Category Archives: History of science

A Swiss Clockmaker

We all have clichéd images in our heads when we hear the names of countries other than our own. For many people the name Switzerland evokes a muddled collection of snow-covered mountains, delicious superior chocolates and high precision clocks and watches. Jost Bürgi who was born in the small town of Lichtensteig, in the  Toggenburg region of the canton of St. Gallen on 28 February 1552 fills this cliché as the most expert clockmaker in the sixteenth century. However Bürgi was much more that just a Swiss clockmaker, he was also an instrument maker, an astronomer, a mathematician and in his private life a successful property owner and private banker, the last of course serving yet another Swiss cliché.

As we all too many figures, who made significant contributions to science and technology in the Renaissance we know next to nothing about Bürgi’s origins or background. There is no known registration of his birth or his baptism; his date of birth is known from the engraving shown below from 1592, in which the portrait was added in 1619 but which was first published in 1648. That the included date is his birthday was confirmed by Bürgi’s brother in law.

Bramer1648

His father was probably the locksmith Lienz Bürgi but that is not known for certain. About his education or lack of it nothing is known at all and just as little is known about where he learnt his trade as clockmaker. Various speculations have been made by historians over the years but they remain just speculations. The earliest documentary proof that we have of Bürgi’s existence is his employment contract when he entered the service of the Landgrave Wilhelm IV of Hessen-Kassel as court clockmaker, already twenty-seven years old, on 25 July 1579. Wilhelm was unique amongst the German rulers of the Renaissance in that he was not only a fan or supporter of astronomy but was himself an active practicing astronomer. In his castle in Kassel he constructed, what is recognised as, the first observatory in Early Modern Europe.

Wilhelm IV. von Hessen-Kassel Source: Wikimedia Commons

Wilhelm IV. von Hessen-Kassel
Source: Wikimedia Commons

He also played a major role in persuading the Danish King Frederick II, a cousin, to supply Tycho Brahe with the necessary land and money to establish an observatory in Denmark. In the 1560s Wilhelm was supported in his astronomical activities by Andreas Schöner, the son of the famous Nürnberger cartographer, globe and instrument maker, astronomer, astrologer and mathematician Johannes Schöner. He also commissioned the clockmaker Eberhard Baldewein (1525-1593) to construct two planet clocks and a mechanical globe.

 

Eberhart Baldewein Planet clock 1661 Source: Wikimedia Commons

Eberhart Baldewein Planet clock 1661
Source: Wikimedia Commons

The planet clock shows the positions of the sun, moon and the planets, based on Peter Apian’s Astronomicom Caessareum, on its various dials.

 

Eberhard Baldewein Mechanical Celestial Globe circa 1573

Eberhard Baldewein Mechanical Celestial Globe circa 1573 The globe, finished by Heinrich Lennep in 1693, was used to record the position of the stars mapped by Wilhelm and his team in their observations.

These mechanical objects were serviced and maintained by Baldewein’s ex-apprentice, Hans Bucher, who had helped to build them and who had been employed by Wilhelm, for this purpose, since 1560. When Bucher died in 1578-1579 Bürgi was employed to replace him, charged with the maintenance of the existing objects on a fixed, but very generous salary, and commissioned to produce new mechanical instruments for which he would be paid extra. Over the next fifty years Bürgi produced many beautiful and highly efficient clocks and mechanical globes both for Wilhelm and for others.

Bürgi Quartz Clock 1622-27 Source: Swiss Physical Society

Bürgi Quartz Clock 1622-27
Source: Swiss Physical Society

 

 

 

 

 

Bürgi Mechanical Celestial Globe 1594 Source: Wikimedia Commons

Bürgi Mechanical Celestial Globe 1594
Source: Wikimedia Commons

 

 

Jost Bürgi and Antonius Eisenhoit: Armillary sphere with astronomical clock made 1585 in Kassel, now at Nordiska Museet in Stockholm. Source Wikimedia Commons

Jost Bürgi and Antonius Eisenhoit: Armillary sphere with astronomical clock made 1585 in Kassel, now at Nordiska Museet in Stockholm.
Source Wikimedia Commons

Bürgi was also a highly inventive clockmaker, who is credited with the invention of both the cross-beat escapement and the remontoire, two highly important improvements in clock mechanics. In the late sixteenth century the average clocks were accurate to about thirty minutes a day, Bürgi’s clock were said to be accurate to less than one minute a day. This amazing increase in accuracy allowed mechanical clocks to be used, for the first time ever, for timing astronomical observations. Bürgi also supplied clocks for this purpose for Tycho’s observatory on Hven. In 1592 Wilhelm presented his nephew Rudolph II, the German Emperor, with one of Bürgi’s mechanical globes and Bürgi was sent to Prague with the globe to demonstrate it to Rudolph. This was his first contact with what would later become his workplace. Whilst away from Kassel Bürgi’s employer, Wilhelm died. Before continuing the story we need to go back and look at some of Bürgi’s other activities.

As stated at the beginning Bürgi was not just a clockmaker. In 1584 Wilhelm appointed the Wittenberg University graduate Christoph Rothmann as court astronomer. From this point on the three, Wilhelm, Rothmann and Bürgi, were engaged in a major programme to map the heavens, similar to and just as accurate, as that of Tycho on Hven. The two observatories exchanged much information on instruments, observations and astronomical and cosmological theories. However all was not harmonious in this three-man team. Although Wilhelm treated Bürgi, whom he held in high regard, with great respect Rothmann, who appears to have been a bit of a snob, treated Bürgi with contempt because he was uneducated and couldn’t read or write Latin, that Bürgi was the better mathematician of the two might have been one reason for Rothmann’s attitude.

In the 1580s the itinerant mathematician and astronomer Paul Wittich came to Kassel from Hven and taught Bürgi prosthaphaeresis, a method using trigonometric formulas, of turning multiplication into addition, thus simplifying complex astronomical calculations. The method was first discovered by Johannes Werner in Nürnberg at the beginning of the sixteenth century but he never published it and so his discovery remained unknown. It is not known whether Wittich rediscovered the method or learnt of it from Werner’s manuscripts whilst visiting Nürnberg. The method was first published by Nicolaus Reimers Baer, who was then accused by Tycho of having plagiarised the method, Tycho claiming falsely that he had discovered it. In fact Tycho had also learnt it from Wittich. Bürgi had expanded and improved the method and when Baer also came to Kassel in 1588, Bürgi taught him the method and how to use it, in exchange for which Baer translated Copernicus’ De revolutionibus into German for Bürgi. This was the first such translation and a copy of Baer’s manuscript is still in existence in Graz. Whilst Baer was in Kassel Bürgi created a brass model of the Tychonic geocentric-heliocentric model of the cosmos, which Baer claimed to have discovered himself. When Tycho got wind of this he was apoplectic with rage.

In 1590 Rothmann disappeared off the face of the earth following a visit to Hven and for the last two years of Wilhelm’s life Bürgi took over as chief astronomical observer in Kassel, proving to be just as good in this work as in his clock making.

Following Wilhelm’s death his son Maurice who inherited the title renewed Bürgi’s contract with the court.

 

Kupferstich mit dem Porträt Moritz von Hessen-Kassel aus dem Werk Theatrum Europaeum von 1662 Source: Wikimedia Commons

Kupferstich mit dem Porträt Moritz von Hessen-Kassel aus dem Werk Theatrum Europaeum von 1662
Source: Wikimedia Commons

However Maurice did not share his father’s love of astronomy investing his spare time instead in the study of alchemy. Bürgi however continued to serve the court as clock and instrument maker. Over the next eight years Bürgi made several visits to the Emperor’s court in Prague and in 1604 Rudolph requested Maurice to allow him to retain Bürgi’s services on a permanent basis. Maurice acquiesced and Bürgi moved permanently to Prague although still remaining formally in service to Maurice in Kassel. Rudolph gave Bürgi a very generous contract paying him 60 gulden a month as well as full board and lodging. As in Kassel all clocks and globes were paid extra. To put that into perspective 60 gulden was a yearly wage for a young academic starting out on his career!

In Prague Bürgi worked closely with the Imperial Mathematicus, Johannes Kepler. Kepler, unlike Rothmann, respected Bürgi immensely and encouraged him to publish his mathematical works. Bürgi was the author of an original Cos, an algebra textbook, from which Kepler says he learnt much and which only saw the light of day through Kepler’s efforts. Kepler was also responsible for the publication of Bürgi’s logarithmic tables in 1620.

 

Bürgi's Logarithmic Tables Source: University of Graz

Bürgi’s Logarithmic Tables
Source: University of Graz

This is probably Bürgi’s greatest mathematical achievement and he is considered along side of John Napier as the inventor of logarithms. In many earlier historical works Bürgi is credited with having invented logarithms before Napier. Napier published his tables in 1614 six years before Bürgi and is known to have been working on them for twenty years, that is since 1594. Bürgi’s fan club claim that he had invented his logarithms in 1588 that is six years earlier than Napier. However modern experts on the history of logarithms think that references to 1588 are to Bürgi’s use of prosthaphaeresis and that he didn’t start work on his logarithms before 1604. However it is clear that the two men developed the concept independently of each other and both deserve the laurels for their invention. It should however be pointed out that the concept on which logarithms are based was known to Archimedes and had already been investigated by Michael Stifel earlier in the sixteenth century in a work that was probably known to Bürgi.

Through his work as clock maker Bürgi became a very wealthy man and invested his wealth with profit in property deals and as a private banker lending quite substantial sums to his customers. In 1631 Bürgi, now 80 years old, retired and returned ‘home’ to Kassel where he died in January of the following year shortly before his 81st birthday. His death was registered in the Church of St Martin’s on the 31 January 1632. Although now only known to historians of science and horology, in his own time Bürgi was a well-known and highly respected, astronomer, mathematician and clock maker who made significant and important contributions to all three disciplines.

 

 

19 Comments

Filed under History of Astronomy, History of Mathematics, History of science, Renaissance Science, Uncategorized

From astronomy to literature – Bridging the gap

Recent years have seen more and more people proclaiming a crisis in the humanities. In an age where politicians seem to have mutated into one-track worshippers of the Gods of Mammon anything, which can’t be measured in terms of the profits it will generate, preferably in the short rather than the long-term, is placed on the list for defunding. Humanities departments are ‘downsized’ (a hideous euphemism), threatened with closure or simply closed as not cost-effective. In an aged increasingly dominated by a weird mix of profit maximisation and techno-scientism the humanities have apparently been weighed and not found wanting, but categorised as superfluous to requirements. In this situation it is helpful to be reminded that the sciences and humanities have throughout their existence regularly stimulated and cross-fertilised each other. Within the history of science one historian who dedicated her life to documenting and illuminating that symbiosis was Marjorie Hope Nicolson (1894–1981), who devoted her ample talents to examining the connections between literature and science during the so-called scientific revolution. I’m quite happy to state that in my early days as a wannabe historian of science Marjorie Hope Nicolson was one of my guiding lights showing me that science is not an activity divorced from society but one deeply immersed in it. This lady of literature and science has found a worthy successor in Anna Henchman and her recently published work The Starry Sky Within: Astronomy & the Reach of the Mind in Victorian Literature[1].

Cover

The nineteenth century saw, with major developments in a wide spectrum of scientific disciplines, in what some have called the second scientific revolution. Already beginning in the late eighteenth century both physical optics and astronomy experienced wide reaching advances, which in turn led to an extensive reconsideration of humanities’ place in the world and the world’s place in the cosmos. It is this reassessment of humankind’s vision of itself and its place in the cosmos, its origins in the sciences of optics and astronomy and its reflections in the contemporary literature that forms the subject of Henchman’s book.

Mercury Venus

Following an introduction laying out her game plan and introducing the reader to various concepts important to her theme the book is divided into two sections Observers in Motion and Astronomy and the Multiplot Novel. In the former Henchman takes the reader through a discussion of astronomy, optics and points of view centred around the writings of John Herschel, probably the most significant figure in both astronomy and optics in Britain in the first half of the nineteenth century. Then moving on to a wider sweeping discussion of philosophical perspectives. Next up is journalist and essayist Thomas de Quincy, best known to modern readers for his Confessions of an Opium-Eater (which your reviewer confesses to having read in his youth) but here considered for his attempts to come to terms with the emerging modern astronomy and cosmology in his 1846 essay Systems of the Heavens as Revealed by Lord Rosse’s Telescopes. Rosse had the largest and most powerful telescopes in the world constructed at his observatory in Ireland and did much to open up the field of deep space astronomy inaugurated by Charles Messier and William Herschel in the eighteenth century. This work did much to unsettle mankind’s view of the universe and its place in it. This disturbance is the subject of de Quincy’s essay, which Henchman dissects, from several different directions, with great skill. The third and final part of the first section concerns itself with the way that the new astronomy is reflected in the work of one of the Victorian period’s most loved poets, Alfred Lord Tennyson. To quote just one sentence, “Tennyson is unique among his contemporaries, not perhaps in the extent to which he uses stellar imagery, but in the extent to which he requires that imagery to be consistent with astronomical observation”.

Tennyson

The second section of the book turns, as its title clearly states, to the nineteenth-century multiplot novel and the analogies to be found there to the astronomical universe, which in the nineteenth century was rapidly transitioning from the comparatively small and homely cosmos that humanity had inhabited, as the centre of, from the beginnings of human awareness up to the eighteenth century into a the vast unfathomable space of multitudinous galaxies a small corner of which we inhabit today. After a brief introductory chapter aptly entitled Novels as Celestial Systems Henchman delivers two chapters of in depth analysis of the works of Thomas Hardy and George Eliot. The second section, and the book, closes out with the chapter Narratives on a Grand Scale: Astronomy and Narrative Space in which Henchman suggests, “…that much as individual characters have cosmological conceptions–views of the totality of things– so do works of fiction. Novelists such as Hardy, Leo Tolstoy, and Charles Dickens create fictional cosmoses, each of which behaves according to a logic of its own. This unstated logic makes an entire narrative space feel stable or unstable, coherent or incoherent, complete or partial.” This chapter closes with a comparison, in these terms, of the presentations of the Napoleonic wars in Hardy’s The Dynasts and Tolstoy’s War and Peace.

Mud moulded ball

At the beginning of her brief five-page conclusion Henchman questions her own title. “What, then, is the sky within?” Her book is a stimulating and provocative attempt to answer this question for Victorian writers and their attitude to the rapidly changing, expanding and challenging science of astronomy in their century. Henchman in, what is a comparatively short book packed full of information and analysis, very deftly juggles a large amount knowledge from the fields of nineteenth-century literature, astronomy, cosmology, philosophy, and optics together with modern philosophy and literature theory. The stimulating text is complimented with many well-chosen astronomical and optical illustrations printed in engaging shades of grey (Three of which appear above). An important aspect of any academic book is the academic apparatus, which is here first class. Extensive and informative endnotes (that I, like most academic readers, prefer footnotes to endnotes should already be well known to regular readers of this blog!) are complimented by an equally extensive bibliography and a comprehensive index.

This is very clearly an academic rather than a popular or semi-popular book and it can and, in my opinion, should be read by any academic from student through doctoral student to lecturer and professor not only in literature studies but also in the history of science or nineteenth-century history in general. All of these would benefit from reading this book with its all-round perspective crossing numerous discipline boundaries. It would be a great win for the more general reader if Henchman were to turn her obvious scholarly and writing talents to producing a more popular version of her research in a further volume. I learned much reading this book and I’m certain that many others will also do so.

 

 

 

[1] Anna Henchman, The Starry Sky Within: Astronomy & the Reach of the Mind in Victorian Literature, Oxford University Press, Oxford, 2014

15 Comments

Filed under Book Reviews, History of Astronomy, History of science

In which I recommend some bedtime reading

Some time back the Pop Science Guy invited me to write a ‘10 Great History of Science Books’ list for his blog, to which I readily agreed. However being a professional procrastinator when it comes to writing anything I put it to one side and never got round to it. About a week ago PSG reminded me of my acceptance of his offer and this time I decided not to procrastinate any longer and finally write that list. On the day that I originally said yes I spontaneously wrote a list of the books I might include in my list, aiming mostly for books for the general reader rather than specialist academic texts and came up with thirteen titles and thought what the fuck “why are we so obsessed with lists of ten this and that?” and decided to stick to thirteen, a good baker’s dozen. As you will see I actually talk about more than thirteen books but then again why the hell not. Want to know what I recommend? Then go here and read your fill!

 

 

6 Comments

Filed under Autobiographical, History of science

The specialist in causing pain.

I suppose I ought to rebrand Galileo Galilei as ‘The Gift that keeps on Giving”! The comment is of course directed at all the idiots who think they need to present their image of Galileo to the world, rather than at the 16th- and 17th-century Tuscan artist-engineer himself. As long as there is a GG Super Star I will never be short of material for this blog, although it might become a little bit monotone with time. The most recent offender is Michael Vagg on The Conversation in an article entitled Four things we should teach every kid about Galileo. Before looking at Mr Vagg’s contribution to the Galileo debate I want to waste a few words on The Conversation, which describes itself as follows:

The Conversation is a collaboration between editors and academics to provide informed news analysis and commentary that’s free to read and republish.

Its banner head also has the subtitle “Academic rigour, journalistic flair”. Apparently, at least judging by Mr Vagg’s article, this proud boast doesn’t apply when it comes to the history of science.

Mr Vagg, Clinical Senior Lecturer at Deakin University School of Medicine & Pain Specialist at Barwon Health, apparently recently attended a conference in Florence and took time out to visit the Museo Galileo, a laudable way to spend his free time. He tells us he bought three books from the gift shop one of which was Galileo: Antichrist, which he describes, a serious scholarly attempt to look behind the obvious motives for his trial and punishment by the Church to some of the contemporary nuances, going on to say that he highly recommend[s] it, if you’re a Galileo freak and historical conspiracy theory enthusiast like me. Unfortunately Mr Vagg is mistaken in his assessment of this book. Of all the more recent publication about Galileo, provoked by the four hundred and fiftieth anniversary of his birth, Galileo: Antichrist is one of the worst. A popular biography written by Michael White it turns back the clock by about two hundred years and presents a vision of Galileo’s life and work that would be comfortably at home at the beginning of the nineteenth century, full of myths and distortion and not to be recommended to anybody who serious wants to know the historical truth about Galileo Galilei. Mr Vagg seems to have largely based his “four truths” on Whites totally distorted view of Galileo and his achievements.

His first “truth is entitled “He got rid of Aristotle from science” and I reproduce the whole of his section to this theme, which is to put it mildly horrendous. His first paragraph reads as follows:

Before Galileo, science (known then as natural philosophy) was based almost entirely on the writings of Aristotle. St. Thomas Aquinas enshrined a huge amount of Aristotle’s teachings about the natural world as Church-approved dogma without any empirical basis. Until the Renaissance, virtually nobody in Europe or anywhere else apart from Arabic geniuses like Ibn Sina and Ibn Rushd advanced science by paying attention to the real world. They just looked up what Aristotle had to say and left it at that, even if what they observed was at odds with what they read.

One of my favourite historians of medieval science, David C Lindberg, died a couple of weeks ago and he would be spinning in his grave if he knew of this travesty of his disciple, which reads like something from the beginning of the nineteenth century or even from the Renaissance. It was Renaissance scholars who were initially responsible for this wholly false picture of medieval science. They created the myth that the golden age of antiquity created a cornucopia of knowledge that got lost with the collapse of the Roman Empire and that they were responsible for the rebirth (renaissance) of this knowledge, freeing Europe from the dark ignorance of the intervening period, which they termed the Middle Ages. This myth was perpetuated right up into the nineteenth century, when the French physicist and historian of science, Pierre Duhem, became the first person to challenge it. Throughout the twentieth century a series of brilliant historians of science, including such people as Marshall Clagett, Alistair Crombie, John Murdoch, Edward Grant, the afore mentioned David Lindberg and others, completely dismantled this myth showing that European medieval scholars made significant contribution to the evolution of science; contribution on which people such as Galileo built their own contributions.

To give one example that is very relevant to Galileo and his theories of motion called revolutionary by Vagg. Even Aristotle was aware of the fact that his laws of motion were anything but satisfactory and the first person to subject them to serious scrutiny was John Philoponus in the sixth century CE, who developed the impetus theory, which was developed further by Arabic scholars in the twelfth and thirteenth centuries and by Buridan in Europe in the fourteenth century. Galileo well aware of this work adopted the impetus theory early in his own work on kinetics before moving on to an incorrect form of the theory of inertia. (Galileo still considered natural motion to be circular, not linear, an Aristotelian concept!) In the fourteenth century the so-called Oxford Calculatores of Merton College developed the mathematical mean speed theory, which is to all intents and purposes Galileo’s law of fall. One of the so-called Paris physicists Nicolas Oresme produced a geometrical proof of this theory, in the form of a graph, which is identical to the proof given by Galileo for his law of fall in his Discorsi more than three hundred and fifty years later. It was also the invention of spectacles in the late thirteenth century that would eventually lead to the invention of the telescope, the instrument that would make Galileo famous. Far from being scientifically sterile the Middle Ages was the very fertile seed bed in which Galileo’s own scientific ideas grew to maturity.

In his second paragraph in this section Vagg dished up the following:

Galileo did more than anyone else to rid natural philosophy of its reliance on the authority of Aristotle, replacing it with an empirical and mathematical method. Deciding scientific knowledge by scholarly argument rather than doing experiments seems bizarre to us now. Galileo showed again and again that mathematical models could yield results that were reproducible by anyone else and disproved Aristotle’s observations. Eventually, the successes of the new way of doing natural philosophy were too overwhelming to ignore. The Aristotelians slunk off to find other occupations. Galileo showed irrefutably that you couldn’t do science by magisterial authority alone. Your results had to stand up to scrutiny in the real world.

As I explained in an earlier post, that earned me my reputation as a Galileo deflator, Johannes Kepler, Thomas Harriot, Christoph Scheiner, William Gilbert, Christoph Clavius, Francoise Vieta, Isaac Beeckman and Simon Stevin, all roughly contemporaries of Galileo, all did at least as much, and some of them more than, Galileo in establishing the ‘new’ experimental mathematics based science in the early seventeenth century and the myth of Galileo as the great Aristotle slaying champion is one that needs to be firmly stamped on. Also modern history of science has shown that many aspects of Aristotle’s philosophy continued to exercise a strong influence on the development of science well into the seventeenth century long passed the death of Galileo.

Vagg’s second point is actually a very good one and would have been praise worthy if he hadn’t gone on to spoil it in the detail. His title is, “He was not the prototype of a misunderstood lone genius”. This is very correct and in fact the misunderstood lone genius is not only a myth but also a chimera, there has never been one. This is in fact an important point that should indeed be taught to every school kid as part of their science courses, however Vagg goes on to spoil it by presenting a totally mythical picture of Galileo.

Galileo was very much not a lone genius. He relied on Guidobaldo del Monte and Christopher Clavius to get both of his jobs as professor of mathematics and early in his career he relied on the transcript of the lectures from the Collegio Romano to deliver his own lectures. As a young researcher he spend long periods brainstorming with del Monte and Paolo Sarpi over a wide range of topics. Sometimes it is not possible to tell if the ideas he made public really were his own or ones borrowed from one or other of those intellectual partners. For his telescope and instrument making he employed and relied heavily on a technician, who usually doesn’t get the credit he deserves. For his excursions into applied science and technology in the arsenal in Venice he relied heavily on the guidance of master ship builders. Later in life following his overnight fame he relied on his fellow members of the Accademia dei Licei as sounding boards for his ideas and those lynx-eyed friends also prepared his works for publication and published them. Even after his fall, under house arrest, Galileo had students and his son helping with his scientific work. Galileo was for most of his life part of a network of like-minded friends and assistants, however this is not the story that Vagg presents.

When he published the Starry Messenger to announce his discovery of the moons of Jupiter with his new telescope, he not only sent out copies of his books to his colleagues, but also sent them better telescopes than the ones they had!

I suggest Vagg should read Mario Biagioli’s Galileo Courtier and Galileo’s Instruments of Credit. Galileo did not send copies of the Sidereus Nuncius or telescopes to his colleagues; he sent them to civil and religious potentates who could help him in his ambitions to climb the social greasy pole. Despite requests for a telescope Kepler had to wait till a passing aristocrat graciously let him borrow one for a couple of hours to see the new astronomical discoveries. Galileo ignored Kepler’s friendly collegial overtures until he, Kepler, became the only person to support without confirmation those discoveries, publishing Kepler’s letter without his knowledge or permission. Later he ridiculed Kepler’s groundbreaking book on the optics of the telescope as unreadable. He ignored Kepler’s work on heliocentricity when writing the Dialogo, despite the fact that it was the best available on the subject, whilst ridiculing Tycho’s work. When he and Scheiner both discovered the sunspots he accused Scheiner, unjustifiably, of plagiarism and then published some of Scheiner’s results in the Dialogo as his own. In the dispute over the nature of comets with Grassi he viciously attacked Grassi exposing him to public ridicule with malicious polemic, although scientifically Grassi was right and he, Galileo, was wrong. As he and Marius both independently discovered the moons of Jupiter he accused Marius of plagiarism, a charge that stuck ruining Marius’ reputation until it was restored at the beginning of the twentieth century.

This is the man who Vagg claims was “a practising believer in developing a scientific consensus”. Galileo did not believe in scientific consensus, he was a man with a monstrous ego who was right and anybody who disagreed with him got mauled viciously for his troubles. Vagg writes rather pathetically:

He was revered in his lifetime by every natural philosopher of note, although some of ones he personally insulted were somewhat grudging in their admiration.

He was justifiably intensely disliked and despised by quite a few natural philosophers of note. Vagg does however point out that Galileo was not perfect:

He could, of course, also be spectacularly wrong. Nobody remembers his views on comets and the causes of tides, which were two of the biggest contemporary scientific controversies he weighed into. It should also be pointed out that these were the two most prominent examples where Galileo was being particularly stubborn in holding out against the prevailing tide of opinion.

A lot of historians of science remember his views on comets and the causes of tides very well indeed.

The title of Vagg’s next section is also correct, “He was genuinely interdisciplinary” but then again so were all his contemporaries, our concept of the single disciple specialist or expert didn’t exist in the Renaissance. However in his description of Galileo’s multifarious activities Vagg makes several serious blunders. He tells us:

While his astronomical work may seem like it had no practical applications, it led him to develop a way of measuring longitude at sea that was not surpassed until more than 150 years later.

Galileo did conceive a method of using the eclipses of the moons of Jupiter by the planet, as they orbited it, as a clock with which to determine longitude. However, he never succeeded in determining the orbits accurately enough for this purpose, a task first completed by Cassini many decades later. Also more importantly, although this method could be and was used successfully on land, for cartographical purposes, it could never be used at sea, a ship being far too unstable to make the necessary highly accurate astronomical telescopic observations. It is of historical interest that the chronometer method and the lunar distance method of determining longitude, which were the methods that would eventually solve the problem, were both proposed long before Galileo was even born. Next up we get informed that:

He translated his knowledge of the abstract mathematical minutiae of optics into building much better telescopes than anyone else had. He extended this theory to conceive and design the microscope as well.

With the exception of Yaakov Zik, almost all historians of the telescope think that Galileo had very little knowledge of geometrical optics and in fact used his skills as an instrument maker to develop his telescopes by simple trial and error. Although no single inventor of the microscope is known to us, as I’ve already written in an earlier post, Galileo was almost certainly one of the inventors of the microscope an instrument that he, according to his own testimony, discovered by accident when he put one of his telescopes to his eye the wrong way round. He then improved on this accidental discovery, again not by using the theory of geometrical optics, but by trial and error.

The military compass described by Vagg was in fact invented by del Monte and only manufactured and sold along with instruction courses in its use by Galileo as an additional source of income. Vagg closes out this section with a final error:

In the final year of his life, having gone totally blind, Galileo conceived and dictated the design for a clock escapement which was very similar to the one used by Huygens to construct the first pendulum clock a couple of decades later.

The pendulum clock escapement conceived by Galileo but never really realised was substantially different to the one developed by Huygens decades later.

Vagg’s fourth point worthy of the attention of school kids is, “He stood up for the philosophy of science”. Whilst this statement does contain more than a grain of truth Vagg again succeeds in on presenting a largely false historical picture to illustrate it.

Despite using maths that is now taught in high school and equipment that would embarrass a 21st century toy shop owner, Galileo utterly changed the way his contemporaries saw themselves in the universe. Educated citizens of his time had a sophisticated explanation of the world and the heavens, but it was based on dogma and supposition to a degree that is very hard to comprehend today. By making arguments that were based on reasoning, mathematics and experimental verification, he was consistently and obviously successful with many of his predictions. This opened his contemporaries’ eyes to the extraordinary possibilities on offer with knowledge gained by the scientific method.

This paragraph contains a complete misrepresentation of the general state of science at the time of Galileo. Those things that Vagg praises Galileo for had been gaining ground strongly throughout European science for more than a century before Galileo made any contributions to the topic at all. Since the High Middle Ages people had been making contributions to science based on reasoning, mathematics and experimental verification. Galileo made an important contribution to this trend but he didn’t start it. It should also not be forgotten that Galileo used this methodology when it suited him but also resorted to polemic and brow beating when it suited him better. His dispute with Grassi on the nature of comets is a good example of this behaviour.

Observing that Venus had phases like the moon, and having plotted the orbits of the Galilean satellites meticulously, he could join the dots conceptually, and followed the chain of reasoning to the end. The results were not what he was originally looking to discover, but he just couldn’t turn his back on his data. Earth was demoted from the fixed centre of the medieval universe to just another planet orbiting the sun. He strenuously sought ways to avoid provoking the Church (he was a devout believer right to the end) but he could not stop progressing and disseminating his research, despite those who told him it was safer to pull his head in.

Maybe I’m misreading this but it appears to me that Vagg is implying that Galileo initiated the heliocentric model of the cosmos, has he never heard of Copernicus or Kepler? Also, as I’ve written in detail in other posts, the telescopic discoveries made by Galileo, Scheiner, Marius, Harriot and others, whilst refuting a pure Ptolemaic geocentric model, were a long way from confirming a heliocentric model and were also conform with various Tychonic and semi-Tychonic models. These facts alone constitute an important lesson in how science evolves.

“He strenuously sought ways to avoid provoking the Church” is another mythical statement from Vagg. One of Galileo’s major problems was that his mega ego prevented him from seeing when he was provoking those that he attacked, mocked, contradicted. Convinced of his own innate superiority he just blundered from one provocation to the next. A seemingly trivial point, but actually not so trivial, is the claim “he was a devout believer right to the end” this, or something similar is a standard part, of the Galileo mythology trotted out by almost everyone who has put pen to paper or fingers to keyboard to write about the man. However, David Wootton in his biography, Galileo: Watcher of the Skies, a genuinely ‘serious scholarly’ book, argues very convincingly that far from being the devout Catholic of popular science literature, Galileo was in fact a very lax Catholic. This of course rather spoils the common plaint, ‘he was a true believer and still they punished him’ of the ‘Galileo was a martyr for science’ fan club.

He insisted that dependable, reproducible scientific results should trump religious dogma or non-empirical philosophical ideas any day of the week. He paid a price for his abrasiveness, but he should not be remembered just for the events that blighted his later years. His persecution and house arrest by the Vatican were not inevitable, but threw into sharp focus the clash of his era between a recognisably modern science-based worldview and the medieval superstition of authoritarian belief systems. Somebody had to be the first to point out the Emperor’s new clothes.

The last couple of lines of the previous paragraph and this one refer, of course, to the publication of Galileo’s Dialogo and his subsequent trial by the Inquisition of Rome. Unfortunately Galileo’s masterpiece didn’t rely on ‘dependable, reproducible scientific results’ because they didn’t exist for the heliocentric theory, instead he used polemic and sleight of hand to confuse, bamboozle and confound his opponents hoping that nobody would notice how thin his scientific arguments actually were. The whole book was of course structured around the fourth and final section, Galileo’s theory of the tides, (which Vagg so casually swept aside above) that he, in a strange fit of blind arrogance, believed to be the missing empirical proof that the earth moved, the lack of such proof being the strongest scientific argument against the heliocentric hypothesis. Originally Galileo wanted to give the whole book the title Theory of the Tides but the Church censor wouldn’t permit it, so he chose the title that has gone down in history instead. Galileo thought that this theory was his all-winning trump, whereas it was in reality a busted flush, as any half thinking person could have told him. Galileo did not write the book in opposition to the Church but with the Pope’s explicit permission. However Urban, not unreasonably, commissioned him to write a book presenting the various cosmological/astronomical models of the cosmos factually and without favour or prejudice. If Galileo had written a book presenting the arguments for and against geocentricity, heliocentricity and helio-geocentricty (he completely ignored the latter, although at the time he wrote it was the model that best fit the known scientific facts) fairly and honestly, we probably wouldn’t waste so much time discussing the conflict between him and the Church because there wouldn’t have been one. Instead he wrote a book, which was an undisguised polemic in favour of heliocentricity hoping nobody would notice the lack of real empirical evidence and finished it off by gratuitously insulting the Pope. Wow really clever GG! The clash between worldviews that Vagg so pathetically evokes at the end of this paragraph exists only in his fantasy and not in the historical reality. The clash between Galileo and Urban was on a very personal level and in no way reflects a general clash between the then theological worldview and, to quote Vagg, a recognisably modern science-based worldview. This supposed clash is a myth created in the nineteenth century that has long been demolished by historians of science but people like Vagg prefer to keep peddling the myths rather than taking the trouble to learn the truth. Possible the worst piece of claptrap in Vagg’s ahistorical article is his closing sentence.

I am however eternally grateful for the effect his life’s work had on the philosophy of science. Development of the Enlightenment values that underpin our society would not have been possible without the seismic burst of rationalism that Galileo unleashed from his villa in Northern Italy 500 years ago.

Wow Mr Vagg, you have set a new high water mark in ahistorical mythical hagiography. At least it will provide employment for lots of historians rewriting all those history books that missed out on GG’s vital role in the Enlightenment. Mr Vagg, pain specialist, your pathetic attempts to write history of science, a subject you very obviously know nothing about, has certainly caused this historian of science a great deal of pain indeed.

 

28 Comments

Filed under History of Astronomy, History of science, Myths of Science, Renaissance Science

Preach truth – serve up myths.

Over Christmas I poked a bit of fun at Neil deGrasse Tyson for tweeting that Newton would transform the world by the age of 30, pointing out he was going on forty-five when he published his world transforming work the Principia. The following day NdGT posted a short piece on Face Book praising his own tweet and its success. Here he justified his by the age of thirty claim but in doing so rode himself deeper into the mire of sloppy #histsci. You might ask why this matters, to which the answer is very simple. NdGT is immensely popular especially amongst those with little idea of science and less of the history of science and who hang on his every utterance. Numerous historians of science labour very hard to dismantle the myths of science and to replace them with a reasonable picture of how science evolved throughout its long and convoluted history. NdGT disdains those efforts and perpetuates the myths leading his hordes of admirers up the garden path of delusion. Let us take a brief look at his latest propagation of #histmyth.

NdGT’s post starts off with the news that his Newton birthday tweet is the most RTed tweet he has every posted citing numbers that lesser mortals would not even dare to dream about. This of course just emphasises the danger of NdGT as disseminator of false history of science, his reach is wide and his influence is strong. Apparently some Christians had objected to NdGT celebrating Newton’s birthday on Christ’s birthday and NdGT denies that his tweet was intended to be anti-Christian but then goes on to quote the tweet that he sent out in answer to those accusations:

“Imagine a world in which we are all enlightened by objective truths rather than offended by them.”

Now on the whole I agree with the sentiment expressed in this tweet, although I do have vague vision of Orwellian dystopia when people from the scientism/gnu atheist camp start preaching about ‘objective truth’. Doesn’t Pravda mean truth? However I digress.

I find it increasing strange that NdGT’s craving for objective truth doesn’t stretch to the history of science where he seems to much prefer juicy myths to any form of objectivity. And so also in this case. In his post he expands on the tweet I had previously poked fun at. He writes:

Everybody knows that Christians celebrate the birth of Jesus on December 25th.  I think fewer people know that Isaac Newton shares the same birthday.  Christmas day in England – 1642.  And perhaps even fewer people know that before he turned 30, Newton had discovered the laws of motion, the universal law of gravitation, and invented integral and differential calculus.  All of which served as the mechanistic foundation for the industrial revolution of the 18th and 19th centuries that would forever transform the world.

What we are being served up here is a slightly milder version of the ‘annus mirabilis’ myth. This very widespread myth claims that Newton did all of the things NdGT lists above in one miraculous year, 1666, whilst abiding his time at home in Woolsthorpe, because the University of Cambridge had been closed down due to an outbreak of the plague. NdGT allows Newton a little more time, he turned 30 in 1672, but the principle is the same, look oh yee of little brain and tremble in awe at the mighty immaculate God of science Sir Isaac Newton! What NdGT the purported lover of objective truth chooses to ignore, or perhaps he really is ignorant of the facts, is that a generation of some of the best historians of science who have ever lived, Richard S. Westfall, D. T. Whiteside, Frank Manuel, I. Bernard Cohen, Betty Jo Teeter Dobbs and others, have very carefully researched and studied the vast convolute of Newton’s papers and have clearly shown that the whole story is a myth. To be a little bit fair to NdGT the myth was first put in the world by Newton himself in order to shoot down all his opponents in the numerous plagiarism disputes that he conducted. If he had done it all that early then he definitely had priority and the others were all dastardly scoundrels out to steal his glory. We now know that this was all a fabrication on Newton’s part.

Newton was awarded his BA in 1665 and in the following years he was no different to any highly gifted postgraduate trying to find his feet in the world of academic research. He spread his interests wide reading and absorbing as much of the modern science of the time as he could and making copious notes on what he read as well as setting up ambitious research programmes on a wide range of topics that were to occupy his time for the next thirty years. In the eighteen months before being sent down from Cambridge because of the plague he concentrated his efforts on the new analytical mathematics that had developed over the previous century. Whilst reading widely and bringing himself up to date on material that was not taught at Cambridge he simultaneously extended and developed what he was reading laying the foundations for his version of the calculus. It was no means a completed edifice as NdGT, and unfortunately many others, would have us believe but it was still a very notable mathematical achievement. Over the decades he would return from time to time to his mathematical researches building on and extending that initial foundation. He also didn’t ‘invent’ integral and differential calculus but brought together, codified and extended the work of many others, in particular, Descartes, Fermat, Pascal, Barrow and Wallace, who in turn looked back upon two thousand years of history on the topic.

In the period beginning in 1666 he left off with mathematical endeavours and turned his attention to mechanics mostly addressing the work of Descartes. He made some progress and even wondered, maybe inspired by observing a falling apple in his garden in Woolsthorpe, if the force which causes things to fall the Earth is the same as the force which prevents the Moon from shooting off at a tangent to its orbit. He did some back of an envelope calculations, which showed that they weren’t, due to faulty data and he dropped the matter. He didn’t discover the laws of motion and as he derived the law of gravity from Huygens’ law of centripetal force that was first published in 1673 he certainly didn’t do it before he was thirty. In fact most of the work that went into Newton’s magnum opus the Principia was done in an amazing burst of concentrated effort in the years between 1684 and 1687 when Newton was already over forty.

What Newton did do between 1666 and 1672 was to conduct an extensive experimental programme into physical optics, in particular what he termed the phenomenon of colour. This programme resulted in the construction of the first reflecting telescope and in 1672 Newton’s legendary first paper A Letter of Mr. Isaac Newton, Professor of the Mathematicks in the University of Cambridge; Containing His New Theory about Light and Colors published in the Philosophical Transactions of the Royal Society. Apparently optics doesn’t interest NdGT. Around 1666 Newton also embarked on perhaps his most intensive and longest research programme to discover the secrets of alchemy, whilst starting his life long obsession with the Bible and religion. The last two don’t exactly fit NdGT’s vision of enlightened objective truth.

Newton is without doubt an exceptional figure in the history of science, who has few equals, but like anybody else Newton’s achievements were based on long years of extensive and intensive work and study and are not the result of some sort of scientific miracle in his young years. Telling the truth about Newton’s life and work rather than propagating the myths, as NdGT does, gives students who are potential scientists a much better impression of what it means to be a scientist and is thus in my opinion to be preferred.

As a brief addendum NdGT points out that Newton’s birthday is not actually 25 December (neither is Christ’s by the way) because he was born before the calendar reform was introduced into Britain so we should, if we are logical, be celebrating his birthday on 4 January. NdGT includes the following remark in his explanation, “But the Gregorian Calendar (an awesomely accurate reckoning of Earth’s annual time), introduced in 1584 by Pope Gregory, was not yet adopted in Great Britain.” There is a certain irony in his praise, “an awesomely accurate reckoning of Earth’s annual time”, as this calendar was developed and introduced for purely religious reasons, again not exactly enlightened or objective.

 

 

 

14 Comments

Filed under History of Astronomy, History of Mathematics, History of Physics, History of science, Myths of Science, Renaissance Science

Just saying…

Neil deGrasse Tyson seems to have a real talent for very sloppy history of science. He pontificates on history of science topics without taking the trouble to check his facts. On Christmas day to acknowledge the birthday of Isaac Newton he tweeted the following:

On this day long ago, a child was born who, by age 30, would transform the world. Happy Birthday Isaac Newton b. Dec 25, 1642

Now, you would think that an astrophysicist would be able to cope with simple arithmetic but it seems to be beyond NdGT’s mental grasp. Newton, as he points out, was born in 1642. The contribution to science that he made that “would transform the world” can only refer to his Philosophiæ Naturalis Principia Mathematica and, as any historian of science could have told NdGT, this was published in 1687. Applying the subtraction algorithm, which most of us learnt in primary school, 1687 – 1642 = 45 and not thirty. Even being generous, as this is a fifty per cent error in the stated age at which Newton “would transform the world” we cannot really award NdGT anything but an F for this incredibly sloppy piece of work. Do try to do better next time Neil!

11 Comments

Filed under History of Astronomy, History of science, Newton

Someone is Wrong on the Internet.

Many of the readers of this blog will probably recognise the title of this post, as the punch line to one of the best ever xkcd cartoons. Regular readers will also know that the Renaissance Mathematicus cannot resist stamping on people who post inanely inaccurate or downright wrong history of science claims, comments etc. on the Internet. This last pre-Christmas post brings two examples of such foolishness that crossed our path in recent times.

The first concerns a problem that turns up time and again, not only on the Internet but also in many books. It is the inability of lots of people to comprehend that there cannot be a year nil, year zero or whatever they choose to call it. (Have patience dear reader the reason will be explained soon). Even worse are the reasons that such people, in their ignorance, dream up to explain the absence of the, in their opinion, missing numberless year. I stumbled across a particularly juicy example on the BBC’s History Extra website last Thursday, in a post entitled, 10 of the most surprising numbers in history. Actually the whole post really deserves a good kicking but for now I will content myself with the authors surprising number, AD 0…  the date that never was. The entry is very short so I’ve included the whole of it below:

The AD years of the Christian calendar are counted from the year of Jesus Christ’s birth, and, as the number zero was then unknown to the west, Dionysius began his new Christian era as AD 1, not AD 0. [my emphasis]

While it is now the consensus that Jesus was probably born between 7 and 3 BC, Dionysius’s new calendar is now the most widely used in the world, while AD 0 is one of the most interesting numbers never to have seen the light of day.

The first time I read this sparking pearl of historical wisdom I experienced one of those extremely painful ‘head-desk’ moments; recovering from my shock and managing at least a semblance of a laugh at this stunning piece of inanity I decided to give it the Histsci Hulk treatment.

Before I explain why there cannot be a year zero, let us look briefly at why Dionysius Exiguus, or Dennis the Short, started his count of the years with AD 1. Dennis, he of little stature, was not trying to create the calendar we use today in everyday lives but was making his contribution to the history of computos, the art of calculating the date of Easter. Due to the fact that the date of Easter is based on the Jewish Pesach (that’s Passover) feast, which in turn is based on a lunar calendar and also the fact that the lunar month and the solar year are incommensurable (you cannot measure the one with the other), these calculations are anything but easy. In fact they caused the Catholic Church much heartbreak and despair over the centuries from its beginnings right down to the Gregorian calendar reform in 1582. In the early centuries of Christianity the various solution usually involved producing a table of the dates of the occurrence of Easter over a predetermined cycle of years that then theoretically repeats from the beginning without too much inaccuracy. Dennis the vertically challenged produced just such a table.

In the time of our little Dennis there wasn’t a calendar with a continuous count of years. It was common practice to number the years according to the reign of the current monarch, emperor, despot or whatever. So for example the year that we know as 47 BCE would have been the third year of the reign of Gaius Julius Caesar. For formal purposes this dating system actually survived for a very long time. I recently came across a reference to a court case at the English Kings Bench Court in the eighteenth century as taking place on 12 July ‘4Geo.III’, that is the fourth year of the reign of George III. In Dennis the Small’s time the old Easter table, he hoped to replace, was dated according to the years of the reign of the Emperor Diocletian (245-311, reigned 284-305). Diocletian had distinguished himself by being particularly nasty to the Christians so our dwarf like hero decided to base his cycle on the 525 532 years “since the incarnation of our Lord Jesus Christ”; quite how he arrived at 525 532 years is not really known. AD short (being short, Dennis liked short things) for Anno Domini Nostri Iesu Christi (“In the Year of Our Lord Jesus Christ”). It was only later, starting with the Venerable Bede’s History of the Church (Historia Ecclesiastica) that Dennis’ innovation began to be used for general dating or calendrical purposes. The idea of BC years or dates only came into use in Early Modern period.

We now turn to the apparently thorny problem as to why there cannot be a year zero in a calendrical dating system. People’s wish or desire to find the missing year zero is based on a confusion in their minds between cardinal and ordinal numbers. (In what follows the terms cardinal and ordinal are used in their common linguistic sense and not the more formal sense of mathematical set theory). Cardinal numbers, one, two, three … and so on are used to count the number of objects in a collection. If, for example, your collection is the cookie jar there can be zero or nil cookies if the jar is, sadly, empty. Ordinal numbers list the positions of objects in an ordered collection, first, second, third … and so on. It requires only a modicum of thought to realise that there cannot be a zeroeth object, if it doesn’t exist it doesn’t have a position in the collection.

This distinction between cardinal and ordinal numbers becomes confused when we talk about historical years. We refer to the year five hundred CE when in fact we should be saying the five hundredth year CE, as it is an ordinal and not a cardinal. Remember our little friend Dennis’ AD, Anno Domini Nostri Iesu Christi (“In the Year of Our Lord Jesus Christ”)! We are enumerating the members of an ordered set not counting the number of objects in a collection. Because this is the case there cannot be a zeroeth year. End of discussion!

That this error, and particularly the harebrained explanation for the supposedly missing year zero, should occur on any history website is bad enough but that it occurs on a BBC website, an organisation that used to be world renowned for its informational reliability is unforgivable. I say used to be because I don’t think it’s true any longer. I would be interested in who is responsible for the history content of the BBC’s web presence as it varies between sloppy as here and totally crap as witnessed here and discussed here and here.

My second example is just as bad in terms of its source coming as it does from the Windows to the Universe website Brought to you by the National Earth Science Teachers Association. You would think that such an educational body would take the trouble to make sure that the historical information that they provide and disseminate is accurate and correct. If you thought that, you would be wrong, as is amply demonstrated by their post on Hellenistic astronomer, Ptolemy.

Ptolemy was a Greek astronomer who lived between 85-165 A.D. He put together his own ideas with those of Aristotle and Hipparchus and formed the geocentric theory. This theory states that the Earth was at the center of the universe and all other heavenly bodies circled it, a model which held for 1400 years until the time of Copernicus.

Ptolemy is also famous for his work in geography. He was the first person to use longitude and latitude lines to identify places on the face of the Earth.

We don’t actually know when Ptolemaeus (Ptolemy) lived, the usual way used to present his life is ‘fl. 150 CE’, where fl. means flourished. If you give dates for birth and death they should given as circa or c. To write them as above, 85–165 A.D. implies we know his exact dates of birth and death, we don’t! This is a trivial, but for historians, important point.

More important is the factual error in the second sentence: He … formed the geocentric theory. The geocentric theory had existed in Greek astronomy and cosmology for at least seven hundred years before Ptolemaeus wrote his Syntaxis Mathematiké (the Almagest). Ptolemaeus produced the most sophisticated mathematical model of the geocentric theory in antiquity but he didn’t form it. Those seven hundred years are not inconsequential (go back seven hundred years from now and you’ll be in 1314!) but represent seven hundred years of developments in cosmology and mathematical astronomy.

The last sentence contains an even worse error for teachers of the earth sciences. Ptolemaeus did indeed write a very important and highly influential geography book, his Geographike Hyphegesis. However he was not “the first person to use longitude and latitude lines”. We cannot be one hundred per cent who did in fact first use longitude and latitude lines but this innovation in cartography is usually attributed to a much earlier Alexandrian geographer, Eratosthenes, who lived about three hundred and fifty years before Ptolemaeus.

This is an example of truly terrible history of science brought to you by an organisation that says this about itself, “The National Earth Science Teachers Association is a nonprofit 501(c)(3) educational organization, founded in 1985, whose mission is to facilitate and advance excellence in Earth and Space Science education” [my emphasis]. I don’t know about you but my definition of excellence is somewhat other.

 

18 Comments

Filed under History of Astronomy, History of Cartography, History of science, Myths of Science