and housekeeper, Caroline (a successful astronomer in her own right), who sieved the horse manure on which he bedded his self cast telescope mirrors to polish them.

Translators very definitely belong to the long list of so-called helpers without whom the scientific endeavour would grind to a halt. It was translators who made the Babylonian astronomy and astrology accessible to their Greek heirs thus making possible the work of Eudoxus, Hipparchus, Ptolemaeus and many others. It was translators who set the ball rolling for those Islamic, or if you prefer Arabic, scholars when they translated the treasures of Greek science into Arabic. It was again translators who kicked off the various scientific Renaissances in the twelfth and thirteenth-centuries and again in the fifteenth-century, thereby making the so-called European scientific revolution possible. All of these translators were also more or less scientists in their own right as without a working knowledge of the subject matter that they were translating they would not have been able to render the texts from one language into another. In fact there are many instances in the history of the transmission of scientific knowledge where an inadequate knowledge of the subject at hand led to an inaccurate or even false translation causing major problems for the scholars who tried to understand the texts in the new language. Translators have always been and continue to be an important part of the scientific endeavour.

The two most important works on celestial mechanics produced in Europe in the long eighteenth-century were Isaac Newton’s Philosophiæ Naturalis Principia Mathematica and Pierre-Simon, marquis de Laplace’s Mécanique céleste. The former was originally published in Latin, with an English translation being published shortly after the author’s death, and the latter in French. This meant that these works were only accessible to those who mastered the respective language. It is a fascinating quirk of history that the former was rendered into French and that latter into English in each case by a women; Gabrielle-Émilie Le Tonnelier de Breteuil, Marquise du Châtelet translated Newton’s masterpiece into French and Mary Somerville translated Laplace’s pièce de résistance into English. I have blogged about Émilie de Châtelet before but who was Mary Somerville? (1)

 

Mary Somerville by Thomas Phillips

Mary Somerville by Thomas Phillips

She was born Mary Fairfax, the daughter of William Fairfax, a naval officer, and Mary Charters at Jedburgh in the Scottish boarders on 26 December 1780. Her parents very definitely didn’t believe in education for women and she spent her childhood wandering through the Scottish countryside developing a lifelong love of nature. At the age of ten, still semi-illiterate, she was sent to Miss Primrose’s boarding school at Musselburgh in Midlothian for one year; the only formal schooling she would ever receive. As a young lady she received lessons in dancing, music, painting and cookery. At the age of fifteen she came across a mathematical puzzle in a ladies magazine (mathematical recreation columns were quite common in ladies magazines in the 18th and 19th-centuries!) whilst visiting friends. Fascinated by the symbols that she didn’t understand, she was informed that it was algebra, a word that meant nothing to her. Later her painting teacher revealed that she could learn geometry from Euclid’s Elements whilst discussing the topic of perspective. With the assistance of her brother’s tutor, young ladies could not buy maths-books, she acquired a copy of the Euclid as well as one of Bonnycastle’s Algebra and began to teach herself mathematics in the secrecy of her bedroom. When her parents discovered this they were mortified her father saying to her mother, “Peg, we must put a stop to this, or we shall have Mary in a strait jacket one of these days. There is X., who went raving mad about the longitude.” They forbid her studies, but she persisted rising before at dawn to study until breakfast time. Her mother eventually allowed her to take some lessons on the terrestrial and celestial globes with the village schoolmaster.

In 1804 she was married off to a distant cousin, Samuel Grieg, like her father a naval officer but in the Russian Navy. He, like her parents, disapproved of her mathematical studies and she seemed condemned to the life of wife and mother. She bore two sons in her first marriage, David who died in infancy and Woronzow, who would later write a biography of Ada Lovelace. One could say fortunately, for the young Mary, her husband died after only three years of marriage in 1807 leaving her well enough off that she could now devote herself to her studies, which she duly did. Under the tutorship of John Wallace, later professor of mathematics in Edinburgh, she started on a course of mathematical study, of mostly French books but covering a wide range of mathematical topic, even tacking Newton’s Principia, which she found very difficult. She was by now already twenty-eight years old. During the next years she became a fixture in the highest intellectual circles of Edinburgh.

In 1812 she married for a second time, another cousin, William Somerville and thus acquired the name under which she would become famous throughout Europe. Unlike her parents and Samuel Grieg, William vigorously encouraged and supported her scientific interests. In 1816 the family moved to London. Due to her Scottish connections Mary soon became a member of the London intellectual scene and was on friendly terms with such luminaries as Thomas Young, Charles Babbage, John Herschel and many, many others; all of whom treated Mary as an equal in their wide ranging scientific discussions. In 1817 the Somervilles went to Paris where Mary became acquainted with the cream of the French scientists, including Biot, Arago, Cuvier, Guy-Lussac, Laplace, Poisson and many more.

In 1824 William was appointed Physician to Chelsea Hospital where Mary began a series of scientific experiments on light and magnetism, which resulted in a first scientific paper published in the Philosophical Transactions of the Royal Society in 1826. In 1836, a second piece of Mary’s original research was presented to the Académie des Sciences by Arago. The third and last of her own researches appeared in the Philosophical Transactions in 1845. However it was not as a researcher that Mary Somerville made her mark but as a translator and populariser.

In 1827 Henry Lord Brougham and Vaux requested Mary to translate Laplace’s Mécanique céleste into English for the Society for the Diffusion of Useful Knowledge. Initially hesitant she finally agreed but only on the condition that the project remained secret and it would only be published if judged fit for purpose, otherwise the manuscript should be burnt. She had met Laplace in 1817 and had maintained a scientific correspondence with him until his death in 1827. The translation took four years and was published as The Mechanism of the Heavens, with a dedication to Lord Brougham, in 1831. The manuscript had been refereed by John Herschel, Britain’s leading astronomer and a brilliant mathematician, who was thoroughly cognisant with the original, he found the translation much, much more than fit for the purpose. Laplace’s original text was written in a style that made it inaccessible for all but the best mathematicians, Mary Somerville did not just translate the text but made it accessible for all with a modicum of mathematics, simplifying and elucidating as she went. This wasn’t just a translation but a masterpiece. The text proved too vast for Brougham’s Library of Useful Knowledge but on the recommendation of Herschel, the publisher John Murray published the book at his own cost and risk promising the author two thirds of the profits. The book was a smash hit the first edition of 750 selling out almost instantly following glowing reviews by Herschel and others. In honour of the success the Royal Society commissioned a bust of Mrs Somerville to be placed in their Great Hall, she couldn’t of course become a member!

At the age of fifty-one Mary Somerville’s career as a science writer had started with a bang. Her Laplace translation was used as a textbook in English schools and universities for many years and went through many editions. Her elucidatory preface was extracted and published separately and also became a best seller. If she had never written another word she would still be hailed as a great translator and science writer but she didn’t stop here. Over the next forty years Mary Somerville wrote three major works of semi-popular science On the Connection of the Physical Sciences (1st ed. 1834), Physical Geography (1st ed. 1848), (she was now sixty-eight years old!) and at the age of seventy-nine, On Molecular and Microscopic Science (1st ed. 1859). The first two were major successes, which went through many editions each one extended, brought up to date, and improved. The third, which she later regretted having published, wasn’t as successful as her other books. Famously, in the history of science, William Whewell in his anonymous 1834 review of On the Connection of the Physical Sciences first used the term scientist, which he had coined a year earlier, in print but not, as is oft erroneously claimed, in reference to Mary Somerville.

Following the publication of On the Connection of the Physical Sciences Mary Somerville was awarded a state pension of £200 per annum, which was later raised to £300. Together with Caroline Herschel, Mary Somerville became the first female honorary member of the Royal Astronomical Society just one of many memberships and honorary memberships of learned societies throughout Europe and America. Somerville College Oxford, founded seven years after her death, was also named in her honour. She died on 28 November 1872, at the age of ninety-one, the obituary which appeared in the Morning Post on 2 December said, “Whatever difficulty we might experience in the middle of the nineteenth century in choosing a king of science, there could be no question whatever as to the queen of science.” The Times of the same date, “spoke of the high regard in which her services to science were held both by men of science and by the nation”.

As this is my contribution to Ada Lovelace day celebrating the role of women in the history of science, medicine, engineering, mathematics and technology I will close by mentioning the role that Mary Somerville played in the life of Ada. A friend of Ada’s mother, the older women became a scientific mentor and occasional mathematics tutor to the young Miss Byron. As her various attempts to make something of herself in science or mathematics all came to nought Ada decided to take a leaf out of her mentor’s book and to turn to scientific translating. At the suggestion of Charles Wheatstone she chose to translate Luigi Menabrea’s essay on Babbage’s Analytical Engine, at Babbage’s suggestion elucidating the original text as her mentor had elucidated Laplace and the rest is, as they say, history. I personally would wish that the founders of Ada Lovelace Day had chosen Mary Somerville instead, as their galleon figure, as she contributed much, much more to the history of science than her feted protégée.

(1) What follows is largely a very condensed version of Elizabeth  C. Patterson’s excellent Somerville biography Mary Somerville, The British Journal for the History of Science, Vol. 4, 1969, pp. 311-339

 

13 Comments

Filed under History of Astronomy, History of Mathematics, History of Physics, History of science, Ladies of Science

The unfortunate backlash in the historiography of Islamic science

Anybody with a basic knowledge of the history of Western science will know that there is a standard narrative of its development that goes something like this. Its roots are firmly planted in the cultures of ancient Egypt and Babylon and it bloomed for the first time in ancient Greece, reaching a peak in the work of Ptolemaeus in astronomy and Galen in medicine in the second-century CE. It then goes into decline along with the Roman Empire effectively disappearing from Europe by the fifth-century CE. It began to re-emerge in the Islamic Empire[1] in the eight-century CE from whence it was brought back into Europe beginning in the twelfth-century CE. In Europe it began to bloom again in the Renaissance transforming into modern science in the so-called Scientific Revolution in the seventeenth-century. There is much that is questionable in this broad narrative but that is not the subject of this post.

In earlier versions of this narrative, its European propagators claimed that the Islamic scholars who appropriated Greek knowledge in the eighth-century and then passed it back to their European successors, beginning in the twelfth-century, only conserved that knowledge, effectively doing nothing with it and not increasing it. For these narrators their heroes of science were either ancient Greeks or Early Modern Europeans; Islamic scholars definitely did not belong to the pantheon. However, a later generation of historians of science began to research the work of those Islamic scholars, reading, transcribing, translating and analysing their work and showing that they had in fact made substantial contributions to many areas of science and mathematics, contributions that had flowed into modern European science along with the earlier Greek, Babylonian and Egyptian contributions. Also Islamic scholars such as al-Biruni, al-Kindi, al-Haytham, Ibn Sina, al-Khwarizmi and many others were on a level with such heroes of science as Archimedes, Ptolemaeus, Galen or Kepler, Galileo and Newton. Although this work redressed the balance there is still much work to be done on the breadth and deep of Islamic science.

Unfortunately the hagiographic, amateur, wannabe pop historians of science now entered the field keen to atone for the sins of the earlier Eurocentric historical narrative and began to exaggerate the achievements of the Islamic scholars to show how superior they were to the puny Europeans who stole their ideas, like the colonial bullies who stole their lands. There came into being a type of hagiographical popular history of Islamic science that owes more to the Thousand and One Nights than it does to any form of serious historical scholarship. I came across an example of this last week during the Gravity Fields Festival, an annual shindig put on in Grantham to celebrate the life and work of one Isaac Newton, late of that parish.

On Twitter Ammār ibn Aziz Ahmed (@Ammar_Ibn_AA) tweeted the following:

I’m sorry to let you know that Isaac Newton learned about gravity from the books of Ibn al-Haytham

I naturally responded in my usual graceless style that this statement was total rubbish to which Ammār ibn Aziz Ahmed responded with a link to his ‘source

I answered this time somewhat more moderately that a very large part of that article is quite simply wrong. One of my Internet friends, a maths librarian (@MathsBooks) told me I was being unfair and that I should explain what was wrong with his source, so here I am.

The article in question is one of many potted biographies of al-Haytham that you can find dotted all other the Internet and which are mostly virtual clones of each other. They all contain the same collection of legends, half-truths, myths and straightforward lies usually without sources, or, as in this case, quoting bad popular books written by a non-historian as their source. It is fairly obvious that they all plagiarise each other without bothering to consult original sources or the work done by real historian of science on the life and work of al-Haytham.

The biography of al-Haytham is, like that of most medieval Islamic scholars, badly documented and very patchy at best. Like most popular accounts this article starts with the legend of al-Haytham’s feigned madness and ten-year incarceration. This legend is not mentioned in all the biographical sources and should be viewed with extreme scepticism by anybody seriously interested in the man and his work. The article then moves on to the most pernicious modern myth concerning al-Haytham that he was the ‘first real scientist’.

This claim is based on a misrepresentation of what al-Haytham did. He did not as the article claims introduce the scientific method, whatever that might be. For a limited part of his work al-Haytham used experiments to prove points, for the majority of it he reasoned in exactly the same way as the Greek philosophers whose heir he was. Even where he used the experimental method he was doing nothing that could not be found in the work of Archimedes or Ptolemaeus. There is also an interesting discussion outlined in Peter Dear’s Discipline and Experience (1995) as to whether al-Haytham used or understood experiments in the same ways as researchers in the seventeenth-century; Dear concludes that he doesn’t. (pp. 51-53) It is, however, interesting to sketch how this ‘misunderstanding’ came about.

The original narrative of the development of Western science not only denied the contribution of the Islamic Empire but also claimed that the Middle Ages totally rejected science, modern science only emerging after the Renaissance had reclaimed the Greek scientific inheritance. The nineteenth-century French physicist and historian of science, Pierre Duhem, was the first to challenge this fairy tale claiming instead, based on his own researches, that the Scientific Revolution didn’t take place in the seventeenth–century but in the High Middle Ages, “the mechanics and physics of which modern times are justifiably proud to proceed, by an uninterrupted series of scarcely perceptible improvements, from doctrines professed in the heart of the medieval schools.” After the Second World War Duhem’s thesis was modernised by the Australian historian of science, Alistair C. Crombie, whose studies on medieval science in general and Robert Grosseteste in particular set a new high water mark in the history of science. Crombie attributed the origins of modern science and the scientific method to Grosseteste and Roger Bacon in the twelfth and thirteenth-centuries. A view that has been somewhat modified and watered down by more recent historians, such as David Lindberg. Enter Matthias Schramm.

Matthias Schramm was a German historian of science who wrote his doctoral thesis on al-Haytham. A fan of Crombie’s work Schramm argued that the principle scientific work of Grosseteste and Bacon in physical optics was based on the work of al-Haytham, correct for Bacon not so for Grosseteste, and so he should be viewed as the originator of the scientific method and not they. He makes this claim in the introduction to his Ibn al-Haythams Weg zur Physik (1964), but doesn’t really substantiate it in the book itself. (And yes, I have read it!) Al-Haytham’s use of experiment is very limited and to credit him with being the inventor of the scientific method is a step too far. However since Schramm made his claims they have been expanded, exaggerated and repeated ad nauseam by the al-Haytham hagiographers.

We now move on to what is without doubt al-Haytham’s greatest achievement his Book of Optics, the most important work on physical optics written between Ptolemaeus in the second-century CE and Kepler in the seventeenth-century. Our author writes:

In his book, The Book of Optics, he was the first to disprove the ancient Greek idea that light comes out of the eye, bounces off objects, and comes back to the eye. He delved further into the way the eye itself works. Using dissections and the knowledge of previous scholars, he was able to begin to explain how light enters the eye, is focused, and is projected to the back of the eye.

Here our author demonstrates very clearly that he really has no idea what he is talking about. It should be very easy to write a clear and correct synopsis of al-Haytham’s achievements, as there is a considerable amount of very good literature on his Book of Optics, but our author gets it wrong[2].

Al-Haytham didn’t prove or disprove anything he rationally argued for a plausible hypothesis concerning light and vision, which was later proved to be, to a large extent, correct by others. The idea that vision consists of rays (not light) coming out of the eyes (extramission) is only one of several ideas used to explain vision by Greek thinkers. That vision is the product of light entering the eyes (intromission) also originates with the Greeks. The idea that light bounces off every point of an object in every direction comes from al-Haytham’s Islamic predecessor al-Kindi. Al-Haytham’s great achievement was to combine an intromission theory of vision with the geometrical optics of Euclid, Heron and Ptolemaeus (who had supported an extramission theory) integrating al-Kindi’s punctiform theory of light reflection. In its essence, this theory is fundamentally correct. The second part of the paragraph quoted above, on the structure and function of the eye, is pure fantasy and bears no relation to al-Haytham’s work. His views on the subject were largely borrowed from Galen and were substantially wrong.

Next up we have the pinhole camera or better camera obscura, although al-Haytham was probably the first to systematically investigate the camera obscura its basic principle was already known to the Chinese philosopher Mo-Ti in the fifth-century BCE and Aristotle in the fourth-century BCE. The claims for al-Haytham’s studies of atmospheric refraction are also hopelessly exaggerated.

We the have an interesting statement on the impact of al-Haytham’s optics, the author writes:

The translation of The Book of Optics had a huge impact on Europe. From it, later European scholars were able to build the same devices as he did, and understand the way light works. From this, such important things as eyeglasses, magnifying glasses, telescopes, and cameras were developed.

The Book of Optics did indeed have a massive impact on European optics in Latin translation from the work of Bacon in the thirteenth-century up to Kepler in the seventeenth-century and this is the principle reason why he counts as one of the very important figures in the history of science, however I wonder what devices the author is referring to here, I know of none. Interesting in this context is that The Book of Optics appears to have had very little impact on the development of physical optics in the Islamic Empire. One of the anomalies in the history of science and technology is the fact that as far was we know the developments in optical physics made by al-Haytham, Bacon, Witelo, Kepler et al had no influence on the invention of optical instruments, glasses, magnifying glasses, the telescope, which were developed along a parallel but totally separate path.

Moving out of optics we get told about al-Haytham’s work in astronomy. It is true that he like many other Islamic astronomers criticised Ptolemaeus and suggested changes in his system but his influence was small in comparison to other Islamic astronomers. What follows is a collection of total rubbish.

He had a great influence on Isaac Newton, who was aware of Ibn al-Haytham’s works.

He was not an influence on Newton. Newton would have been aware of al-Haytham’s work in optics but by the time Newton did his own work in this field al-Haytham’s work had been superseded by that of Kepler, Scheiner, Descartes and Gregory amongst others.

He studied the basis of calculus, which would later lead to the engineering formulas and methods used today.

Al-Haytham did not study the basis of calculus!

He also wrote about the laws governing the movement of bodies (later known as Newton’s 3 laws of motion)

Like many others before and after him al-Haytham did discuss motion but he did not come anywhere near formulating Newton’s laws of motion, this claim is just pure bullshit.

and the attraction between two bodies – gravity. It was not, in fact, the apple that fell from the tree that told Newton about gravity, but the books of Ibn al-Haytham.

We’re back in bullshit territory again!

If anybody thinks I should give a more detailed refutation of these claims and not just dismiss them as bullshit, I can’t because al-Haytham never ever did the things being claimed. If you think he did then please show me where he did so then I will be prepared to discuss the matter, till then I’ll stick to my bullshit!

I shall examine one more claim from this ghastly piece of hagiography. Our author writes the following:

When his books were translated into Latin as the Spanish conquered Muslim lands in the Iberian Peninsula, he was not referred to by his name, but rather as “Alhazen”. The practice of changing the names of great Muslim scholars to more European sounding names was common in the European Renaissance, as a means to discredit Muslims and erase their contributions to Christian Europe.

Alhazen is merely the attempt by the unknown Latin translator of The Book of Optics to transliterate the Arabic name al-Haytham there was no discrimination intended or attempted.

Abū ʿAlī al-Ḥasan ibn al-Ḥasan ibn al-Haytham is without any doubt an important figure in the history of science whose contribution, particularly those in physical optics, should be known to anybody taking a serious interest in the subject, but he is not well served by inaccurate, factually false, hagiographic crap like that presented in the article I have briefly discussed here.

 

 

 

 

 

[1] Throughout this post I will refer to Islamic science an inadequate but conventional term. An alternative would be Arabic science, which is equally problematic. Both terms refer to the science produced within the Islamic Empire, which was mostly written in Arabic, as European science in the Middle Ages was mostly written in Latin. The terms do not intend to imply that all of the authors were Muslims, many of them were not, or Arabs, again many of them were not.

[2] For a good account of the history of optics including a detailed analysis of al-Haytham’s contributions read David C. Lindberg’s Theories of Vision: From al-Kindi to Kepler, University of Chicago Press, 1976.

32 Comments

Filed under History of Optics, History of Physics, Mediaeval Science, Myths of Science, Renaissance Science

Published on…

Today I have been mildly irritated by numerous tweets announcing the 5th July 1687, as the day on which Isaac Newton’s Principia was published, why? Partially because the claim is not strictly true and partially because it evokes a false set of images generated by the expression, published on, in the current age.

In the last couple of decades we have become used to images of hoards of teens dressed in fantasy costumes as witches queuing up in front of large bookstores before midnight to participate in the launch of the latest volume of a series of children’s books on a juvenile wizard and his adventures. These dates were the days on which the respective volumes were published and although the works of other authors do not enjoy quite the same level of turbulence, they do also have an official publication date, usually celebrated in some suitable way by author and publisher. Historically this has not always been the case.

In earlier times books, particularly ones of a scientific nature, tended to dribble out into public awareness over a vague period of time rather than to be published on a specific date. There were no organised launches, no publisher’s parties populated by the glitterati of the age and no official publication date. Such books were indeed published in the sense of being made available to the reading public but the process was much more of a slapdash affair than that which the term evokes today.

One reason for this drawn out process of release was the fact that in the early centuries of the printed book they were often not bound for sale by the publisher. Expensive works of science were sold as an unbound pile of printed sheets, allowing the purchaser to have his copy bound to match the other volumes in his library. This meant that there were not palettes of finished bound copies that could be shipped off to the booksellers. Rather a potential purchaser would order the book and its bindings and wait for it to be finished for delivery.

Naturally historians of science love to be able to nail the appearance of some game changing historical masterpiece to a specific date, however this is not always possible. In the case of Copernicus’ De revolutionibus, for example, we are fairly certain of the month in 1543 that Petreius started shipping finished copies of the work but there is no specific date of publication. With other equally famous works, such as Galileo’s Sidereus Nuncius, the historian uses the date of signing of the dedication as a substitute date of publication.

So what is with Newton’s Principia does it have an official date of publication and if not why are so many people announcing today to be the anniversary of its publication. Principia was originally printed written in manuscript in three separate volumes and Edmond Halley, who acted both as editor and publisher, had to struggle with the cantankerous author to get those volumes out of his rooms in Cambridge and into the printing shop. In fact due to the interference of Robert Hooke, demanding credit for the discovery of the law of gravity, Newton contemplated not delivering the third volume at all. Due to Halley’s skilful diplomacy this crisis was mastered and the final volume was delivered up by the author and put into print. July 5th 1687 is not the date of publication as it is understood today, but the date of a letter that Halley sent to Newton announcing that the task of putting his immortal masterpiece onto the printed page had finally been completed and that he was sending him twenty copies for his own disposition. I reproduce the text of Halley’s letter below.

 

Honoured Sr

I have at length brought you Book to an end, and hope it will please you. the last errata came just in time to be inserted. I will present from you the books you desire to the R. Society, Mr Boyle, Mr Pagit, Mr Flamsteed and if there be any elce in town that you design to gratifie that way; and I have sent you to bestow on your friends in the University 20 Copies, which I entreat you to accept.[1]

 

 

[1] Richard S. Westfall, Never at Rest: A Biography of Isaac Newton, Cambridge University Press, Cambridge etc., 1980, p. 468.

6 Comments

Filed under Early Scientific Publishing, History of Astronomy, History of Physics, Myths of Science, Newton

Niels & Me: Dysgraphia – A history of science footnote.

One of the symptoms that, I think most, sufferers from mental illness share is the feeling of being alone with their daemons. “I’m the only one who feels like this!” “Why have I alone been afflicted?” This feeling of isolation and of having been somehow singled out for punishment in itself causes mental distress and deepens the crisis. An important step along the road to recovery is the realisation that one is not alone, that there are others who suffer similarly, that one hasn’t been singled out. I can still remember very clearly the day when I became certain that I am an adult ADD sufferer and a lot of my symptoms, including several that I didn’t regard as part of my illness, fell into place, received a label and a possible path back to mental health. As I have already related in my previous post I had very similar feelings on discovering dysgraphia and realising that it was one of my central daemons. One of those revelations concerning dysgraphia actually has a close connection to my history of science obsession and as this is a history of science blog I would like to tell the story here.

As should be clear from the name of this blog my main interest as a historian of science lies with the mathematical sciences in the Early Modern Period, however I try not to be too narrow and get stuck in a historical cul-de-sac, only able to understand a very narrow field of science over a very short period of time. In order to maintain a broad overview of the history of science I buy and read general surveys of the histories of other disciplines in other periods. One such book that I own is Robert P. Crease and Charles C. Mann The Second Creation: Makers of the Revolution in Twentieth-Century Physics[1], which, if my memory serves me correctly, I bought on the recommendation of dog owner, physics blogger and popular science book author Chad Orzel; a recommendation that I would endorse. I vividly remember, shortly after I bought it, curling up in bed with the book for my half hour read before going to sleep and waking up rather than dosing off, as I read the revelatory words on the first pages of chapter two, The Man Who Talked. I’m now going quote some fairly large chunks of those pages:

Bohr’ working habits have become legendary among his successors, part of the lore of science along with Einstein’s flyaway hair and Rutherford’s remark that relativity was not meant to be understood by Anglo-Saxons. Bohr talked. [emphasis in original] He discovered his ideas in the act of enunciating them, shaping thoughts as they came out of his mouth. Friends, colleagues, graduate students, all had Bohr gently entice them into long walks in the countryside around Copenhagen, the heavy clouds scudding overhead as Bohr thrust his hands into his overcoat pockets and settled into an endless, hesitant, recondite, barely audible monologue. While he spoke, he watched his listeners’ reactions, eager to establish a bond in a shared effort to articulate. Whispered phrases would be pronounced, only to be adjusted as Bohr struggled to express exactly [emphasis in original] what he meant; words were puzzled over, repeated, then tossed aside, and he was always ready to add a qualification, to modify, a remark, to go back to the beginning, to start the explanation over again. Then flatteringly, he would abruptly thrust the subject on his listener – surely this cannot be all? what else is there? – his big, ponderous, heavy-lidded eyes intent on the response. Before it could come, however, Bohr would have started talking again, wrestling with the answer himself. He inspected the language with which an idea was expressed in the way a jeweller inspects an unfamiliar stone, slowly judging each facet by holding it before an intense light[2].

Now I would never be so presumptuous to compare myself to Niels Bohr but this paragraph resonated with me on so many levels that I almost felt sick with excitement when I read it. With slight differences that is how I think, discover, formulate my ideas and my theories. In more recent years I sometimes feel really sorry for my listeners and try to throttle back the waterfall of words that pour out of my mouth; in earlier years I was not aware of my, basically anti-social, behaviour lost in that stream of consciousness word flow. However it was a paragraph two thirds of the way down the following page that made me sit bolt upright in bed.

As a schoolboy, Bohr’s worst subject had been Danish composition, and for the rest of his life he passed up no opportunity to avoid putting pen to paper. He dictated his entire doctoral dissertation to his mother, causing family rows when his father insisted that the budding Ph. D. should be forced to learn to write for himself; Bohr’s mother remained firm in her belief that the task was hopeless. It apparently was – most of Bohr’s later work and correspondence were dictated to his wife and a succession of secretaries and collaborators. Even with this assistance, it took him months to put together articles. Reading of his struggles, it is hard not to wonder if he was dyslexic[3]. [my emphasis]

I’m not a big fan of historical diagnosis by hearsay of illnesses that one or other famous figure from the past might have suffered. You could write an entire medical dictionary containing all the complaints that researchers have decided that the artist Van Gough suffered, according to their interpretation of the available facts. However my own personal situation leads me to the conclusion that Messrs. Crease and Mann are wrong and that Niels Bohr was not dyslexic but dysgraphic.

If you suffer from a disability that has caused you years of mental stress, then to discover that a famous historical figure suffered from the same ailment and despite this handicap was successful can be an incredible boost. Knowing that Bohr needed assistance to write his papers takes away some of the shame that I feel in having to ask people to check and correct the things that I write, as I said at the beginning, it’s knowing that you’re not alone.

 

 

 

[1] Robert P. Crease and Charles C. Mann,The Second Creation: Makers of the Revolution in Twentieth-Century Physics, Rutgers University Press, New Brunswick, New Jersey, Revised ed., 1996.

[2]Crease & Mann p. 20

[3]Crease & Mann p. 21

7 Comments

Filed under Autobiographical, History of Physics, History of science