Category Archives: History of science

Why doesn’t he just shut up?

Neil deGrasse Tyson (NdGT), probably the most influential science communicator in the world, spends a lot of time spouting out the message that learning science allows you to better detect bullshit, charlatans, fake news etc. etc. However it apparently doesn’t enable you to detect bullshit in the history of science, at least judging by NdGT’s own record on the subject. Not for the first time, I was tempted recently to throw my computer through the window upon witnessing NdGT pontificating on the history of science.

On a recent video recorded for Big Think, and also available on Youtube and already viewed by 2.6 million sycophants, he answers the question “Who’s the greatest physicist in history?” His answer appears under the title My Man, Sir Isaac Newton. Thoughtfully, Big Think have provided a transcription of NdGT’s blathering that I reproduce below for your delectation before I perform a Hist_Sci Hulk autopsy upon it.

Question: Who’s the greatest physicist in history?DeGrasse Tyson:    Isaac Newton.  I mean, just look… You read his writings.  Hair stands up… I don’t have hair there but if I did, it would stand up on the back of my neck.  You read his writings, the man was connected to the universe in ways that I never seen another human being connected.  It’s kind of spooky actually.  He discovers the laws of optics, figured out that white light is composed of colors.  That’s kind of freaky right there.  You take your colors of the rainbow, put them back together, you have white light again.  That freaked out the artist of the day.  How does that work?  Red, orange, yellow, green, blue, violet gives you white.  The laws of optics.  He discovers the laws of motion and the universal law of gravitation.  Then, a friend of his says, “Well, why do these orbits of the planets… Why are they in a shape of an ellipse, sort of flattened circle?  Why aren’t… some other shape?”  He said, you know, “I can’t… I don’t know.  I’ll get back to you.”  So he goes… goes home, comes back couple of months later, “Here’s why.  They’re actually conic sections, sections of a cone that you cut.”  And… And he said, “Well, how did find this out?  How did you determine this?”  “Well, I had to invent integral and differential calculus to determine this.”  Then, he turned 26.  Then, he turned 26.  We got people slogging through calculus in college just to learn what it is that Isaac Newtown invented on a dare, practically.  So that’s my man, Isaac Newton. 

“WHO’S THIS BLATHERING TYSON FOOL?”

Let us examine the actual history of science content of this stream of consciousness bullshit. We get told, “He discovers the laws of optic…!” Now Isaac Newton is indeed a very important figure in the history of physical optics but he by no means discovered the laws of optics. By the time he started doing his work in optics he stood at the end of a two thousand year long chain of researchers, starting with Euclid in the fourth century BCE, all of whom had been uncovering the laws of optics. This chain includes Ptolemaeus, Hero of Alexandria, al-Kindi, Ibn al-Haytham, Ibn Sahl, Robert Grosseteste, Roger Bacon, John Pecham, Witelo, Kamal al-Din al-Farisi, Theodoric of Freiberg, Francesco Maurolico, Giovanni Battista Della Porta, Friedrich Risner, Johannes Kepler, Thomas Harriot, Marco Antonio de Dominis, Willebrord Snellius, René Descartes, Christiaan Huygens, Francesco Maria Grimaldi, Robert Hooke, James Gregory and quite a few lesser known figures, much of whose work Newton was well acquainted with. Here we have an example of a generalisation that is so wrong it borders on the moronic.

What comes next is on safer ground, “…figured out that white light is composed of colors…” Newton did in fact, in a series of groundbreaking experiment, do exactly that. However NdGT, like almost everybody else is apparently not aware that Newton was by no means the first to make this discovery. The Bohemian Jesuit scholar Jan Marek (or Marcus) Marci (1595–1667) actually made this discovery earlier than Newton but firstly his explanation of the phenomenon was confused and largely wrong and secondly almost nobody knew of his work so the laurels go, probably correctly, to Newton.

NdGT’s next statement is for a physicist quite simply mindboggling he says, “That freaked out the artist of the day.  How does that work?  Red, orange, yellow, green, blue, violet gives you white.” Apparently NdGT is not aware of the fact that the rules for mixing coloured light and those for mixing pigments are different. I got taught this in primary school; NdGT appears never to have learnt it.

Up next are Newton’s contributions to mechanics, “He discovers the laws of motion and the universal law of gravitation.  Then, a friend of his says, “Well, why do these orbits of the planets… Why are they in a shape of an ellipse, sort of flattened circle?  Why aren’t… some other shape?”  He said, you know, “I can’t… I don’t know.  I’ll get back to you.”  So he goes… goes home, comes back couple of months later, “Here’s why.  They’re actually conic sections, sections of a cone that you cut.””

Where to begin? First off Newton did not discover either the laws of motion or the law of gravity. He borrowed all of them from others; his crowing achievement lay not in discovering them but in the way that he combined them. The questioning friend was of course Edmond Halley in what is one of the most famous and well document episodes in the history of physics, so why can’t NdGT get it right? What Halley actually asked was, assuming an inverse squared law of attraction what would be the shape of aa planetary orbit? This goes back to a question posed earlier by Christopher Wren in a discussion with Halley and Robert Hooke, “would an inverse squared law of attraction lead to Kepler’s laws of planetary motion?” Halley could not solve the problem so took the opportunity to ask Newton, at that time an acquaintance rather than a friend, who supposedly answered Halley’s question spontaneously with, “an ellipse.” Halley then asked how he knew it and Newton supposedly answered, “I have calculated it.” Newton being unable to find his claimed calculation sent Halley away and after some time supplied him with the nine-page manuscript De motu corporum in gyrum, which in massively expanded form would become Newton’s Principia.

NdGT blithely ignoring the, as I’ve said, well documented historical facts now continues his #histsigh fairy story, “And he said, “Well, how did find this out?  How did you determine this?”  “Well, I had to invent integral and differential calculus to determine this.”” This is complete an utter bullshit! This is in no way what Newton did and as such he also never claimed to have done it. In fact one of the most perplexing facts in Newton’s biography is that although he was a co-discoverer/co-inventor of the calculus (we’ll ignore for the moment the fact that even this is not strictly true, read the story here) there is no evidence that he used calculus to write Principia.

NdGT now drops his biggest historical clangour! He says, “Then, he turned 26.  Then, he turned 26.  We got people slogging through calculus in college just to learn what it is that Isaac Newtown invented on a dare, practically.  So that’s my man, Isaac Newton.” Newton was twenty-six going on twenty seven when he carried out the optics research that led to his theory of colours in 1666-67 but the episode with Halley concerning the shape of planetary orbits took place in 1682 when he was forty years old and he first delivered up De motu corporum in gyrum two years later in 1684. NdGT might, as an astro-physicist, be an expert on a telescope but he shouldn’t telescope time when talking about historical events.

23 Comments

Filed under History of Optics, History of science, Myths of Science, Newton

Open shelved serendipity

One of my favourite radio science programmes is BBC Radio 4’s Science Stories presented by Philip Ball and Naomi Alderman. Yesterday was the first episode of the fifth series of this excellent piece of popular history of science broadcasting. Last week whilst advertising the new series on Twitter Philip Ball let drop the fact that next weeks episode would be about the medieval theologian and scholar Robert Grosseteste, featuring the physicist of the fascinating interdisciplinary University of Durham research project Ordered Universe, Thom McLeish. This brief Internet exchange awoke in me memories of my own first encounter with the medieval Bishop of Lincoln.

14th-Century Portrait of Robert Grosseteste, Bishop of Lincoln by unknown scribe
Source: Wikimedia Commons

I studied mathematics, philosophy, English philology and history with a strong emphasis on the history and philosophy of science, as a mature student, at the University of Erlangen between 1981 and 1991. It was this period of my life that converted me from an enthusiastic amateur into a university educated and trained researcher into the history of science (For more on this see my post next Monday). When I started this decade of formal studies I held a fairly standard, conservative view of the Scientific Revolution; this started with the publication of Copernicus’ De revolutionibus in 1543 and was completed with the publication of Newton’s Principia Mathematica in 1687. What disrupted, one could even say exploded, this idealised picture was my first encounter with Grosseteste.

Erlangen University is a comparatively large university and its main library is, like that of almost all such institutions, closed shelf. However the department libraries are almost all open shelf and as a student I developed the habit of browsing library bookshelves with no particular aim in view. The Bavarian State university library system has for book purchases an emphasis policy. Each Bavarian university library has a collecting emphasis so that specialist books in a particular discipline are only bought/collected by one university but are available to all the others through the interlibrary loan system. This is a method of making the available funds go further. Erlangen’s collection emphasis is philosophy, including the history and philosophy of science, so the philosophy department library is particularly well stocked in this direction.

One day fairly early in my time as a student in Erlangen I was cruising the history and philosophy of science bookshelves in the philosophy department library when my eyes chanced upon a rather unimposing, fairly weighty book by some guy called Alistair Crombie (I had know idea who he was then) with the title Robert Grosseteste and the origins of experimental science: 1100 – 1700. I have no idea what motivated me to take that volume home with me but I did and once I started reading didn’t stop until I had reached the end. This was a whole new world to me, the world of medieval science, of whose existence I had been blissfully unaware up until that point in time. Reading Crombie’s book radically changed my whole understanding of the history of science.

Here was this twelfth/thirteenth century cleric, lecturer at Oxford University (and possibly for a time chancellor of that august institution), who went on to become Bishop of Lincoln, teaching what amounted to empirical mathematical science.

Grosseteste’s Tomb and Chapel in Lincoln Cathedral
Source: Wikimedia Commons

It should be pointed out that whilst Grosseteste was strong on mathematical empirical science in theory, his work was somewhat lacking in the practice of that which he preached. Crombie has Grosseteste standing at the head of a chain of scholars that include Roger Bacon in the thirteenth century, the Oxford Calculators (about whom there is a good podcast from History of Philosophy without any gaps) and the Paris Physicists in the fourteenth century and so on down to Isaac Newton at the end of the seventeenth century. Unknown to me at the time Crombie was presenting a modernised version of the Duhem Thesis that the scientific revolution took place in the thirteenth and fourteenth centuries and not as the standard model has it, and as I had believed up till I read Crombie’s book, in the sixteenth and seventeenth centuries.

This was the start of a long intellectual journey for me during which I read the works of not only Crombie but of Edward Grant, Marshal Clagett, John Murdoch, David Lindberg, A. Mark Smith, Toby Huff and many other historians of medieval science. This journey also took me into the fascinating world of Islamic science, which in turn led me to the histories of both Indian and Chinese science although I still have the impression that in all these areas medieval European science, Islamic science, and Indian and Chinese science I have till now barely scratched the surface.

As I said above this journey started with Crombie’s book and Robert Grosseteste discovered whilst aimlessly browsing the shelves in the department library. This is by no means the only important and influential book that I have discovered for myself by this practice of browsing in open shelf department libraries. On one occasion I went looking for one specific book on map projection in the geography department library and, after a happy hour or two of browsing, left with an armful of books on the history of cartography. On another occasion I discovered, purely by accident, The Life and Letters of Sir Henry Wotton edited by Logan Pearsall Smith in the English Department Library. Wotton a sixteenth/seventeenth century English diplomat was a passionate fan of natural philosophy, who sent the first copies of Galileo’s Sidereus Nuncius, fresh off the printing press to London on its day of publication in 1610.

There are many other examples of the scholarly serendipity that my habit of browsing open shelf library shelves has brought me over the years but I think I have already made the point that I wanted to when I set out to write this post. Libraries are full of wonderful, vista opening books, so don’t wait for somebody to recommend them to you but find an open shelf library and go and see what chance throws you way, it might just change your life.

 

 

 

 

 

9 Comments

Filed under Autobiographical, History of science, Mediaeval Science

Recipes in the Wild By Paul Engle June 1, 2017

The Recipes Project blog is, starting today, running a Virtual Conversation on the theme, “What is a Recipe?” I featured this in the editorial of the latest edition of Whewells Gazette the Weekly #histSTM Links List. Inspired by a comparison that I made between algorithms and recipes and a question that I posed, Paul Engle, author of the very excellent Conciatore: The Life and Times of 17th Century Glassmaker Antonio Neri and writer of the Conciatore Blog, sent me the following essay stating, “Feel free to do with it what you will.” So what I will is to post it here as a very welcome guest blog post from an excellent historian of technology who really knows what a recipe is.  

It has been suggested at Whewell’s Gazette in a recent editorial that in considering recipes, particularly technical recipes and their relation to algorithms, that, “the two words are in their essence synonyms and there isn’t really a difference.” [1] With all due respect to the author of this passage, I do not think that is quite right.

A recipe is much more than an algorithm, in fact I propose that while algorithms are quite powerful tools, they occupy a rather distinct niche in the universe of recipes. We do agree on some things however,

“For me a recipe is quite simply a set of instructions, which describe how to complete successfully a given task. The task does not necessarily have to have anything to do with cooking, the first thought that pops up when we hear the word recipe.” [2]

I have thirty-odd years of empirical experience writing and following technical recipes in a laboratory setting; I have several shelves full of them that I am looking at right now. I have been programming computers and dealing with algorithms, dare I say it, since the days of punch cards and paper tape. This is a subject particularly dear to me and besides, I sense an irresistible opportunity to make a fool of myself, so here goes.

In the realms of mathematics and computer science, an algorithm is a set of instructions that enjoy several conditions favorable over recipes; a well-defined environment where it does not matter if it is raining or sunny outside and an output or result that is usually unambiguous. For recipes, not so much; even the lowly baker known that on humid days, a prized and tested bread recipes must be adjusted to produce an edible product. These adjustments do not always take a form that can easily be measured or quantified and this starts to get at the heart of the matter.

Any day of the week, rain or shine, a computer running a straightforward algorithm can generate the first million digits of pi, (yes, the millionth digit is 1). While there may be a certain amount of difficulty in verifying a result, it is something that is done quite routinely. While some simple recipes fall into this form, many others do not. Consider that some technical recipes seem to work even if we do not know how. Others require “experienced” practitioners, not because of anything magical going on, but simply because the most reliable results are obtained by one who has done it before. Even with seemingly simple, well-documented tasks like polishing a material, there can be an enormous number of variables involved, some unknown, others that are not practical or possible to control.

An algorithm generally lives in an artificially constructed, tightly controlled environment, recipes, on the other hand, operate in the wild. An aspect of technical recipes often missed by outsiders is the level of attention that must be paid to the interaction of your “product” with its environment. This may mean frequent observation and testing, or, in the kitchen, it may mean tasting the gumbo every few minutes and making appropriate adjustments. No matter if the result is a well-polished sample in a materials laboratory, or a well-seasoned bowl of soup in the French Quarter, what makes the result “good” is not necessarily easy to define. We can calibrate our equipment and take great care with our materials. We can scrutinize the results, and take measurements until the cows come home, but in many instances, this is only a starting point; learning to perform a recipe “well” can be like a mini-education. Writing that down stepwise can be like trying to capture everything you learned at cooking school.

It is in this setting, where there are many variables to keep track of, many unknowns, and even the results may be hard to characterize, that we step into the realm of “art.” A successful outcome depends as much on what you bring to the table as what is written on the page. A recipe becomes like a roadmap for threading your way through a complex maze of decision points. Here is where I get passionate about my subject. Practicing a recipe, in a sense, can be viewed as the purest form of empirical science. And this can take place in a laboratory or in a kitchen. If science is the study of the way the world actually behaves, then going through a series of steps and paying close attention to what is happening, is as good as it gets. It is not a matter of imposing ones will on the world, but of interacting with nature and moving toward a result given the constraints of reality; there is a give and take. A scientific experiment can be viewed as the act of developing a new recipe toward a specific result. Writing that recipe down is an exercise in determining the important variables to pay attention to and capturing a method in a way that is repeatable by others.

As computer algorithms move into the realms of artificial intelligence, driverless cars and the like, they will start to encounter the same difficulties as our baker does on a humid day. Perhaps a true test of machine intelligence will be how well an algorithm negotiates real-world recipes.

[1] Christie, Thony 2017. Whewell’s Ghost blog, “Editorial, Whewell’s Gazette: Year 03, Vol. #41” 31 May 2017.
[2] Op. Cit.

8 Comments

Filed under History of science, History of Technology

Perpetuating the myths addendum – ‘The Copernican Shock

Frequent Renaissance Mathematicus commentator (comment-writer, commenter, commentor), Phillip Helbig, sent me an interesting email in response to my previous blog post. In skewering the Nadlers’ comic book I didn’t actually comment on every single detail of everything that was wrong with it, one of the things I left out was Galileo saying:

It is not the center of the cosmos it is a planet just like the others and they all orbit the sun.

As Phillip correctly pointed out in the Ptolemaic-Aristotelian geocentric model of the cosmos the Earth was not viewed as the centre of the cosmos but rather as the bottom. I wrote a brief post long ago quoting a wonderful passage by Otto von Guericke, the inventor of the vacuum pump on exactly this topic:

Since, however, almost everyone has been of the conviction that the earth is immobile since it is a heavy body, the dregs, as it were, of the universe and for this reason situated in the middle or the lowest region of the heaven

Otto von Guericke; The New (So-Called) Magdeburg Experiments of Otto von Guericke, trans. with pref. by Margaret Glover Foley Ames. Kluwer Academic Publishers, Dordrecht/Boston/London, 1994, pp. 15 – 16. (my emphasis)

Phillip then asks, “So what was the “shock” of the Copernican Revolution (how many even get that pun?)?  Was it demoting humanity from the centre of the universe, or promoting the Earth to be on par with the other heavenly bodies?”

Before I answer his question I would point out that the idea that Copernicus had demoted the Earth from the centre of the cosmos first emerged much later, sometime in the late eighteenth or early nineteenth century, as an explanation for the supposed irrational rejection of the heliocentric hypothesis. Of course as is now well known, or at least should be, the initial rejection of the heliocentric hypothesis was not irrational but was based on solid common sense and the available empirical scientific evidence nearly all of which spoke against it. For a lot, but by no means all, of the astronomical arguments read Chris Graney’s excellent Setting Aside All Authority.

So back to Phillip’s question, what was the real Copernican shock? The answer is as simple as it is surprising, there wasn’t one. The acknowledgement and acceptance of the heliocentric hypothesis was so gradual and spread out over such a long period of time that it caused almost no waves at all.

First up, there was nothing very new in Copernicus suggesting a heliocentric cosmos. As should be well known it had already been proposed by Aristarchus of Samos in the third century BCE and Ptolemaeus’ Syntaxis Mathematiké (Almagest) contains a long section detailing the counter arguments to it, which were well known to all renaissance and medieval astronomers. Also in the centuries prior to Copernicus various scholars such as Nicholas of Cusa had extensively discussed both geocentric models with diurnal rotation and full heliocentric ones. All that was new with Copernicus was an extensive mathematical model for a heliocentric cosmos.

At first this was greeted with some enthusiasm as a purely hypothetical model with the hope that it would deliver better predictions of the heavenly movements than the geocentric models for use in astrology, cartography, navigation etc. However it soon became apparent that Copernicus was not really any better than the older models, as it was based on the same inaccurate and oft corrupted data as Ptolemaeus, so the interest waned, although it was these inaccuracies in both model that inspired Tycho Brahe to undertake his very extensive programme of new astronomical observations on which Kepler would base his models.

As Robert Westman pointed out, in a now legendary footnote, between the publication of De revolutionibus in 1543 and 1600 there were only ten people in the whole world, who accepted Copernicus’ heliocentric cosmology, not exactly earth shattering. Even after 1600 the acceptance of a heliocentric worldview only increased very slowly and in gradual increments as the evidence for it accumulated.

The first two factors are the work of Kepler and the early telescopic discoveries. Because Kepler couldn’t or rather didn’t deal with the physical problems of a moving earth his work initially fell on deaf ears. The early telescopic discoveries only refuted a pure Ptolemaic geocentric model but were consistent with a Tychonic geo-heliocentric one and as this had a stationary earth, it became the model of choice. Of interest, and I think up till now not adequately explained, a Tychonic model with diurnal rotation, i.e. a spinning earth, became the preferred variation. A partial step in the right direction. Kepler’s publication of the Rudolphine Tables in 1627 led to an acceptance of his elliptical astronomy at least for calculations if not cosmologically. Then Cassini, with the help of Riccioli, demonstrated with a heliometer in the San Petronio Basilica in Bologna that the sun’s orbit around the earth or the earth’s orbit around the sun was indeed a Keplerian ellipse, but couldn’t determine which of the two possibilities was the right one. Another partial step in the right direction.

Both Kepler’s first and third laws, solidly empirical, were now accepted but his second law still caused problems. Around 1670 Nicholas Mercator provided a new solid proof of Kepler’s second law and it is about then that the majority of European astronomers finally accepted heliocentricity, although it was Kepler’s elliptical astronomy and not Copernicus’ model; the two models were regarded as competitors; also there was still a distinct lack of empirical proof for a heliocentric cosmos.

The developments in physics over the seventeenth century combined with the discovery of the physical reality of the atmosphere and Newton’s gravitation law finally solved the problems of why, if the earth is moving various disasters don’t occur: high winds, atmosphere blowing away etc., all of those arguments already listed by Ptolemaeus. The final empirical proofs of the annual orbit, Bradley and stellar aberration in 1727, and diurnal rotation, measuring the shape of the earth, around 1750, were delivered in the eighteenth century.

As can been seen by this very brief outline of the acceptance and confirmation of heliocentrism it was a process that took nearly two hundred years and proceeded in small increments so there was never anything that could possibly be described as a shock. As already stated above the concept that the ‘Copernican Revolution’ caused consternation or was a shock is a myth created sometime in the late eighteenth or early nineteenth century to explain something that never took place. One might even call it fake news!

Addendum: A lot of the themes touched on here are dealt with in greater detail in my The transition to heliocentricity: The Rough Guides series of blog posts

11 Comments

Filed under History of Astronomy, History of science, Myths of Science

Perpetuating the myths

Since the re-emergence of science in Europe in the High Middle Ages down to the present the relationship between science and religion has been a very complex and multifaceted one that cannot be reduced to a simple formula or a handful of clichés. Many of the practitioners, who produced that science, were themselves active servants of their respective churches and many of their colleagues, whilst not clerics, were devoted believers and deeply religious. On they other had there were those within the various church communities, who were deeply suspicious of or even openly hostile to the newly won scientific knowledge that they saw as a threat to their beliefs. Over the centuries positions changed constantly and oft radically and any historian, who wishes to investigate and understand that relationship at any particular time or in any given period needs to tread very carefully and above all not to approach their research with any preconceived conclusions or laden down with personal prejudices in one direction or another.

In the nineteenth century just such preconceived conclusions based on prejudice became dominant in the study of the history of science propagated by the publications of the English-American chemist John William Draper and his colleague the American historian and educator Andrew Dickson White. These two scholar propagated what is now know as the Conflict or Draper-White Thesis, which claims that throughout history the forces of science and religion have been in permanent conflict or even war with each other. Draper wrote in his provocatively titled, History of the Conflict between Religion and Science (1874)

The history of Science is not a mere record of isolated discoveries; it is a narrative of the conflict of two contending powers, the expansive force of the human intellect on one side, and the compression arising from traditionary faith and human interests on the other.

In 1876 in his equally provocative The Warfare of Science, White wrote:

In all modern history, interference with science in the supposed interest of religion, no matter how conscientious such interference may have been, has resulted in the direst evils both to religion and to science—and invariably. And, on the other hand, all untrammeled scientific investigation, no matter how dangerous to religion some of its stages may have seemed, for the time, to be, has invariably resulted in the highest good of religion and of science.

Twenty years later White ramped up the heat in his A History of the Warfare of Science with Theology in Christendom.

Draper’s and White’s polemics became widely accepted and Galileo, Darwin and other figures out of the history of science came to be regarded as martyrs of science, persecuted by the bigoted forces of religion.

Throughout the twentieth century historians of science have striven to undo the damage done by the Draper-White thesis and return the history of the relationship between science and religion to the complex and multifaceted reality with which I introduced this post. They were not helped in recent decades by the emergence of the so-called New Atheists and the ill considered and unfortunately often historically ignorant anti-religious polemics spewed out by the likes of Richard Dawkins and Sam Harris, supposedly in the name of freedom of thought. I have, although a life-long atheist myself, on more than one occasion taken up arms, on this blog, against the sweeping anti-religious generalisations with respect to the history of science spouted by the new atheist hordes.

So it was with more than slight sense of despair that I read the preview in The Atlantic of

A Graphic Novel About 17th-Century Philosophy with the title Heretics!

This is described by its publishers the Princeton University Press as follows:

An entertaining, enlightening, and humorous graphic narrative of the dangerous thinkers who laid the foundation of modern thought

The Atlantic’s review/preview confirmed my darkest suspicions. We get informed:

Dark spots across the sun, men burned at the stake, an all-powerful church that brooks no idea outside its dogma—there is no subject so imbued with drama, intrigue, and fast-paced action as 17th-century Western philosophy. And thus no medium does it justice like the graphic novel.

No, really.

Heretics!, a graphic novel by Steven and Ben Nadler, introduces readers to what is arguably the most interesting, important, and consequential period in the history of Western philosophy. While respecting recent scholarship on 17th-century thought, [my emphasis] the Nadlers sought to make these stories and ideas as accessible and engaging to as broad an audience as possible without condescension. At times, this called for some historical liberties and anachronism. (Full disclosure: there were no laptop computers or iPods in the 17th century.)

We are back in Draper-White territory with a vengeance! The last thing that the Nadlers do is to respect recent scholarship, in fact they turn the clock back a long way, deliberately avoiding all the work done by modern historians of science.

The sample chapter provided by The Atlantic starts with Giordano Bruno, who else, much loved as a martyr for science by the new atheist hordes.

Source: The Atlantic

We see here that, as usual, Bruno’s cosmology is featured large, whilst his theological views are tucked away in the corner. Just two comments, Bruno was by no stretch of the imagination a scientist, read this wonderful essay by Tim O’Neill if you don’t believe me, and his “highly unorthodox” theological views included denial of the trinity, denial of Jesus’ divinity and denial of the virgin birth any one of which would have got him a free roasting courtesy of the Catholic Church if he had never written a single word about cosmology.

Up next, prime witness for the prosecution, who else but our old friend Galileo Galilei. We get the hoary old cliché of him throwing rocks off the Leaning Tower of Pisa, which he almost certainly never did.

We now move on to Galileo the astronomer,

Source: The Atlantic

who having made his telescopic discoveries claims that, “Copernicus was right.”

Source: The Atlantic

Know what, in 1615 Galileo was very careful not to claim that because he knew that it was a claim that he couldn’t back up. What he did do, which brought him into conflict with the Church was to suggest that the Church should change its interpretations of the Bible, definitely not on for a mere mathematician in the middle of the Counter Reformation and for which he got, not unsurprisingly, rapped over the knuckles. In 1616 Pope Paul V did not condemn Copernicus’s theory as heresy, in fact no pope ever did.

We then have Galileo sulking in his room and he isgoing to show them! In fact Galileo courted the Catholic Church and was a favourite of the papal court in Rome; he received official permission from Pope Urban VIII to write his Diologo. I’m not going to go into the very complex detail as to why this backfired but a couple of short comments are necessary here. At that time the heliocentric theory did not do a much better job of explain the phenomena in the heavens and on earth. Galileo’s book is strong on polemic and weak on actual proofs. Also, and I get tired of pointing this out, Galileo was not condemned as a heretic but found guilty of grave suspicion of heresy. There is a massive legal difference between the two charges. Paying attention to the fine detail is what makes for a good historian. We close, of course with the classic cliché, “And yet the earth moves.” No, he didn’t say that!

Source: The Atlantic

We then get a comic book description of the differences between the philosophies of Aristotle and Descartes that unsurprisingly doesn’t do either of them justice. All of this is of course only a lead up to the fact that Descartes decided not to publish his early work explicating his philosophy including his belief in heliocentricity, Traité du monde et de la lumière, on hearing of Galileo’s trial and punishment. This is dealt with by the Nadlers with a piece of slapstick humour, “Zut alors! I don’t want to get into trouble too!” Has anybody ever actually heard a Frenchman say “Zut alors!”?

Source: The Atlantic

This episode in intellectual history is actually of great interest because as far as is known Descartes is the only author in the seventeenth century who withdrew a book from publication because of the Pope’s edict against teaching heliocentricity. He appears to have done so not out of fear for his own safety but out of respect for his Jesuit teachers, whom he did not wish to embarrass. This was rather strange as other Jesuits and students of Jesuit academies wrote and published books on heliocentrism merely prefacing them with the disclaimer that the Holy Mother Church in its wisdom has correctly condemned this theory but it’s still quite fun to play with it hypothetically. The Church rarely complained and appearances were maintained.

This very superficial and historically highly inaccurate comic book in no way does justice to its subject but will do a lot of damage to the efforts of historians of science to present an accurate and balanced picture of the complex historical relationship between science and religion.

For anybody who is interested in the real story I recommend John Hadley Brooke’s classic Science and Religion: Some Historical Perspectives (1991) and Peter Harrison’s, soon to be equally classic, The Territories of Science and Religion (2015). On reading The Atlantic review/preview Peter Harrison tweeted the following:

Oh dear…. Not the optimal format for communicating the complexities of history – Peter Harrison (@uqharri)

James Ungureanu another expert on the relations between science, religion and culture also tweeted his despair on reading The Atlantic review/preview:

When I saw this earlier, I died a little. It must be right because it’s funny! – James C Ungureanu (@JamesCUngureanu)

20 Comments

Filed under Book Reviews, History of science, Myths of Science

Bringing the heavens down to earth

The Frisian Protestant pastor and amateur astronomer, David Fabricius, was beaten to death by one of his parishioners on 7 May 1617. Because he corresponded with both Tycho Brahe and Johannes Kepler and was quite a significant figure in Early Modern astronomy the Society for the History of Astronomy had a short post on Facebook commemorating his death on last Sunday, which contained the following claim:

David Fabricius was, following Galileo’s lead, one of the early users of the telescope in astronomy[1]

This claim contains two factual errors. The first is that it was Johannes, David’s son, who introduced the telescope into the Fabricius household and not David, although David soon joined his son in his telescopic observations. I’ll explain further later.

The Fabricii, father and son, remain largely unknown to the world at large but a monument to them both was erected in the churchyard in Osteel, where David had been village pastor, in 1895.

The second error is more serious because it indirectly perpetuates a widespread myth concerning the introduction of the telescope into astronomy and Galileo’s role in it. There is a popular perception that Galileo, and only Galileo, had the genius, the wit, the vision to realise that the newly invented telescope could be used as an astronomical instrument and that he singlehandedly pioneered this new discipline, telescopic astronomy. This is of course complete rubbish and seriously distorts the early history of the telescope in astronomy and does a major disservice to all of the others who contributed to that early history. I will admit to having done a small fist pump when I read the following in John Heilbron’s Galileo biography:

The transformation of the Dutch gadget into an instrument powerful to discover novelties in the heavens did not require a Galileo. His unique strength lay in interpreting what he saw.[2]

That the telescope could be used as an astronomical instrument was recognised during its very first public demonstration by its inventor, the German/Dutch spectacle maker Hans Lipperhey, which took place at the court of Prince Maurice of Nassau in Den Haag during the Dutch-Spanish Peace Conference on an unknown day between 25 and 29 September 1608. We have a detailed account of this demonstration from a French flyer or newsletter describing the first visit of the Ambassador of Siam to Europe, the Ambassador being present at the demonstration. Through this flyer the news of the new invention spread rapidly throughout Europe. Amongst the other descriptions of the wonderful abilities of this “…device by means of which all things at a very great distance can be seen as if they were nearby, by looking through glasses…” we can read the following:

The said glasses are very useful at sieges & in similar affairs, because one can distinguish from a mile’s distance & beyond several objects very well, as if they are near & even the stars which normally are not visible for us, because of the scanty proportion and feeble sight of our eyes, can be seen with this instrument. [my emphasis]

The first astronomer to build and use a telescope as an astronomical instrument was Thomas Harriot, who drew a sketch of the moon using a telescope on 26 July 1609 before Galileo even had a telescope.

Thomas Harriot’s 1609 telescopic sketch of the moon

This of course raises the question where Harriot obtained his knowledge of this instrument. In the early phase of the telescopes existence it became a common habit to present heads of state and other worthies telescopes as presents. In England James I (VI of Scotland) was presented with one at the end of an elaborate masque created for the occasion by Ben Jonson, the Renaissance playwright. The telescope was obtained from the United Provinces through the offices of Cornelis Drebbel, the Dutch inventor and scholar, who was employed at James’ court. This telescope was probably Harriot’s, who enjoyed good connections to court circles, introduction to the instrument.

Portrait often claimed to be Thomas Harriot (1602), which hangs in Oriel College, Oxford. Source: Wikimedia Commons

Harriot did not observe alone. In London he observed together with his instrument maker Christopher Tooke in London, whilst Harriot’s pupil the landowner and MP, Sir William Lower observed in Wales, together with his neighbour John Prydderch, with a telescope made by Harriot and Tooke. Each pair took turns in observing comparing their results and then Harriot and Lower compared results by letter. This meant that they could be reasonably certain that what they had observed was real and not some optical artefacts produced by the poor quality of the lenses they were using. So here we have four telescopic astronomical observers independent of Galileo’s activities.

In Franconia Simon Marius also built and used telescopes in 1609, at the time unaware of the similar activities of Galileo in Padua. As I have written in another blog post Marius discovered the four largest moons of Jupiter just one day later and independently of Galileo. Marius also made the first telescopic observations of the Andromeda Nebula, significant because the Andromeda Nebula would later become the first galaxy to be recognised as a galaxy outside of our galaxy.

Simon Marius frontispiece from his Mundus Jovialis

Another telescopic pioneer in Southern Germany was the Jesuit astronomer in Ingolstadt, Christoph Scheiner, who famously became embroiled in a dispute with Galileo over who had first observed sunspots with a telescope and what exactly they were.

Christoph Scheinet (artist unknown)

The dispute was rather pointless, as Harriot had actually observed sunspots earlier than both of them and Johannes Fabricius, to whom we will turn next, had already published a report on his sunspot observations unknown to the two adversaries. Christoph Scheiner and his assistant, another Jesuit astronomer, Johann Baptist Cysat, would go on to make several important contributions to telescopic astronomy.

Johann Baptist Cysat, holding a Jacob’s staff

Johannes Fabricius brought his telescope home from the University of Leiden, where he had almost certainly learnt of this instrument through the lectures of Rudolph Snel van Royan, professor of mathematics and father of the better know Willibrord Snel of Snell’s law of refraction fame. Rudolph Snel van Royan was probably the first university professor to lecture on the telescope as a scientific instrument already in 1610.

Rudolph Snel van Royan
Source: Wikimedia Commons

It is also known that Cort Aslakssøn and Christian Longomontanus acquired lenses and built their own telescopes in the first couple of years of telescopic astronomy in Copenhagen, but unfortunately I haven’t, until now, been able to find any more details of activities in this direction. If any of my readers could direct me to any literature on the subject I would be very grateful.

Christian Severin known as Longomontanus

Turning to Italy we find the astronomers on the Collegio Romano under the watchful eye of Christoph Clavius making telescopic astronomical observations before Galileo published his Sidereus Nuncius in 1610, using a Dutch telescope sent to Odo van Maelcote by one of his earlier students Peter Scholier. Grégoire de Saint-Vincent would later claim that he and Odo van Maelcote were probably the very first astronomers to observe Saturn using a telescope. It was the astronomers of the Collegio Romano, most notably Giovanni Paolo Lembo and Christoph Grienberger, who would then go on to provide the very necessary independent confirmation of the discoveries that Galileo had published in the Sidereus Nuncius.

As can be seen Galileo was anything but the singlehanded pioneer of telescopic astronomy in those early months and years of the discipline. What is interesting is that those working within the discipline were not isolated lone warriors but a linked network, who exchanged letter and publications with each other.

Some of the connections that existed between the early telescopic astronomers are listed here: Harriot had corresponded extensively with Kepler and was very well informed about what Tycho and the other continental astronomers were up to. David Fabricius corresponded with Kepler and Tycho and even visited Tycho in Prague but unfortunately didn’t meet Kepler on his visit. Johannes would later take up correspondence with Kepler. Tycho corresponded with Magini in Bologna who passed on his news to both Galileo and Clavius. Clavius was also very well informed of all that was going on in European astronomy by the Jesuit network. Almost all of the Jesuit astronomers were students of his. Marius corresponded with Kepler, who published many of his astronomical discoveries before he did, and with David Fabricius, whom he had got to know when he visited Tycho in Prague to study astronomy. Longomontanus had earlier been Tycho’s chief assistant and corresponded with Kepler after he left Prague to return to Copenhagen. Interestingly another of Tycho’s assistants, Johannes Eriksen, visited both David Fabricius in Friesland and Thomas Harriot in London on the same journey.

What we have here is not Galileo Galilei as singlehanded pioneer of telescopic astronomy but a loosely knit European community of telescopic astronomers who all recognised and utilised the potential of this new instrument shortly after it appeared. They would soon be joined by others, in this case mostly motivated by Galileo’s Sidereus Nuncius, a few of them even supplied with telescopes out of Galileo’s own workshop. However what is very important to note is that although Galileo was without doubt the best telescopic observer of that first generation and certainly won the publication race, all of the discoveries that he made were also made independently and contemporaneously by others, so nothing would have been lost if he had never taken an interest in the spyglass from Holland.

 

 

 

 

 

[1] Because I pointed out the errors contained in this claim in a comment, it has now been removed from the Facebook post!

[2] J. L. Heilbron, Galileo, OUP, 2010, p. 151

6 Comments

Filed under History of Astronomy, History of Optics, History of science, Uncategorized

One line to rule them all

A standard concept in the modern politico-military terminology is that of mission creep. This describes the, in the last sixty or seventy years often observed, phenomenon of a military intervention by a dominant power that starts with a so-called police action with a couple of hundred combatants and then within a couple of years grows to a full scale military operation involving thousands of troops and the expenditure of sums of money with an eye watering large number of zeros at the end. Famous examples of mission creep were the Americans in Viet Nam and the Russians in Afghanistan. In fact since the Second World War the American have become world champions in mission creep.

As a historian I, and I strongly suspect virtually all of my historian colleagues, experience a form of mission creep in every field of study to which I turn my attention. In fact the progress of my entire career as a historian of science has been one massive example of mission creep. It all started, at the age of sixteen, when I first learned that Isaac Newton was the (co)discoverer/inventor[1] of the calculus that I so loved at school. (Yes, I know that makes me sound a little bit strange but there’s no accounting for taste). This of course set me off on the trail of the whole history of mathematics, but that is not what I want to talk about here; let us stick with Newton. At some point I started to wonder why Newton, whom I saw as very much the theoretical mathematician and physicist, should have invented a telescope. This set me on the trail of the entire history of the telescope and because the telescope is an optical instrument, with time, the history of optics, not just in the early modern period but backwards through time into the European Middle Ages, the Islamic Empire and Antiquity. Of course Newton is most well known as physicist and astronomer and at some point I started investigating the pre-history of his work in astronomy. This eventually led me back to the Renaissance astronomers, not just Copernicus but all those whose work provided the foundations for Copernicus’s own work.

At some point it became very clear to me that to talk of Renaissance astronomers was in some sense a misnomer because those who pursued the study of astronomy in this time did so within a discipline that encompassed not just astronomy but also astrology, cartography (with a large chunk of geography and history in the mix), navigation, surveying, geodesy as well as the mathematical knowledge necessary to do all of these things. These were not separate disciplines as we see them now but different facets of one discipline. Over the years my studies have expanded to cover all of these facets and one into which I have delved very deeply is the history of cartography with the associated history of surveying. All of this is a rather longwinded explanation of why I have been reading Charles Withers’ new book Zero Degrees[2]

 

This book describes the history of how the Greenwich Meridian became the Prime Meridian.

A brief explanation for those who are not really clear what a meridian is; a meridian (or line of longitude) is any ‘straight’ line on the globe of the of the earth connecting the North Pole with the South Pole, where here straight means taking the shortest path between the two poles, as a meridian is by nature curved because it lies on the surface of the globe. Meridians are by their very nature arbitrary, abstract and non-real. We can chose to put a meridian wherever we like, they are an artificial construct and not naturally given. The Prime Meridian is a singular, unique, universally accepted meridian from which all other meridians (lines of longitude) are measured. The recognition of the necessity for a Prime Meridian is a fairly recent one in human history and Withers’ book deals with the history of the period between that recognition in the Early Modern Period to the realisation of a Prime Meridian at the beginning of the twentieth century.

The first thing that Withers made me aware of is that a meridian is not a singular object but one that has at least four separate functions and at least two different realisations. Meridians are used for navigation, for time determination, for cartography and for astronomy. The latter is because astronomers project our latitude and longitude coordinate system out into space in order to map the heavens. Nothing says that one has to use the same meridians for each of these activities and for much of the period of history covered by Withers people didn’t.

On the realisation of meridians Withers distinguishes two geographical and observed. The majority of meridians in use before the late seventeenth century were geographical. What does this mean? It meant that somebody simply said that they make their measurements or calculations from an imaginary line, the meridian, through some given geographical point on the surface of the earth. Ptolemaeus to whom we own our longitude and latitude coordinate system, although he had predecessors in antiquity, used the Azores as his zero meridian although he didn’t know with any real accuracy where exactly the Azores lay. Also the Azores is a scattered island group and he doesn’t specify exactly where within this island group his zero meridian ran. We have a lovely example of the confusion caused by this inaccuracy. On 4 May 1493 Pope Alexander VI issued the papal bull Inter caetera, which granted the Crowns of Castile and Aragon all the lands to the west and south of a meridian 100 leagues and south of the Azores or the Cape Verde islands.

This led to a whole series of treaties and papal bulls carving up the globe between Spain (Castile and Aragon) and Portugal. The 1494 Treaty of Tordesillas moved the line to a meridian 370 leagues west of the Portuguese Cape Verde islands now explicitly giving Portugal all new discoveries east of this meridian. I’m not going to go into all the gory details but this led to all sorts of problems because nobody actually knew where exactly this meridian or its anti-meridian on the other side of the globe lay. Ownership disputes in the Pacific between Spain and Portugal were pre-programmed. These are classical examples of geographical meridians.

The Cantino planisphere of 1502 shows the line of the Treaty of Tordesillas.
Source: Wikimedia Commons

The first observed meridian in the Early Modern Period was the Paris Meridian surveyed by Jean-Félix Picard in the 1660s. Such meridians are called observed because their exact position on the globe is determined astronomically using a transit telescope.

In the Early Modern Period there was no consensus as to which meridian should be used for which purpose and on the whole each country used its own zero meridian. I fact it was not unusual for several different zero meridians to be used for different purposes or even the same purpose, with one country. For geographers, cartographers and navigators crossing borders chaos ruled. The awareness that a single Prime Meridian would be beneficial for all already existed in the seventeenth century but it wasn’t until the nineteenth century that serious moves were made to solve the problem.

The discussion were long and very complicated and involved scientific, political and pragmatic considerations, which often clashed with each other. On the political level nationalism, of course, raised its ugly head. Surprisingly, at least for me, there was also a very heated discussion as to whether the Prime Meridian should be a geographical or an observed meridian. I personally can discern no reasons in favour of a geographical Prime Meridian but various participants in the discussions could. Another problem was one or more Prime Meridians? Separate ones for cartography, navigation, astronomy and time determination.

Withers deals with all of these topics in great detail and very lucidly in his excellent summery of all of the discussions leading up to the International Meridian Conference in Washington in 1884, which forms the climax of his book.

The delegates to the International Meridian Conference in Washington in 1884
Source: Wikimedia Commons

This is a truly fascinating piece of the history of science and in Withers it has found a more than worthy narrator and I recommend his book whole-heartedly for anybody who might be interested in the topic. Very important is his penultimate chapter Washington’s Afterlife. Every year in October people in the Internet announce that on this day in 1884 (I can’t be bothered to look up the exact date) the Greenwich Meridian became the world’s Prime Meridian and every year my #histsci soul sisterTM Rebekah ‘Becky’ Higgitt (who played a significant role in the genesis of Withers’ book, as can be read in the acknowledgements) announces no it didn’t, the resolutions reached in Washington were non-binding. In fact the acceptance of Greenwich as the Prime Meridian took quite some time after the Washington Conference, some even accepting it initial only for some but not all the four functions sketched above. France, whose Paris Meridian was the main contender against Greenwich, only finally accepted Greenwich as the Prime Meridian in 1912.

I do have a couple of minor quibbles about Withers’ book. In the preface he outlines the structure of the book saying what takes place in each section. He repeats this in greater detail in the introduction. Then he starts each chapter with a synopsis of the chapter’s contents, often repeating what he has already said in the introduction, and closes the chapter with a summary of its contents. It was for this reader a little bit too much repetition. My second quibble concerns the illustrations and tables of which there are a fairly large number in the book. These are all basically black and white but are in fact printed black on a sort of pastel grey. I assume that the book designer thinks this makes them somehow artistically more attractive but I personally found that it makes it more difficult to determine the details, particularly on the many maps that are reproduced. Whatever I wouldn’t let these rather personal minor points interfere with my genuine whole-hearted recommendation.

[1] Chose the word that best fits your personal philosophy of mathematics

[2] Charles W. J. Withers, Zero Degrees: Geographies of the Prime Meridian, Harvard University Press, Cambridge Massachusetts, London England, 2017

1 Comment

Filed under History of Cartography, History of Navigation, History of science