Category Archives: History of science

The emergence of modern astronomy – a complex mosaic: Part XLIV

Whilst the European community mathematicians and physicist, i.e. those who could comprehend and understand it, were more than prepared to acknowledge Newton’s Principia as a mathematical masterpiece, many of them could not accept some of the very basic premises on which it was built. Following its publication the Baconians, the Cartesians and Leibniz were not slow in expressing their fundamental rejection of various philosophical aspects of Newton’s magnum opus.  

Francis Bacon had proposed a new scientific methodology earlier in the seventeenth century to replace the Aristotelian methodology.

Sir Francis Bacon, c. 1618

You will come across claims that Newton’s work was applied Baconianism but nothing could be further from the truth. Bacon rejected the concept of generating theories to explain a group of phenomena. In his opinion the natural philosopher should collect facts or empirical data and when they had acquired a large enough collections then the explanatory theories would crystallise out of the data. Bacon was also not a fan of the use of mathematics in natural philosophy. Because of this he actually rejected both the theories of Copernicus and Gilbert.

Newton, of course did the opposite he set up a hypothesis to explain a given set of seemingly related phenomena, deduced logical consequences of the hypothesis, tested the deduced conclusions against empirical facts and if the conclusions survive the testing the hypothesis becomes a theory. This difference in methodologies was bound to lead to a clash and it did. The initial clash took place between Newton and Flamsteed, who was a convinced Baconian. Flamsteed regarded Newton’s demands for his lunar data to test his lunar theory as a misuse of his data collecting. 

Source: Wikimedia Commons

The conflict took place on a wider level within the Royal Society, which was set up as a Baconian institution and rejected Newton’s type of mathematical theorising. When Newton became President of the Royal Society in 1704 there was a conflict between himself and his supporters on the one side and the Baconians on the other, under the leadership of Hans Sloane the Society’s secretary. At that time the real power in Royal Society lay with the secretary and not the president. It was first in 1712 when Sloane resigned as secretary that the Royal Society became truly Newtonian. This situation did not last long, when Newton died, Sloane became president and the Royal Society became fundamentally Baconian till well into the nineteenth century. 

Hans Sloane by Stephen Slaughter Source: Wikimedia Commons

This situation certainly contributed to the circumstances that whereas on the continent the mathematicians and physicists developed the theories of Newton, Leibnitz and Huygens in the eighteenth century creating out of them the physics that we now know as Newtonian, in England these developments were neglected and very little advance was made on the work that Newton had created. By the nineteenth century the UK lagged well behind the continent in both mathematics and physics.

The problem between Newton and the Cartesians was of a completely different nature. Most people don’t notice that Newton never actually defines what force is. If you ask somebody, what is force, they will probably answer mass time acceleration but this just tells you how to determine the strength of a given force not what it is. Newton tells the readers how force works and how to determine the strength of a force but not what a force actually is; this is OK because nobody else does either. The problems start with the force of gravity. 

Frans Hals – Portrait of René Descartes Source: Wikimedia Commons

The Cartesians like Aristotle assume that for a force to act or work there must be actual physical contact. They of course solve Aristotle’s problem of projectile motion, if I remove the throwing hand or bowstring, why does the rock or arrow keep moving the physical contact having ceased? The solution is the principle of inertia, Newton’s first law of motion. This basically says that it is the motion that is natural and it requires a force to stop it air resistance, friction or crashing into a stationary object. In order to explain planetary motion Descartes rejected the existence of a vacuum and hypothesised a dense, fine particle medium, which fills space and his planets are carried around their orbits on vortices in this medium, so physical contact. Newton demolished this theory in Book II of his Principia and replaces it with his force of gravity, which unfortunately operates on the principle of action at a distance; this was anathema for both the Cartesians and for Leibniz. 

What is this thing called gravity that can exercise force on objects without physical contact? Newton, in fact, disliked the concept of action at a distance just as much as his opponents, so he dodged the question. His tactic is already enshrined in the title of his masterpiece, the Mathematical Principles of Natural Philosophy. In the draft preface to the Principia Newton stated that natural philosophy must “begin from phenomena and admit no principles of things, no causes, no explanations, except those which are established through phenomena.” The aim of the Principia is “to deal only with those things which relate to natural philosophy”, which should not “be founded…on metaphysical opinions.” What Newton is telling his readers here is that he will present a mathematical description of the phenomena but he won’t make any metaphysical speculations as to their causes. His work is an operative or instrumentalist account of the phenomena and not a philosophical one like Descartes’.  

The Cartesians simply couldn’t accept Newton’s action at a distance gravity. Christiaan Huygens, the most significant living Cartesian natural philosopher, who was an enthusiastic fan of the Principia said quite openly that he simply could not accept a force that operated without physical contact and he was by no means alone in his rejection of this aspect of Newton’s theory. The general accusation was that he had introduced occult forces into natural philosophy, where occult means hidden.

Christiaan Huygens. Cut from the engraving following the painting of Caspar Netscher by G. Edelinck between 1684 and 1687. Source: Wikimedia Commons

Answering his critics in the General Scholium added to the second edition of the Principia in 1713 and modified in the third edition of 1726, Newton wrote:

Thus far I have explained the phenomena of the heavens and of our sea by the force of gravity, but I have not assigned a cause to gravity.

[…]

I have not been able to deduce from phenomena the reasons for these properties of gravity, and I do not feign hypotheses; and hypotheses, whether metaphysical or physical, or based on occult qualities, or mechanical, have no place in experimental philosophy. In this experimental philosophy, propositions are deduced from the phenomena and are made general by induction. The impenetrability, mobility, and impetus of bodies, and the laws of motion and the law of gravity have been found by this method. And it is enough that gravity really exists and acts according to the laws that we have set forth and is sufficient to explain all the motions of the heavenly bodies and of our sea.

Newton never did explain the cause of gravity but having introduced the concept of a pervasive aethereal medium in the Queries in Book III of his Opticks he asks if the attraction of the aether particles could be the cause of gravity. The Queries are presented as speculation for future research.

Both the Baconian objections to Newton’s methodology and the Cartesian objections to action at a distance were never disposed of by Newton but with time and the successes of Newton’s theory, for example the return of Comet Halley, the objections faded into the background and the Principia became the accepted dominant theory of the cosmos.

Leibniz shared the Cartesian objection to action at a distance but also had objections of his own.

Engraving of Gottfried Wilhelm Leibniz Source: Wikimedia Commons

In 1715 Leibniz wrote a letter to Caroline of Ansbach the wife of George Prince of Wales, the future George III, in which he criticised Newtonian physics as detrimental to natural theology. The letter was answered on Newton’s behalf by Samuel Clarke (1675–1729) a leading Anglican cleric and a Newtonian, who had translated the Opticks into Latin. There developed a correspondence between the two men about Newton’s work, which ended with Leibniz’s death in 1716. The content of the correspondence was predominantly theological but Leibniz raised and challenged one very serious point in the Principia, Newton’s concept of absolute time and space.

In the Scholium to the definitions at the beginning of Book I of Principia Newton wrote: 

1. Absolute, true, and mathematical time, in and of itself and of its own nature, without reference to anything external, flows uniformly and by another name is called duration. 

Relative, apparent, and common time […] is commonly used instead of true time.

2. Absolute space, of its own nature without reference to anything external, always remains homogeneous and immovable. Relative space is any moveable or dimension of the absolute space…

Newton is saying that space and time have a separate existence and all objects exists within them.

In his correspondence with Clarke, Leibniz rejected Newton’s use of absolute time and space, proposing instead a relational time and space; that is space and time are a system of relations that exists between objects. 

 In his third letter to Clarke he wrote:

As for my own opinion, I have said more than once, that I hold space to be something merely relative, as time is, that I hold it to be an order of coexistences, as time is an order of successions.

Leibniz died before any real conclusion was reached in this debate and it was generally thought at the time that Newton had the better arguments in his side but as we now know it was actually Leibniz who was closer to how we view time and space than Newton. 

Newton effectively saw off his philosophical critics and the Principia became the accepted, at least mathematical, model of the then known cosmos. However, there was still the not insubstantial empirical problem that no proof of any form of terrestrial motion had been found up to the beginning of the seventeenth century.

16 Comments

Filed under History of Astronomy, History of Physics, History of science, Newton

A scientific Dutchman

For many decades the popular narrative version of the scientific revolution started in Poland/Germany with Copernicus moving on through Tycho in Denmark, Kepler in Germany/Austria, Galileo et al in Northern Italy, Descartes, Pascal, Mersenne etc., in France and then Newton and his supporters and opponents in London. The Netherlands simply didn’t get a look in except for Christiaan Huygens, who was treated as a sort of honorary Frenchman. As I’ve tried to show over the years the Netherlands and its scholars–Gemma Frisius, Simon Stephen, Isaac Beeckman, the Snels, and the cartographers–actually played a central role in the evolution of the sciences during the Early Modern Period. In more recent years efforts have been made to increase the historical coverage of the contributions made in the Netherlands, a prominent example being Harold J Cook’s Matters of Exchange: Commerce, Medicine and Science in the Dutch Golden Age.[1]

A very strange anomaly in the #histSTM coverage concerns Christiaan Huygens, who without doubt belongs to the seventeenth century scientific elite. Whereas my bookcase has an entire row of Newton biographies, and another row of Galileo biographies and in both cases there are others that I’ve read but don’t own. The Kepler collection is somewhat smaller but it is still a collection. I have no idea how many Descartes biographies exist but it is quite a large number. But for Christiaan Huygens there is almost nothing available in English. The only biography I’m aware of is the English translation of Cornelis Dirk Andriesse’s scientific biography of Christiaan Huygens, The Man Behind the Principle.[2] I read this several years ago and must admit I found it somewhat lacking. This being the case, great expectation have been raised by the announcement of a new Huygens biography by Hugh Aldersey-Williams, Dutch Light: Christiaan Huygens and the Making of Science in Europe.[3]

huygens002

So does Aldersey-Williams fulfil those expectations? Does he deliver the goods? Yes and no, on the whole he has researched and written what is mostly an excellent biography of the Netherland’s greatest scientist[4] of the Early Modern Period but it is in my opinion marred by sloppy history of science fact checking that probably won’t be noticed by the average reader but being the notorious #histSTM pedant that I am I simply can’t and won’t ignore.[5]

My regular readers will known that I describe myself as a narrative contextual historian of science and I personally believe that if we are to understand how science has evolved historical then we have to tell that story with its complete context. This being the case I’m very happy to report that Aldersey-Williams is very much a narrative contextual historian, who tells the complete story of Christiaan Huygens life within its wider context and not just offering up a list of his scientific achievements. In fact what the reader gets for his money is not just a biography of Christiaan but also a biography of his entire family with some members being given more space than other. In particular it is a full biography of Christiaan and his father Constantijn, who played a significant and central role in shaping Christiaan’s life.

The book opens by setting the scientific scene in the early seventeenth-century Netherlands. We get introduced to those scientists, who laid the scientific foundations on which Christiaan would later build. In particular we get introduced to Simon Steven, who shaped the very practice orientated science and technology of the Early Modern Netherlands. We also meet other important and influential figures such as Hans Lipperhey, Isaac Beeckman, Willebrord Snel, Cornelius Drebbel and others.

There now follows what might be termed a book within a book as Aldersey-Williams delivers up a very comprehensive biography of Constantijn Huygens diplomat, poet, composer, art lover and patron and all round lover of knowledge. Constantijn was interested in and fascinated by almost everything both scientific and technological. His interest was never superficial but was both theoretical and practical. For example he was not only interested in the newly invented instruments, the telescope and the microscope, but he also took instruction in how to grind lenses and that from the best in the business. Likewise his love for art extended beyond buying paintings and patronising artists, such as Rembrandt, but to developing his own skills in drawing and painting. Here Aldersey-Williams introduces us to the Dutch term ‘kenner’ (which is the same in German), which refers to someone such Constantijn Huygens, whose knowledge of a subject is both theoretical and practical. Constantijn Huygens married Suzanna von Baerle for love and they had five children over ten years, four sons and a daughter, Christiaan was the second oldest, and Suzanna died giving birth to their daughter, also named Suzanna.

Constantijn Huygens brought up his children himself educating them in his own polymathic diversity with the help of tutors. When older the boys spent brief periods at various universities but were largely home educated. We now follow the young Christiaan and his older brother, also Constantijn, through their formative young years. The two oldest boys remained close and much of Christiaan’s astronomical work was carried out in tandem with his older brother. We follow Christiaan’s early mathematical work and his introduction into the intellectual circles of Europe, especially France and England, through his father’s widespread network of acquaintances. From the beginning Christiaan was set up to become either a diplomat, like his father, grandfather and brothers, or a scientist and it is the latter course that he followed.

Aldersey-Williams devotes an entire chapter to Christiaan’s telescopic observations of Saturn, with a telescope that he and Constantijn the younger constructed and his reputation making discovery of Titan the largest of Saturn’s moons, and the first discovered, and his determination that the strange shapes first observed by Galileo around Saturn were in fact rings. These astronomical discoveries established him as one of Europe’s leading astronomers. The following chapter deals with Huygens’ invention of the pendulum clock and his excursions into the then comparatively new probability theory.

Saturn and the pendulum clock established the still comparatively young Huygens as a leading light in European science in the second half of the seventeenth century and Aldersey-Williams now takes us through ups and downs of the rest of Christiaan’s life. His contact with and election to the Royal Society in London, as its first foreign member. His appointment by Jean-Baptist Colbert, the French First Minister of State, as a founding member of the Académie des sciences with a fairy generous royal pension from Louis XIV. His sixteen years in Paris, until the death of Colbert, during which he was generally acknowledged as Europe’s leading natural philosopher. His initial dispute over light with the young and comparatively unknown Newton and his tutorship of the equally young and unknown Leibniz. His fall from grace following Colbert’s death and his reluctant return to the Netherlands. The last lonely decade of his life in the Netherlands and his desire for a return to the scientific bustle of London or Paris. His partial rapprochement with Newton following the publication of the Principia. Closing with the posthumous publication of his works on gravity and optics. This narrative is interwoven with episodes from the lives of Constantijn the father and Constantijn his elder brother, in particular the convoluted politics of the Netherlands and England created by William of Orange, whose secretary was Constantijn, the younger, taking the English throne together with his wife Mary Stewart. Christiaan’s other siblings also make occasional appearances in letters and in person.

Aldersey-Williams has written a monumental biography of two generations of the Huygens family, who played major roles in the culture, politics and science of seventeenth century Europe. With a light, excellent narrative style the book is a pleasure to read. It is illustrated with 37 small grey in grey prints and 35 colour plates, which I can’t comment on, as my review proof copy doesn’t contain them. There are informative footnotes scattered through out the text and the, by me hated, hanging endnotes referring to the sources of direct quotes in the text. Here I had the experience more than once of looking up what I took to be a direct quote only to discover that it was not listed. There is an extensive bibliography of both primary and secondary sources and I assume an extensive index given the number of blank pages in my proof copy. There were several times when I was reading when I had wished that the index were actually there.

On the whole I would be tempted to give this book a glowing recommendation were it not for a series of specific history of science errors that simple shouldn’t be there and some general tendencies that I will now detail.

Near the beginning Aldersey-Williams tells us that ‘Stevin’s recommendation to use decimals in arithmetical calculations in place of vulgar fractions which could have any denominator [was] surely the sand-yacht of accountancy … Thirty years later, the Scottish mathematician John Napier streamlined Stevin’s notation by introducing the familiar comma or point to separate off the fractional part…” As is all too often the case no mention is made of the fact that Chinese and Arabic mathematicians had been using decimal fractions literally centuries before Stevin came up with the concept. In my opinion we must get away from this Eurocentric presentation of the history of science. Also the Jesuit mathematician Christoph Clavius introduced the decimal point less than ten years after Stevin’s introduction of decimal fractions, well ahead of Napier, as was its use by Pitiscus in 1608, the probable source of Napier’s use.

We also get told when discussing the Dutch vocabulary that Stevin created for science that, “Chemistry becomes scheikunde, the art of separation, an acknowledgement of the beginnings of a shift towards an analytical science, and a useful alternative to chemie that severs the etymological connections with disreputable alchemy.” This displays a complete lack of knowledge of alchemy in which virtually all the analytical methods used in chemistry were developed. The art of separation is a perfectly good term from the alchemy that existed when Stevin was creating his Dutch scientific vocabulary. Throughout his book Aldersey-Williams makes disparaging remarks about both alchemy and astrology, neither of which was practiced by any of the Huygens family, which make very clear that he doesn’t actually know very much about either discipline or the role that they played in the evolution of western science, astrology right down to the time of Huygens and Newton and alchemy well into the eighteenth century. For example, the phlogiston theory one of the most productive chemical theories in the eighteenth century had deep roots in alchemy.

Aldersey-Williams account of the origins of the telescope is a bit mangled but acceptable except for the following: “By the following spring, spyglasses were on sale in Paris, from where one was taken to Galileo in Padua. He tweaked the design, claimed the invention as his own, and made dozens of prototypes, passing on his rejects so that very soon even more people were made aware of this instrument capable of bringing the distant close.”

Firstly Galileo claimed that he devised the principle of the telescope and constructed his own purely on verbal descriptions without having actually seen one but purely on his knowledge of optics. He never claimed the invention as his own and the following sentence is pure rubbish. Galileo and his instrument maker produced rather limited numbers of comparatively high quality telescopes that he then presented as gifts to prominent political and Church figures.

Next up we have Willebrord Snel’s use of triangulation. Aldersey-Williams tells us, “ This was the first practical survey of a significant area of land, and it soon inspired similar exercises in England, Italy and France.” It wasn’t. Mercator had previously surveyed the Duchy of Lorraine and Tycho Brahe his island of Hven before Snel began his surveying in the Netherlands. This is however not the worst, Aldersey-Williams tells us correctly that Snel’s survey stretched from Alkmaar to Bergen-op-Zoom “nearly 150 kilometres to the south along approximately the same meridian.” Then comes some incredible rubbish, “By comparing the apparent height of his survey poles observed at distance with their known height, he was able to estimate the size of the Earth!”

What Snel actually did, was having first accurately determined the length of a stretch of his meridian using triangulation, the purpose of his survey and not cartography, he determined astronomically the latitude of the end points. Having calculated the difference in latitudes it is then a fairly simple exercise to determine the length of one degree of latitude, although for a truly accurate determination one has to adjust for the curvature of the Earth.

Next up with have the obligatory Leonard reference. Why do pop history of science books always have a, usually erroneous, Leonardo reference? Here we are concerned with the camera obscura, Aldersey-Williams writes: “…Leonardo da Vinci gave one of the first accurate descriptions of such a design.” Ibn al-Haytham gave accurate descriptions of the camera obscura and its use as a scientific instrument about four hundred and fifty years before Leonardo was born in a book that was translated into Latin two hundred and fifty years before Leonardo’s birth. Add to this the fact that Leonardo’s description of the camera obscura was first published late in the eighteenth century and mentioning Leonardo in this context becomes a historical irrelevance. The first published European illustration of a camera obscura was Gemma Frisius in 1545.

When discussing Descartes, a friend of Constantijn senior and that principle natural philosophical influence on Christiaan we get a classic history of mathematics failure. Aldersey-Williams tells us, “His best known innovation, of what are now called Cartesian coordinates…” Whilst Descartes did indeed cofound, with Pierre Fermat, modern algebraic analytical geometry, Cartesian coordinates were first introduced by Frans van Schooten junior, who of course features strongly in the book as Christiaan’s mathematics teacher.

Along the same lines as the inaccurate camera obscura information we have the following gem, “When applied to a bisected circle (a special case of the ellipse), this yielded a new value, accurate to nine decimal places, of the mathematical constant π, which had not been improved since Archimedes” [my emphasis] There is a whole history of the improvements in the calculation of π between Archimedes and Huygens but there is one specific example that is, within the context of this book, extremely embarrassing.

Early on when dealing with Simon Stevin, Aldersey-Williams mentions that Stevin set up a school for engineering, at the request of Maurits of Nassau, at the University of Leiden in 1600. The first professor of mathematics at this institution was Ludolph van Ceulen (1540–1610), who also taught fencing, a fact that I find fascinating. Ludolph van Ceulen is famous in the history of mathematics for the fact that his greatest mathematical achievement, the Ludophine number, is inscribed on his tombstone, the accurate calculation of π to thirty-five decimal places, 3.14159265358979323846264338327950288…

Next up we have Christiaan’s correction of Descartes laws of collision. Here Aldersey-Williams writes something that is totally baffling, “The work [his new theory of collision] only appeared in a paper in the French Journal des Sçavans in 1669, a few years after Newton’s laws of motion [my emphasis]…” Newton’s laws of motion were first published in his Principia in 1687!

Having had the obligatory Leonardo reference we now have the obligatory erroneous Galileo mathematics and the laws of nature reference, “Galileo was the first to fully understand that mathematics could be used to describe certain laws of nature…” I’ve written so much on this that I’ll just say here, no he wasn’t! You can read about Robert Grosseteste’s statement of the role of mathematics in laws of nature already in the thirteenth century, here.

Writing about Christiaan’s solution of the puzzle of Saturn’s rings, Aldersey-Williams say, “Many theories had been advanced in the few years since telescopes had revealed the planet’s strange truth.” The almost five decades between Galileo’s first observation of the rings and Christiaan’s solution of the riddle is I think more than a few years.

Moving on Aldersey-Williams tells us that, “For many however, there remained powerful reasons to reject Huygens’ discovery. First of all, it challenged the accepted idea inherited from Greek philosophers that the solar system consisted exclusively of perfect spherical bodies occupying ideal circular orbits to one another.” You would have been hard put to it to find a serious astronomer ín 1660, who still ascribed to this Aristotelian cosmology.

The next historical glitch concerns, once again, Galileo. We read, “He dedicated the work [Systema Saturnium] to Prince Leopoldo de’ Medici, who was patron of the Accademia del Cimento in Florence, who had supported the work of Huygens’ most illustrious forebear, Galileo.” Ignoring the sycophantic description of Galileo, one should perhaps point out that the Accademia del Cimento was founded in 1657 that is fifteen years after Galileo’s death and so did not support his work. It was in fact founded by a group of Galileo’s disciples and was dedicated to continuing to work in his style, not quite the same thing.

Galileo crops up again, “the real power of Huygens’ interpretation was its ability to explain those times when Saturn’s ‘handles’ simply disappeared from view, as they had done in 1642, finally defeating the aged Galileo’s attempts to understand the planet…” In 1642, the year of his death, Galileo had been completely blind for four years and had actually given up his interest in astronomy several years earlier.

Moving on to Christiaan’s invention of the pendulum clock and the problem of determining longitude Aldersey-Williams tells us, “The Alkmaar surveyor Adriaan Metius, brother of the telescope pioneer Jacob, had proposed as long ago as 1614 that some sort of seagoing clock might provide the solution to this perennial problem of navigators…” I feel honour bound to point out that Adriaan Metius was slightly more than simply a surveyor, he was professor for mathematics at the University of Franeker. However the real problem here is that the clock solution to the problem of longitude was first proposed by Gemma Frisius in an appendix added in 1530, to his highly popular and widely read editions of Peter Apian’s Cosmographia. The book was the biggest selling and most widely read textbook on practical mathematics throughout the sixteenth and well into the seventeenth century so Huygens would probably have known of Frisius’ priority.

Having dealt with the factual #histSTM errors I will now turn to more general criticisms. On several occasions Aldersey-Williams, whilst acknowledging problems with using the concept in the seventeenth century, tries to present Huygens as the first ‘professional scientist’. Unfortunately, I personally can’t see that Huygens was in anyway more or less of a professional scientist than Tycho, Kepler or Galileo, for example, or quite a long list of others I could name. He also wants to sell him as the ‘first ever’ state’s scientist following his appointment to the Académie des sciences and the accompanying state pension from the king. Once again the term is equally applicable to Tycho first in Denmark and then, if you consider the Holy Roman Empire a state, again in Prague as Imperial Mathematicus, a post that Kepler inherited. Galileo was state ‘scientist’ under the de’ Medici in the Republic of Florence. One could even argue that Nicolas Kratzer was a state scientist when he was appointed to the English court under Henry VIII. There are other examples.

Aldersey-Williams’ next attempt to define Huygens’ status as a scientist left me somewhat speechless, “Yet it is surely enough that Huygens be remembered for what he was, a mere problem solver indeed: pragmatic, eclectic and synthetic and ready to settle for the most probable rather than hold out for the absolutely certain – in other words. What we expect a scientist to be today.” My ten years as a history and philosophy of science student want to scream, “Is that what we really expect?” I’m not even going to go there, as I would need a new blog post even longer than this one.

Aldersey-Williams also tries to present Huygens as some sort of new trans European savant of a type that had not previously existed. Signifying cooperation across borders, beliefs and politics. This is of course rubbish. The sort of trans European cooperation that Huygens was involved in was just as prevalent at the beginning of the seventeenth century in the era of Tycho, Kepler, Galileo, et al. Even then it was not new it was also very strong during the Renaissance with natural philosophers and mathematici corresponding, cooperating, visiting each other, and teaching at universities through out the whole of Europe. Even in the Renaissance, science in Europe knew no borders. It’s the origin of the concept, The Republic of Letters. I suspect my history of medieval science friend would say the same about their period.

In the partial rapprochement between Huygens and Newton following the Publication of the latter’s Principia leads Aldersey-Williams to claim that a new general level of reasonable discussion had entered scientific debate towards the end of the seventeenth century. Scientists, above all Newton, were still going at each other hammer and tongs in the eighteenth century, so it was all just a pipe dream.

Aldersey-Williams sees Huygens lack of public profile, as a result of being in Newton’s shadow like Hooke and others. He suggests that popular perception only allows for one scientific genius in a generation citing Galileo’s ascendance over Kepler, who he correctly sees as the more important, as another example. In this, I agree with him, however he tries too hard to put Huygens on the same level as Newton as a scientist, as if scientific achievement were a pissing contest. I think we should consider a much wider range of scientists when viewing the history of science but I also seriously think that no matter how great his contributions Huygens can’t really match up with Newton. Although his Horologium oscillatorium sive de motu pendularium was a very important contribution to the debate on force and motion, it can’t be compared to Newton’s Principia. Even if Huygens did propagate a wave theory of light his Traité de la lumière is not on a level with Newton’s Opticks. He does have his Systema saturniumbut as far as telescopes are concerned Newton’s reflector was a more important contribution than any of Huygens refractor telescopes. Most significant, Newton made massive contributions to the development of mathematics, Huygens almost nothing.

Talking of Newton, in his discussion of Huygens rather heterodox religious views Aldersey-Williams discussing unorthodox religious views of other leading scientists makes the following comment, “Newton was an antitrinitarian, for which he was considered a heretic in his lifetime, as well as being interested in occultism and alchemy.” Newton was not considered a heretic in his lifetime because he kept his antitrinitarian views to himself. Alchemy yes, but occultism, Newton?

I do have one final general criticism of Aldersey-Williams’ book. My impression was that the passages on fine art, poetry and music, all very important aspects of the life of the Huygens family, are dealt with in much greater depth and detail than the science, which I found more than somewhat peculiar in a book with the subtitle, The Making of Science in Europe. I’m not suggesting that the fine art, poetry and music coverage should be less but that the science content should have been brought up to the same level.

Despite the long list of negative comments in my review I think this is basically a very good book that could in fact have been an excellent book with some changes. Summa summarum it is a flawed masterpiece. It is an absolute must read for anybody interested in the life of Christiaan Huygens or his father Constantijn or the whole Huygens clan. It is also an important read for those interested in Dutch culture and politics in the seventeenth century and for all those interested in the history of European science in the same period. It would be desirable if more works with the wide-ranging scope and vision of Aldersey-Williams volume were written but please without the #histSTM errors.

[1] Harold J Cook, Matters of Exchange: Commerce, Medicine and Science in the Dutch Golden Age, Yale University Press, New Haven & London, 2007

[2] Cornelis Dirk Andriesse, The Man Behind the Principle, scientific biography of Christiaan Huygens, translated from Dutch by Sally Miedem, CUP, Cambridge, 2005

[3] Hugh Aldersey-Williams, Dutch Light: Christiaan Huygens and the Making of Science in Europe, Picador, London, 2020.

[4] Aldersey-Williams admits that the use of the term scientist is anachronistic but uses it for simplicity’s sake and I shall do likewise here.

[5] I have after all a reputation to uphold

18 Comments

Filed under Book Reviews, History of Astronomy, History of Mathematics, History of Navigation, History of Optics, History of Physics, History of science, Newton

Giambattista della Porta the most polymathic of all Renaissance polymaths?

Giambattista della Porta (1535(?)–1615) is well known to historians of Renaissance science but for the general public he remains a largely unknown figure. If he is known at all,  he is often written off as an occultist, because of the title of his most well known work Magia Naturalis. In fact in the late sixteenth and early seventeenth centuries he was a highly respected and influential member of the Italian Renaissance scientific community. Although he wrote and published profusely over a wide range of scientific and related topics he made no really major discoveries and produced no major inventions and unlike his contemporaries, Kepler and Galileo, who were both well acquainted with his work, he has been largely forgotten.

Giambattista_della_Porta

Giambattista della Porta Source: Wikimedia Commons

Giambattista Della Porta were born at Vico Equense, Near Naples, probably sometime in 1535 (he created the confusion about his birth date), the third of four sons of the nobleman Nardo Antonio dell Porta of whom three survived childhood.  His parental home resembled an intellectual salon where the boys were continually exposed to and educated by visiting philosophers, mathematicians, poets and musicians. Their education was completed by private tutors, who also taught the boys the attributes of a gentleman, dancing, riding, skilled performance in tournaments and games and how to dress well. Della Porta never attended university but enjoyed life as a well educated polymathic, gentleman of leisure. If he can be considered to have had a profession, then it is that of a dramatist, he wrote more than twenty theatrical works, but it is his extensive activities in the sciences that interest us here.

Already in 1558, at the age of 23, he published the fist version of his most well known work, the Magia Naturalis in four books, a sort of encyclopaedia of the Renaissance sciences. From the beginning it was a bestseller running to five editions in Latin within the first ten years with translations into Italian (1560), French (1565), Dutch (1566) and English (1658). A vastly expanded version in twenty books was published in 1589. This final version covers a wide range of topics:

Magiae_naturalis_sive_de_miraculis_rerum_naturalium_(Giovanni_Battista_Della_Porta,_1584)

Source: Wikimedia Commons

Book 1: Of the Causes of Wonderful Things Book 2: Of the Generation of Animals Book 3: Of the Production of New Plants Book 4: Of Increasing Household-Stuff Book 5: Of Changing Metals Book 6: Of Counterfeiting Glorious StonesBook 7: Of the Wonders of the Load-Stone Book 8: Of Physical Experiments Book 9: Of Beautifying Women Book 10: Of Distillation Book 11: Of Perfuming Book 12: Of Artificial Fires Book 13: Of Tempering Steel Book 14: Of CookeryBook 15: Of Fishing, Fowling, Hunting, etc. Book 16: Of Invisible Writing Book 17: Of Strange Glasses Book 18: Of Static Experiments Book 19: Of Pneumatic Experiment Book 20: Of the Chaos

The contents range from fairly banal parlour tricks, over engineering, experimental science, horticulture and husbandry to every day things. At the very beginning della Porta is very careful to explain what exactly he mean by the term natural magic:

There are two sorts of Magick; the one is infamous, and unhappy, because it has to do with foul Spirits and consists of incantations and wicked curiosity; and this is called Socery; an art which all learned and good men detest; neither is it able to yield an truth of reason or nature, but stands merely upon fancies and imaginations, such as vanish presently away, and leave nothing behind them; as Jamblicus writes in his book concerning the mysteries of the Egyptians. The other Magick is natural; which all excellent wise men do admit and embrace, and worship with great applause; neither is there any thing more highly esteemed, or better thought of, by men of learning. The most noble Philosophers that ever were, Pythagorus, Empedocles, Democritus, and Plato forsook their own countries, and lived abroad as exiles and banished men, rather than as strangers; and all to search out and to attain this knowledge; and when they came home again, this was the Science which they professed, and this they esteemed a profound mystery. They that have been most skillful in dark and hidden points of learning, do call this knowledge the very highest point, and the perfection’s of Natural Sciences; inasmuch that if they could find out or devise amongst all Natural Sciences, any one thing more excellent or more wonderful then another, that they would still call by the name of  Magick. Others have named it the practical part of natural Philosophy, which produces her effects by the mutual and fit application of one natural thing unto another.

The association of Magick with natural philosophy is continued in della Porta’s definition of the Magician:

This is what is required to instruct a Magician, both what he must know, and what he must observe; that being sufficiently instructed in every way, he may bring very strange and wonderful things to us. Seeing Magick, as we showed before, as a practical part of natural Philosophy, it behooves a Magician and one that aspires to the dignity of the profession, to be an exact and very perfect Philosopher.

Despite the very diverse nature of the Magia Naturalis it does contain elements of genuine experimental science. For example, it contains the first experimental disproof of the widely held medieval belief that garlic disables magnets. He also experimented with the cooling properties of dissolving nitre in water. As described here by Andrea Sella (@SellaTheChemist)

As well as the Magia Naturalis della Porta wrote and published a large number of monographs on a very wide range of topics. Cryptography was a popular topic in Renaissance Europe, the most famous book being Johannes Trithemius’ Poligraphia, della Porta published his De Furtivis Literarum Notis (1563), which contain innovative cryptographical ideas.

bub_gb_sc-Zaq8_jFIC_0004

In 1586 he published a work on physiognomy De humana physiognomonia libri IIII,

800px-De_humana_physiognomonia_libri_IIII_-_NLM_NIH_-_page_19

From De humana physiognomonia, 1586 Source: Wikimedia Commons

which was still being referenced in the nineteenth century, two years later a book on phytonomy (the science of the origin and growth of plants), Phytognomonica, which contains the first observations on fungal spores.

G._B._della_Porta,_Phytognomonica,_1588_Wellcome_L0030483

Phytognomonica, 1588 Source: Wikimedia Commons

These two books confirm della Porta’s adherence to the Renaissance doctrine of signatures. This theory claimed that it was possible to determine the nature of things based on their external appearances.

This was by no means the limit to della Porta’s publishing activities. He also wrote an agricultural encyclopaedia, separate volumes on various fruit bearing trees, books on mathematics, astronomy, meteorology, military engineering, distillation and in 1589 a book on optics, his De refractione optics. We shall return to the latter.

thumbnail-by-url.json

This incredible literary outpouring was just part of his scientific activity, in about 1560 he founded an academic society, Accademia dei Segreti (Academia Secratorum Naturae), the Academy of the Secrets of Nature, which is considered to be the earliest scientific society. The academy met regularly in della Porta’s home and membership was open to all but to become a member one had to present a new secret of nature that one had discovered. We know what some of those new secrets were as della Porta included them in the twenty volume version of his Magia Naturalis. In 1578 della Porta was summoned to Rome and investigated by the Pope. We do not know the exact grounds for this summons but he was forced to shut down his academy on suspicion of sorcery. This is to a certain extent ironic because della Porta was very careful in all his writing to avoid controversial topics particularly religious ones.

Although it was shut down the Accademia dei Segreti, would later have a major influence on another, much more renowned, early scientific academy, Federico Cesi’s Accademia dei Lincei. Cesi was a huge admirer of della Porta and as a young man travelled to Naples to visit the older natural philosopher. On his return home he founded his own academy, whose name was inspired by a line from the preface of the Magia Naturalis:

… with lynx like eyes, examining those things which manifest themselves, so that having observed them, he may zealously use them.

In 1610 della Porta became the fifth member of the Accademia dei Lincei, one year before Galileo.

Another important aspect of Renaissance science was the establishment of private natural philosophical museums also known as Wunderkammer, or cabinets of curiosity. Della Porta had, as to be expected, a particular fine cabinet of curiosity that would influence others to create their own, the Jesuit Athanasius Kircher for example.

RitrattoMuseoFerranteImperato

Fold-out engraving from Ferrante Imperato’s Dell’Historia Naturale (Naples 1599), the earliest illustration of a natural history cabinet Source: Wikimedia Commons

Della Porta made minor contribution to the advance of science and engineering over a wide range of disciplines but I first ran into della Porta in the context of the history of optics and it his association with this history that I want to look at in somewhat more detail. The early seventeenth century saw both a significant turn in the theory of optics and independently of that the invention of the telescope, an instrument that would go one to revolutionise astronomy, della Porta played a minor roll in both of these things.

The invention of the telescope, by Hans Lipperhey, first became public in September 1608 and the role it would play in the future of astronomy became explosively obvious when Galileo published his Sidereus Nuncius in March 1610. Already in August 1609 della Porta wrote a letter to Federico Cesi claiming to have invented the telescope, he wrote:

I have seen the secret use of the eyeglass and it’s a load of balls [coglionaria] in any case it is taken from book 9 of my De Refractione.[1]

Here della Porta’s memory is faulty, he is after all over seventy years old, what he is referring to is not in the De Refractione but rather in Chapter 10 of Book 17 of Magia Naturalis (1589). Here we find the following suggestive description:

Concave Lenticulars will make one see most clearly things that are afar off.  But Convexes, things near at hand.  So you may use them as your sight requires.  With a Concave Lenticulars you shall see small things afar off very clearly.  With a Convex Lenticular, things nearer to be greater, but more obscurely.  If you know how to fit them both together, you shall see both things afar off, and things near hand, both greater and clearly.  I have much helped some of my friends, who saw things afar off, weakly, and what was near, confusedly, that they might see all things clearly.  If you will, you may.

The lens combination that della Porta describes here is indeed that of the Dutch or Galilean telescope but as van Helden say, and I agree with him, he is here describing some form of spectacles but not a telescope. Kepler, however, who owned a copy of Magia Naturalis credits him with being the inventor of the telescope in his Dissertatio cum Nuncio Sidereo (Conversation with the Starry Messenger) (1610), where he wrote that a recent Dutch invention had been made public years earlier in Magia Naturalis. In 1641 Pierre Gassendi stated that the actual invention had been made by chance by Metius [Jacob Metius (after 1571–1628), who applied for a patent for a telescope two weeks later than Lipperhey] the idea for a similar one had been published years earlier by della Porta.

Later della Porta would graciously admit that his fellow Lynx, Galileo, had achieved much more with his telescope that he, della Porta, could have ever have hoped to do, whilst not abandoning his claim to having first conceived of the telescope.

Della Porta also played a small role in the history of the camera obscura, describing the improvement to the image obtained by placing convex lens into the pinhole, something probably first suggested by Gerolamo Cardano. He also suggested, this time as the first to do so, using a concave mirror to project the image onto a sheet of paper to facilitate drawing it. The popularity of the Magia Naturalis did much to spread knowledge of the camera obscura and its utility as a drawing instrument. Interestingly della Porta compared his camera obscura with the human eye but, unlike Kepler, failed to make the connection that the lens focuses the image on the retina. He continued to believe like everybody before him that the image in perceived in the lens itself.

1545_gemma_frisius_-_camera-obscura-sonnenfinsternis_1545-650x337

First published picture of camera obscura in Gemma Frisius’ 1545 book De Radio Astronomica et Geometrica Source: Wikimedia Commons

Della Porta’s role in the turn in the theory of optics is less disputed but not so widely discussed.  Ancient Greek optics was almost exclusively about theories of vision and when taken up and developed in the Islamic Middle Ages this too remained the emphasis. Ibn al-Haytham in his work on optics showed that one could combine an intromission theory of vision with the geometric optics of Euclid, Hero and Ptolemaeus, who had all propagated an extramission theory of vision. This was a major development in the history of optics. In the thirteenth century Robert Grosseteste introduced optics as a central element in both his vision of science and his theology, which led to it being established as a mathematical discipline on the medieval university. Shortly after Roger Bacon, John Peckham and Witelo introduced al-Haytham’s theories on optics into the medieval European mainstream founding what became known as the perspectivist school of optics. Strangely there were no real further developments in the theory of optics down to the end of the sixteenth century when Johannes Kepler, almost singlehandedly, turned the study of optics from one of theories of vision to one of theories of light, thereby ending the reign of the perspectivists. I say almost singlehandedly but he did have two predecessors, who made minor contributions to this turn, Francesco Maurolico (1494–1575) and della Porta.

One major flaw in the perspectivist theory was its treatment of spherical convex lenses and spherical concave mirrors, which said that the images created by them appeared at a single focus point; this is a fallacy. This flaw was in the theory from its inception in the thirteenth century and remained unchecked and uncorrected all the way down to the end of the sixteenth century. The fact that the don’t create their images at a single focal point is, of course, the cause of spherical aberration, something that would plague the construction of telescopes and microscopes well into the eighteenth century. The man who corrected this error in optical theory was della Porta.  Using a mixture of experiments and analytical light ray tracing he came very close to the correct solution an important step towards Kepler’s light ray based theory of optics.

della001

Della Porta’s ray tracing analysis of the reflection of a spherical concave mirror A. Mark Smith, “From Sight to Light: The Passage from Ancient to Modern Optics”, Chicago University Press, 2015 p. 349

Giambattista della Porta is an interesting example of a widespread phenomenon in the history of science. In his own times he was highly respected and regarded, throughout Europe, as a leading natural Philosopher. His books, translated into many languages, were bestsellers and that even long after his death. Johannes Kepler was a fan and Galileo disliked him because he saw him as a serious rival for the position of top dog natural philosopher, a position that Galileo very much desired for himself. However, today most people have never even heard of him and if then he is largely dismissed as a minor irrelevance or even, because of the title of his major work, as some sort of anti-science occultist. But if historians really want to understand what was going on in the scientific community of Europe in the Early Modern Period then they have to take figures like della Porta seriously and not just focus on the ‘big names’ such as Kepler and Galileo.

 

 

 

 

 

 

 

 

 

 

 

 

[1] Quoted from David Freedberg, The Eye of the Lynx: Galileo, His Friends and the Beginnings of Modern Natural History, University of Chicago Press, Chicago and London, 2002, ppb. p. 101 Albert van Helden in his The Invention of the Telescope, American Philosophical Society, Philadelphia, 1977, Reprint, 2008, translates the phrase with coglionaria as …”it’s a hoax” pp. 44-45

1 Comment

Filed under History of Optics, History of science, Renaissance Science

Our medieval technological inheritance.

“Positively medieval” has become a universal put down for everything considered backward, ignorant, dirty, primitive, bigoted, intolerant or just simply stupid in our times. This is based on a false historical perspective that paints the Middle Ages as all of these things and worse. This image of the Middle Ages has its roots in the Renaissance, when Renaissance scholars saw themselves as the heirs of all that was good, noble and splendid in antiquity and the period between the fall of the Roman Empire and their own times as a sort of unspeakable black pit of ignorance and iniquity. Unfortunately, this completely false picture of the Middle Ages has been extensively propagated in popular literature, film and television.

Particularly in the film and television branch, a film or series set in the Middle Ages immediately calls for unwashed peasants herding their even filthier swine through the mire in a village consisting of thatch roofed wooden hovels, in order to create the ‘correct medieval atmosphere’. Add a couple of overweight, ignorant, debauching clerics and a pox marked whore and you have your genuine medieval ambient. You can’t expect to see anything vaguely related to science or technology in such presentations.

Academic medieval historians and historians of science and technology have been fighting an uphill battle against these popular images for many decades now but their efforts rarely reach the general lay public against the flow of the latest bestselling medieval bodice rippers or TV medieval murder mystery. What is needed, is as many semi-popular books on the various aspects of medieval history as possible. Whereby with semi-popular I mean, written for the general lay reader but with its historical facts correct. One such new volume is John Farrell’s The Clock and the Camshaft: And Other Medieval Inventions We Still Can’t Live Without.[1]

Farrell001

Farrell’s book is a stimulating excursion through the history of technological developments and innovation in the High Middle Ages that played a significant role in shaping the modern world.  Some of those technologies are genuine medieval discoveries and developments, whilst others are ones that either survived or where reintroduced from antiquity. Some even coming from outside of Europe. In each case Farrell describes in careful detail the origins of the technology in question and if known the process of transition into European medieval culture.

The book opens with agricultural innovations, the deep plough, the horse collar and horse shoes, which made it possible to use horses as draught animals instead of or along side oxen, and new crop rotation systems. Farrell explains why they became necessary and how they increased food production leading indirectly to population growth.

Next up we have that most important of commodities power and the transition from the hand milling of grain to the introduction of first watermills and then windmills into medieval culture. Here Farrell points out that our current knowledge would suggest that the more complex vertical water mill preceded the simpler horizontal water mill putting a lie to the common precept that simple technology always precedes more complex technology. At various points Farrell also addresses the question as to whether technological change drives social and culture change or the latter the former.

Farrell002

Having introduced the power generators, we now have the technological innovations necessary to adapt the raw power to various industrial tasks, the crank and the camshaft. This is fascinating history and the range of uses to which mills were then adapted using these two ingenious but comparatively simple power take offs was very extensive and enriching for medieval society. One of those, in this case an innovation from outside of Europe, was the paper mill for the production of that no longer to imagine our society without, paper. This would of course in turn lead to that truly society-changing technology, the printed book at the end of the Middle Ages.

Farrell004

Along side paper perhaps the greatest medieval innovation was the mechanical clock. At first just a thing of wonder in the towers of some of Europe’s most striking clerical buildings the mechanical clock with its ability to regulate the hours of the day in a way that no other time keeper had up till then gradually came to change the basic rhythms of human society.

Talking of spectacular clerical buildings the Middle Ages are of course the age of the great European cathedrals. Roman architecture was block buildings with thick, massive stonewalls, very few windows and domed roofs. The art of building in stone was one of the things that virtually disappeared in the Early Middle Ages in Europe. It came back initially in an extended phase of castle building. Inspired by the return of the stonemason, medieval, European, Christian society began the era of building their massive monuments to their God, the medieval cathedrals. Introducing architectural innovation like the pointed arch, the flying buttress and the rib vaulted roof they build large, open buildings flooded with light that soared up to the heavens in honour of their God. Buildings that are still a source of wonder today.

Farrell003

In this context it is important to note that Farrell clearly explicates the role played by the Catholic Church in the medieval technological innovations, both the good and the bad. Viewed with hindsight the cathedrals can be definitely booked for the good but the bad? During the period when the watermills were introduced into Europe and they replaced the small hand mills that the people had previously used to produce their flour, local Church authorities gained control of the mills, a community could only afford one mill, and forced the people to bring their grain to the Church’s mill at a price of course. Then even went to the extent of banning the use of hand mills.

People often talk of the Renaissance and mean a period of time from the middle of the fifteenth century to about the beginning of the seventeenth century. However, for historians of science there was a much earlier Renaissance when scholars travelled to the boundaries between Christian Europe and the Islamic Empire in the twelfth and thirteenth centuries in order to reclaim the knowledge that the Muslims had translated, embellished and extended in the eight and ninth centuries from Greek sources. This knowledge enriched medieval science and technology in many areas, a fact that justifies its acquisition here in a book on technology.

Another great medieval invention that still plays a major role in our society, alongside the introduction of paper and the mechanical clock are spectacles and any account of medieval technological invention must include their emergence in the late thirteenth century. Spectacles are something that initially emerged from Christian culture, from the scriptoria of the monasteries but spread fairly rapidly throughout medieval society. The invention of eyeglasses would eventually lead to the invention of the telescope and microscope in the early seventeenth century.

Another abstract change, like the translation movement during that first scientific Renaissance, was the creation of the legal concept of the corporation. This innovation led to the emergence of the medieval universities, corporations of students and/or their teachers. There is a direct line connecting the universities that the Church set up in some of the European town in the High Middle Ages to the modern universities throughout the world. This was a medieval innovation that truly helped to shape our modern world.

Farrell’s final chapter in titled The Inventions of Discovery and deals both with the medieval innovations in shipbuilding and the technology of the scientific instruments, such as astrolabe and magnetic compass that made it possible for Europeans to venture out onto the world’s oceans as the Middle Ages came to a close. For many people Columbus’ voyage to the Americas in 1492 represents the beginning of the modern era but as Farrell reminds us all of the technology that made his voyage possible was medieval.

All of the above is a mere sketch of the topics covered by Farrell in his excellent book, which manages to pack an incredible amount of fascinating information into what is a fairly slim volume. Farrell has a light touch and leads his reader on a voyage of discovery through the captivating world of medieval technology. The book is beautifully illustrated by especially commissioned black and white line drawing by Ryan Birmingham. There are endnotes simply listing the sources of the material in main text and an extensive bibliography of those sources. The book also has, what I hope, is a comprehensive index.[2]

Farrell’s book is a good, readable guide to the world of medieval technology aimed at the lay reader but could also be read with profit by scholars of the histories of science and technology and as an ebook or a paperback is easily affordable for those with a small book buying budget.

So remember, next time you settle down with the latest medieval pot boiler with its cast of filthy peasants, debauched clerics and pox marked whores that the paper that it’s printed on and the reading glasses you are wearing both emerged in Europe in the Middle Ages.

[1] John W. Farrell, The Clock and the Camshaft: And Other Medieval Inventions We Still Can’t Live Without, Prometheus Books, 2020.

[2] Disclosure: I was heavily involved in the production of this book, as a research assistant, although I had nothing to do with either the conception or the actual writing of the book that is all entirely John Farrell’s own work. However, I did compile the index and I truly hope it will prove useful to the readers.

11 Comments

Filed under Book Reviews, History of science, History of Technology, Mediaeval Science

The emergence of modern astronomy – a complex mosaic: Part XL

The event that would eventually lead to Isaac Newton writing and publishing his magnum opus, the Philosophiæ Naturalis Principia Mathematica (the Mathematical Principles of Natural Philosophy), took place in a London coffee house.

Prinicipia-title

Title page of ‘Principia’, first edition (1687). Source: Wikimedia Commons

This is not quite as strange as it might at first appear, shortly after their first appearance in England around 1650 coffee houses became the favourite meeting places of the English scientific intelligentsia, the astronomers, mathematicians and natural philosophers. Here, these savants would meet up to exchange ideas, discuss the latest scientific theories and pose challenges to each other. These institutions also earned the appellation Penny Universities, as some of those savants, such as William Whiston, Francis Hauksbee and Abraham de Moivre, bettered their incomes by holding lectures or demonstrating experiments to willing audiences, who paid the price of a cup of coffee, a penny, for their intellectual entertainment. Later, after he had become Europe’s most famous living natural philosopher, Isaac Newton would come to hold court in a coffee shop, surrounded by his acolytes, the original Newtonians, distributing words of wisdom and handing round his unpublished manuscripts for scrutiny. However, all that still lay in the future.

One day in January 1684 Christopher Wren, Robert Hooke and Edmond Halley were discussing the actual astronomical theories over a cup of coffee. Wren, today better known as one of England most famous architects, was a leading mathematician and astronomers, who had served both as Gresham and Savilian professor of astronomy. Newton would name him along with John Wallis and William Oughtred as one of the three leading English mathematicians of the seventeenth century.

Christopher_Wren

Wren, portrait c.1690 by John Closterman Source: Wikimedia Commons

Hooke was at the time considered to be the country’s leading experimental natural philosopher and Halley enjoyed an excellent reputation as a mathematician and astronomer.

NPG 4393; Edmond Halley by Richard Phillips

Portrait by Richard Phillips, before 1722 Source: Wikimedia Commons

The topic of discussion was Kepler’s elliptical, heliocentric astronomy and an inverse, squared law of gravity. All three men had arrived separately and independently at an inverse, squared law of gravity probably derived from Huygens’ formula for centrifugal force. Wren posed the question to the other two, whether they could demonstrate that such a law would lead to Kepler’s elliptical planetary orbits.

Hooke asserted that he already had such a demonstration but he would first reveal it to the others after they had admitted that they couldn’t solve the problem. Wren was sceptical of Hooke’s claim and offered a prize of a book worth forty shillings to the first to produce such a demonstration.  Hooke maintained his claim but didn’t deliver. It is worth noting that Hooke never did deliver such a demonstration. Halley, as already said no mean mathematician, tried and failed to solve the problem.

In August 1684 Halley was visiting Cambridge and went to see Newton in his chambers in Trinity College, who, as we know, he had met in 1682.

Trinity_College_Cambridge_1690

Trinity College Cambridge, David Loggan’s print of 1690 Source: Wikimedia Commons

According the Newton’s account as told to Abraham DeMoivre, Halley asked Newton, “what he thought the Curve would be that would be described by the Planets supposing the force of attraction towards the Sun to be reciprocal to the square of the distance from it. Sir Isaac replied immediately that it would be an Ellipse…” Here was Newton claiming to know the answer to Wren’s question. Halley asked Newton how he knew it and he replied, “I have calculated it…” Newton acted out the charade of looking for the supposed solution but couldn’t find it. However he promised Halley that he would send him the solution.

In November Edward Paget, a fellow of Trinity College, brought Halley a nine page thesis entitled De motu corporum in gyrum (On the Motion of Bodies in an Orbit).

CzT9mk1XEAAwdlo

Page of the De motu corporum in gyrum

When Halley read Newton’s little booklet he was immediately aware that he held something truly epoch making in the history of astronomy and physics in his hand. Newton had delivered up a mathematical proof that an elliptical orbit would be produced by an inverse square force situated at one of the foci of the ellipse, thus combining the inverse square law of gravity with Kepler’s first law. He went on to also derive Kepler’s second and third laws as well as laying down the beginnings of a mathematical theory of dynamics. Halley reported details of this extraordinary work to the Royal Society on 10 December 1684:

Mr Halley gave an account, that he had lately seen Mr. Newton at Cambridge, who had shewed him a curious treatise, De motu: which, upon Mr. Halley’s desire, was he said promised to be sent to the Society to be entered upon their register.

Mr. Halley was desired to put Mr. Newton in mind of his promise for securing his invention to himself till such time as he could be at leisure to publish it. Mr. Paget was desired to join with Mr. Halley.

The interest in and the demand to read Newton’s new production was very high but the author decided to improve and rewrite his first offering, triggering one of the most extraordinary episodes in his life.

Although he was Lucasian Professor and would turn forty-two on 25 December 1684, Newton remained a largely unknown figure in the intellectual world of the late seventeenth century. Following the minor debacle that resulted from the publication of his work in optics in the 1670s he had withdrawn into his shell, living in isolation within the walls of Cambridge University. He carried out his duties as Lucasian Professor but had almost no students to speak of and definitely no disciples. Thanks to the word of mouth propaganda of people like his predecessor as Lucasian Professor, Isaac Barrow, and above all the assiduous mathematics groupie, John Collins, it was rumoured that a mathematical monster slumbered in his chambers in Trinity College but he had done nothing to justify this bruited reputation. His chambers were littered with numerous unfinished scientific manuscripts, mostly mathematical but also natural philosophical and an even larger number of alchemical and theological manuscripts but none of them was in a fit state to publish and Newton showed no indication of putting them into a suitable state. Things now changed, Newton had found his vocation and his muse and the next two and a half years of his life were dedicated to creating the work that would make him into a history of science legend, the reworking of De motu into his Principia.

Over those two and a half years Newton turned his nine-page booklet into a major three-volume work of science. The modern English translation by I B Cohen runs to just over 560 large format pages, although this contains all the additions and alterations made in the second and third editions, so the original would have been somewhat shorter. Halley took over the editorship of the work, copyediting it and seeing it through the press. In 1685 the Royal Society had voted to take over the costs of printing and publishing Newton’s masterpiece, so everything seemed to be going smoothly and then disaster struck twice, firstly in the form of Robert Hooke and secondly in the form of a financial problem.

Hooke never slow to claim his priority in any matter of scientific discovery or invention stated that he alone had first discovered the inverse square law of gravity and that this fact should, indeed must, be acknowledged in full in the preface to Newton’s book. Halley, realising at once the potential danger of the situation, was the first to write to Newton outlining Hooke’s claim to priority, stating it, of course, as diplomatically as possible. Halley’s diplomacy did not work, Newton went ballistic. At first his reaction was comparatively mild, merely pointing out that he had had the inverse square law well before his exchanges with Hook in 1679 and had, in fact, discussed the matter with Wren in 1677, go ask him, Newton said. Then with more time to think about the matter and building up a head of steam, Newton wrote a new letter to Halley tearing into Hooke and his claim like a rabid dog. All of this ended with Newton declaring that he would no longer write volume three of his work. Halley didn’t know this at the time but this was in fact, as we shall see, the most important part of the entire work in which Newton presented his mathematical model of a Keplerian cosmos held together by the law of gravity. Halley remained calm and used all of his diplomatic skills to coax, flatter, persuade and cajole the prickly mathematician into delivering the book as finished. In the end Newton acquiesced and delivered but acknowledgements to Hooke were keep to a minimum and offered at the lowest level of civility.

The financial problem was of a completely different nature. In 1685 the Royal Society had taken over the cost of printing and publishing the deceased Francis Willughby’s Historia piscium as edited by John Ray.

This was an expensive project due to the large number plates that the book contained and the book was, at the time, a flop. This meant when it came time to print and publish Newton’s work the Royal Society was effectively bankrupt. One should note here that the popular ridicule poured out over Willughby’s volume, it having almost prevented Newton’s masterpiece appearing, is not justified. Historia piscium is an important volume in the history of zoology. Halley once again jumped into the breach and took over the costs of printing the volumes; on the 5 July 1687 Halley could write to Newton to inform him that the printing of his Philosophiæ Naturalis Principia Mathematica had been completed.

 

 

 

 

 

 

 

10 Comments

Filed under Early Scientific Publishing, History of Astronomy, History of Mathematics, History of science, Newton

Mathematics and natural philosophy: Robert G socks it to GG

In my recent demolition of Mario Livio’s very pretentious Galileo and the Science Deniers I very strongly criticised Livio’s repeated claims, based on Galileo’s notorious Il Saggiatore quote on the two books, that Galileo was somehow revolutionary in introducing mathematics into the study of science. I pointed out that by the time Galileo wrote his book this had actually been normal practice for a long time and far from being revolutionary the quote was actually a common place.

Last night whilst reading my current bedtime volume, A Mark Smith’s excellent From Sight to Light: The Passage from Ancient to Modern Optics,(University of Chicago Press, 2015) I came across a wonderfully appropriate quote on the topic from Robert Grosseteste (c.1175–1253). For those that don’t know Grosseteste was an English cleric who taught at Oxford University and who became Bishop of Lincoln. He played an important and highly influential role in medieval science, particularly in helping to establish optics as a central subject in the medieval university curriculum.

800px-Grosseteste_bishop

An early 14th-century portrait of Grosseteste Source: Wikimedia Commons

Of course, this is problematic for Livio, who firmly labelled the Catholic Church as anti-science and who doesn’t think there was any medieval science, remember that wonderfully wrong quote:

Galileo introduced the revolutionary departure from the medieval, ludicrous notion that everything worth knowing was already known.

If this were true then medieval science would be an oxymoron but unfortunately for Livio’s historical phantasy there was medieval science and Grosseteste was one of its major figure. If you want to know more about Grosseteste then I recommend the Ordered Universe website set up by the team from Durham University led by Giles Gasper, Hannah Smithson and  Tom McLeish

I already knew of Grosseteste’s attitude towards natural philosophy and mathematics but didn’t have a suitable quote to hand, so didn’t mention it in my review. Now I do have one. Let us first remind ourselves what Galileo actually said in Il Saggiatore:

Philosophy [i.e. natural philosophy] is written in this grand book — I mean the Universe — which stands continually open to our gaze, but it cannot be understood unless one first learns to comprehend the language and interpret the characters in which it is written. It is written in the language of mathematics, and its characters are triangles, circles, and other geometrical figures, without which it is humanly impossible to understand a single word of it; without these, one is wandering around in a dark labyrinth.

And now what Grosseteste wrote four hundred years earlier in his De lineis, angulis et figuris (On lines, angles and figures) between 1220 and 1235:

“…a consideration of lines, angles and fugures is of the greatest utility because it is impossible to gain a knowledge of natural philosophy without them…for all causes of natural effects must be expressed by means of lines, angles and figures”

Remarkably similar is it not!

 

 

 

 

3 Comments

Filed under History of Mathematics, History of science, Mediaeval Science

Galileo sources: a starter kit

Following my last post, numerous people have asked me for book recommendations on Galileo and his opponents. What follows is a list of books that I have and have consulted to create my Galileo. I should add that over the years I have also read a cartload of academic papers on Galileo and related topics. What I list here is only a small fraction of the available literature on the topic. My friend Pierre, the editor of the Simon Marius book, who is a real Galileo expert, I’m not, has currently 1514 items listed in his Galileo bibliography and even that is only a small fraction.

L. Heilbron, Galileo, OUP, 2010

David Wootton, Galileo: Watcher of the Skies, Yale University Press, 2010

Mario Biagioli, Galileo Courtier: The Practice of Science in The Culture of Absolutism, University of Chicago Press, 1993

Mario Biagioli, Galileo’s Instruments of Credit: Telescopes, Images, Secrecy, University of Chicago Press, 2006

William R. Shea & Mariano Artigas, Galileo in Rome: The Rise and Fall of a Troublesome Genius, OUP, 2003

Maurice A. Finocchiaro, On Trial for Reason: Science, Religion, and Culture in the Galileo Affair, OUP, 2019

 

Galileo Galilei, trans. Albert van Helden, Sidereus Nuncius or The Sidereal Messenger, University of Chicago Press, 1989

Galileo Galilei, trans. Stillman Drake, Dialogue Concerning the Two Chief World Systems, University of California Press, 1967

Galileo Galilei, trans. Henry Crew & Alfonso de Salvio, Dialogues Concerning Two New Science, Dover, 1954

Discoveries and Opinions of Galileo, translated with an Introduction and Notes by Stillman Drake, Anchor Books, 1957. (Starry Messenger, Letter to the Grand Duchess Christina, plus excerpts from Letters on Sunspots & The Assayer)

The Essential Galileo, Edited and Translated by Maurice A. Finocchiaro, Hackett Publishing Company, 2008

Galileo on the World Systems: A New Abridged Translation and Guide, Maurice A. Finocchiaro, University of California Press, 1997

Galileo Galilei & Christoph Scheiner, On Sunspots, Translated and Introduced by Eileen Reeves & Albert van Helden, University of Chicago Press, 2010

Eileen Reeves, Galileo’s Glassworks: The Telescope and the Mirror, Harvard University Press, 2008

Massimo Bucciantini, Michele Canmerota, Franco Giudice, Galileo’s Telescope’s: A European Story, Harvard University Press, 2015

James M Lattis, Between Copernicus and Galileo: Christoph Clavius and the Collapse of Ptolemaic Cosmology, University of Chicago Press, 1994

Franz Daxecker, Der Physiker und Astronom Christoph Scheiner, Universitätsverlag Wagner, 2006 (I don’t know of anything good on Scheiner in English)

Christopher M Graney, Setting Aside All Authority: Giovanni Battista Riccioli and the Science against Copernicanism in the Age of Galileo, University of Notre Dame Press, 2015

Mordechai Feingold, Jesuit Science and the Republic of Letters, MIT Press, 2002

Hans Gaab & Pierre Leich eds., Simon Marius and His Research, Springer, 2018

 

 

 

 

11 Comments

Filed under Book Reviews, History of Astronomy, History of science

The Electric Showman

The are some figures in #histSTM, who, through some sort of metamorphosis, acquire the status of cult gurus, who were somehow super human and if only they had been properly acknowledged in their own times would have advanced the entire human race by year, decades or even centuries. The most obvious example is Leonardo da Vinci, who apparently invented, discovered, created everything that was worth inventing, discovering, creating, as well as being the greatest artist of all time. Going back a few centuries we have Roger Bacon, who invented everything that Leonardo did but wasn’t in the same class as a painter. Readers of this blog will know that one of my particular bugbears is Ada Lovelace, whose acolytes claim singlehandedly created the computer age. Another nineteenth century figure, who has been granted god like status is the Serbian physicist and inventor, Nikola Tesla (1856–1943).

The apostles of Tesla like to present him in contrast to, indeed in battle with, Thomas Alva Edison (1847–1931). According to their liturgy Tesla was a brilliant, original genius, who invented everything electrical and in so doing created the future, whereas Edison was poseur, who had no original ideas, stole everything he is credited with having invented and exploited the genius of other to create his reputation and his fortune. You don’t have to be very perceptive to realise that these are weak caricatures that almost certainly bear little relation to the truth. That this is indeed the case is shown by a new, levelheaded biography of Tesla by Iwan Rhys Morus, Tesla and the Electric Future.[1]

Tesla001

If anyone is up to the job of presenting a historically accurate, balanced biography of Tesla, then it is Morus, who is professor of history at Aberystwyth University and who has established himself as an expert for the history of electricity in the nineteenth century with a series of excellent monographs on the topic, and yes he delivers.

Anybody who picks up Morus’ compact biography looking for a blow by blow description of the epic war between Tesla and Edison is going to be very disappointed, because as Morus points out it basically never really took place; it is a myth. What we get instead is a superb piece of contextual history. Morus presents a widespread but deep survey of the status of electricity in the second half of the nineteenth century and the beginnings of the twentieth century into which he embeds the life story of Tesla.

We have the technological and scientific histories of electricity but also the socio-political history of the role that electricity during the century and above all the futurology. Electricity was seen as the key to the future in all areas of life in the approaching twentieth century. Electricity was hyped as the energy source of the future, as the key to local and long distant communication, and as a medical solution to both physical and psychological illness. In fact it appears that electricity was being touted as some sort of universal panacea for all of societies problems and ills. It was truly the hype of the century. Electricity featured big in the widely popular world exhibitions beginning with the Great Exhibition at Crystal Palace in 1851.

Tesla004

In these world fairs electricity literally outshone all of the other marvels and wonders on display.

The men, who led the promotion of this new technology, became stars, prophets of an electrical future, most notably Thomas Alva Edison, who became known as the Wizard of Menlo Park.

Tesla002

Far from the popular image of Edison being Tesla’s sworn enemy, he was the man, who brought Tesla to America and in doing so effectively launched Tesla’s career. Edison also served as a role model for Tesla; from Edison, Tesla learnt how to promote and sell himself as a master of the electric future.

Morus takes us skilfully through the battle of the systems, AC vs. DC in which Tesla, as opposed to popular myth, played very little active part having left Westinghouse well before the active phase. His technology, patented and licenced to Westinghouse, did, however, play a leading role in Westinghouse’s eventually victory in this skirmish over Edison, establishing Tesla as one of the giants in the electricity chess game. Tesla proceeded to establish his reputation as a man of the future through a series of public lectures and interviews, with the media boosting his efforts.

From here on in Tesla expounded ever more extraordinary, visionary schemes for the electric future but systematically failed to deliver.

Tesla003

His decline was long drawn out and gradual rather than spectacular and the myths began to replace the reality. The electric future forecast throughout the second half of the nineteenth century was slowly realised in the first half of the twentieth but Tesla played almost no role in its realisation.

Morus is himself a master of nineteenth century electricity and its history, as well as a first class storyteller, and in this volume he presents a clear and concise history of the socio-political, public and commercial story of electricity as it came to dominate the world, woven around a sympathetic but realistic biography of Nikola Tesla. His book is excellently researched and beautifully written, making it a real pleasure to read.  It has an extensive bibliography of both primary and secondary sources. The endnotes are almost exclusively references to the bibliography and the whole is rounded off with an excellent index. The book is well illustrated with a good selection of, in the meantime ubiquitous for #histSTM books, grey in grey prints.

Morus’ book has a prominent subtext concerning how we view our scientific and technological future and it fact this is probably the main message, as he makes clear in his final paragraph:

It is a measure of just what a good storyteller about future worlds Tesla was that we still find the story so compelling. It is also the way we still tend to tell stories about imagined futures now. We still tend to frame the way we think about scientific and technological innovation – the things on which our futures will depend – in terms of the interventions of heroic individuals battling against the odds. A hundred years after Tesla, it might be time to start thinking about other ways of talking about the shape of things to come and who is responsible who is responsible for shaping them.

If you want to learn about the history of electricity in the nineteenth century, the life of Nikola Tesla or how society projects its technological futures then I really can’t recommend Iwan Rhys Morus excellent little volume enough. Whether hardback or paperback it’s really good value for money and affordable for even the smallest of book budgets.

[1] Iwan Rhys Morus, Tesla and the Electric Future, Icon books, London, 2019

 

7 Comments

Filed under Book Reviews, History of Physics, History of science, History of Technology

The emergence of modern astronomy – a complex mosaic: Part XXXIV

Without any doubt the biggest impact on the discussion of astronomy and cosmology at the beginning of the seventeenth century was made by the invention of the telescope in 1608 and the subsequent discoveries that were made by astronomers with the new revolutionary instrument. That the Moon was not smooth and perfect as claimed by Aristotle but had geological features like the Earth, that the Milky Way and some nebula resolved into separate stars when viewed through the telescope, that the Sun had spots, that Jupiter had four Moons orbiting it and lastly that Venus displayed phases showing that it must orbit the Sun and not the Earth. All of these, for the times, amazing discoveries were made between the end of 1609 and 1613 then the stream of new discoveries dried up as suddenly as it had begun, why? The problem was a technological one.

All of these initial discoveries had been made using so-called Dutch or Galilean telescopes that consisted of a simple tube with two lenses a convex objective at the front and a concave eyepiece at the back.

Galileantelescope

Optical diagram of Galilean telescope y – Distant object ; y′ – Real image from objective ; y″ – Magnified virtual image from eyepiece ; D – Entrance pupil diameter ; d – Virtual exit pupil diameter ; L1 – Objective lens ; L2 – Eyepiece lens e – Virtual exit pupil – Telescope equals Source: Wikimedia Commons

A simple instrument with a serious drawback, by adjusting the focal lengths of the lenses one can increase the magnifying power of the instrument but the greater the magnifying power the smaller the field of vision. Most of the discoveries were made using telescopes with a magnifying power of between twenty and thirty. With such telescopes, for example, Galileo could only view about one quarter of the Moon at a time. With magnifying powers above thirty the Dutch telescope becomes effectively useless as an astronomical instrument. The discoveries that had been made by 1613 marked the limit of discoveries that could be made with the simple Dutch telescope, another instrument had to be found if new discoveries were to be made.

1024px-Galileo's_sketches_of_the_moon

Galileo’s sketches of the Moon from Sidereus Nuncius. Source: Wikimedia Commons

The solution to the problem had already been presented by Johannes Kepler in his Dioptrice published in 1611.

In this important contribution to the science of optics Kepler not only explained, for the first time, how the Dutch telescope functioned but also what became known as the Keplerian or astronomical telescope with a convex objective and a convex eyepiece. He also described the function of the so-called terrestrial telescope with three convex lenses. The astronomical telescope had a much bigger field of view than the Dutch telescope and could thus be constructed with a much higher magnification.

Kepschem

Source: Wikimedia Commons

It, however, suffered from the problem that whereas the image in the Dutch telescope was upright, in the astronomical telescope it was inverted. Thus the terrestrial telescope the third lens functioning as an inverter, righting the image.

Christoph Scheiner constructed astronomical telescopes for his work observing the Sun.

Sunspot_instrument_of_Christoph_Scheiner_(1573-1650)

Scheiner’s astronomical telescope for recording sunspots Source: Wikimedia Commons

However, Scheiner remained an exception, if a prominent one, and in general it took three decades before other astronomers turned from the Dutch telescope to telescopes with convex lenses. This of course raises the question, why? The inverted image in the simple two lens astronomical telescope was one problem, however not for Scheiner, who projected the Sun’s image onto a sheet of paper and could thus simply invert his drawn image when finished. There is, however another reason for the very protracted move away from the Dutch telescope to the astronomical telescope and that reason bears the name Galileo Galilei.

Since the publication of his Sidereus Nuncius in 1610, Galileo had become the authority for all things connected with telescopic astronomy.

houghton_ic6-g1333-610s_-_sidereus_nuncius

Title page of Sidereus nuncius, 1610, by Galileo Galilei (1564-1642). *IC6.G1333.610s, Houghton Library, Harvard University Source: Wikimedia Commons

Galileo was also arrogant enough to reject anything that he didn’t discover or originate. He made rude noises about the astronomical telescope praising the advantages of the Dutch telescope against the astronomical telescope, even though they didn’t exist. He was also very rude about and dismissive of Kepler’s Dioptrice claiming that it was unreadable. His authority was sufficient to hinder the adoption of the astronomical telescope.

One of the first to go against the authority of Galileo and construct and observe with an astronomical telescope was the Italian astronomer Francesco Fontana (c. 1558–1656), who as we saw earlier made the telescope with which Zupi first observed the phases of Mercury.

1024px-Francesco-Fontana

Fontana drew a new more accurate map of the Moon, discovered the bands visible on Jupiter. He made the first drawings of Mars and discovered its rotation also inferring the rotation of both Jupiter and Saturn. He published a book of all of his discoveries Novae coelestium terrestriumque rerum observationes, et fortasse hactenus non vulgatae  in 1646.

main-image

Italian astronomer Francesco Fontana created woodcuts showing the Moon and the planets as he saw them through a self-constructed telescope. In 1646, he published most of them in the book Novae Coelestium, Terrestriumque Rerum Observationes, et Fortasse Hactenus Non Vulgatae. Source

This turned out to be a major problem as the book also contained discoveries that Fontana claimed to have made, for example new moons of Jupiter Saturn and Venues, which simply didn’t exist. The charitable explanation is that these were optical artefacts produced by his telescope. This highlights another major problem of early telescopic astronomy, the quality of the early telescopes ranged from bad to abysmal.

The quality of the glass used to make the lenses was usually fairly poor. Often discoloured and equally often containing inclusions, bubbles created during the cooling of the glass, which interfered with the optical quality of the glass. All the early lenses were spherical, i.e. their curvature was segment of the surface of a sphere. This was the only shape that could be ground and polished with the technology available at the time. Even so, the further one got from the centre of a lens the more it tended to deviate from the correct form. This meant that the image formed by such lenses tended to be fairly severely distorted. The current theory is that the invention of the telescope occurred not when somebody succeeded in grinding and polishing lenses, spectacle makers had been doing that for three hundred years before the telescope emerged, or when somebody came up with the right combination of lenses, there is evidence that the magnifying property of the combination of a convex and a concave lens was known sometime before the breakthrough, but when somebody (Hans Lipperhey?) first came up with the idea of masking the outer edges of the objective lens reducing the available area to the truly spherical centre and thus creating a sharp image at the cost of a loss of light. Another problem was so-called spherical aberration. A spherical lens doesn’t actually focus light to a single point but the image is spread out over a small area causing it to blur. This was already known to Ibn al-Haytham (c. 965–c. 1040), who also knew the solution, lenses shaped according to the surfaces of ellipsoids or hyperboloids but lens makers in the seventeenth century were incapable of grinding such shapes. A much bigger problem was chromatic aberration. This is caused by the fact that simple lenses focus different wavelengths and thus different colours of light at slightly different points, causing coloured fringes on the images.  However, the discovery of chromatic aberration by Isaac Newton still lay in the future and its solution even further in the future. Over time the telescope makers discovered that making objective lenses with very long focal lengths reduced the problem of spherical and chromatic aberration and so throughout the seventeenth century the telescopes got longer and longer. Given all of these optical problems it is not surprising that astronomers made discoveries that were illusions; it is to a certain extent a wonder that they discovered anything at all.

The major breakthrough in the use of the astronomical telescope came with the invention of the multiple lens eyepiece by Anton Maria Schyrleus de Rheita, born Johann Burkhard Schyri  (1604–1660), an Capuchin monk, who had studied optics and astronomy at the University of Ingolstadt, the university of Christoph Scheiner and Johann Baptist Cysat, which, although they were no longer present when he studied there, still maintained a high standard in these disciplines. Schyri built his own telescopes and made astronomical observations. In 1643 he published his observations in his Novem stellae, which was full of new discoveries but like those of Fontana they mostly weren’t. Much more important was the publication in 1645 of his Oculus Enoch et Eliae in which he describe, without illustrations, a terrestrial telescope with a three lens eyepiece, as well a description of a pair of binoculars.

002940_01

Beginning in 1643 he had already begun to manufacture his new telescope together with the Augsburger instrument maker and optician Johann Wiesel (1583–1662), Germany’s first commercial telescope maker.

Bartholomäus_Kilian_Johann_Wiesel

Johann Wiesel with one of his telescopes. Copper engraving by Bartholomäus Kilian, 1660 Source: Wikimedia Commons

The Wiesel/ Schyri terrestrial telescope, which had an upright image, a wide field of vision and high-level magnification, was a huge success throughout Europe. Not only did they sell well but they were soon copied and used not just on land but also as astronomical instruments. In his book Schyri also coined the terms ocular and objective for telescopes.

The Wiesel/ Schyri telescope broke the dam and opened the market for convex lens, astronomical telescopes. In Italy Eustachio Divini (1610–1685) a clockmaker began to manufacture optical instruments becoming by 1646 the leading optician in Italy selling astronomical telescopes throughout Europe.

Portrait_of_Eustachio_Divini_in_Dioptrica_Pratica_by_Carlo_Antonio_Manzini

Portrait of Eustachio Divini in Carlo Antonio Manzini’s “Dioptrica Pratica” Bologna 1660 Source: Wikimedia Commons

In 1649 he published his first book of observations centred round a spectacular selenography.

divini2

Eustachio Divini Selenography

He would later go on to make detailed observations of Jupiter, the changing shape of the belts, the big red spot and the shadows cast by the satellites. His observation confirmed the axial rotation of the planet.

Divini’s reputation as Europe’s leading telescope maker/astronomer was usurped in 1656 by the still young Dutch polymath Christiaan Huygens (1629–1695), who designed his own astronomical telescope, which he constructed with his brother Constantijn (1628–1697) and with which he discovered Titan the largest of Saturn’s moons.

1024px-Christiaan_Huygens-painting

Christiaan Huygens by Caspar Netscher, 1671, Museum Boerhaave, Leiden Source: Wikimedia Commons

The year before he had already staked his territory by explaining that the strange observations made by various astronomers of Saturn were in fact differing views of rings surrounding the planet. He explained this in his Systema Saturnium in 1659, which also contained the first telescopic sketches of the Orion Nebula. His explanation of the rings led to a major dispute with Divini, who was convinced that they were a belt of satellites.

Huygens_Systema_Saturnium

Huygens’ explanation for the aspects of Saturn, Systema Saturnium, 1659 Source: Wikimedia Commons

In the same year he made the first observations of a surface feature of another planet, Syrtis Major, a volcanic plain on Mars, using it to determine the length of the Martian day.

Divini lost his status as Italy’s prime telescope maker to the Campani brothers Matteo (1620–after 1678) and Giuseppe (1635–1715) in a series of contests staged the Accademia del Cimento to test the quality of their telescopes in 1664, which the Campani brothers won, although largely through skulduggery. Of interest is that the quality of the telescopes were compared by reading printed letters though them, a forerunner of the letter charts in the practice of every ophthalmic optician.

41520_450

Giuseppe Campani (1635-1715) Telescope with four tubes, Rome, 1666 Florence, Istituto e Museo di Storia della Scienza, inv. 2556

Although Giuseppe Campani was an active astronomer, who made his own observations and discoveries it is their most famous customer, who made the biggest impact, Giovanni Domenico Cassini (1625–1712), who became Jean-Dominique when he moved to France in 1669.

Giovanni_Cassini

Giovanni Cassini artist unknown Source: Wikimedia Commons

Employed as an astronomer at the observatory in Panzano by the Marquis Cornelio Malvasia (1603–1664) from 1648, Cassini was able to study under Giovanni Battista Riccioli (1598–1671) and Francesco Maria Grimaldi (1618–1663), themselves important telescopic astronomers, who produced an important lunar map, at the University of Bologna.

riccioli1651moonmap

Riccioli/Grimaldi Lunar Map Source: Wikimedia Commons

In 1650 he was appointed professor for astronomy at the university. During his time in Bologna Cassini was able, with the assistance of Riccioli and Grimaldi, using a meridian line in the San Petronio Basilica to prove that that either the Sun’s orbit around the Earth or the Earth’s orbit around the Sun was an ellipse thus confirming a part of Kepler’s astronomical system. The experiment was unable to determine if the system was geo-heliocentric or heliocentric.

Bologna060

San Petronio Basilica The winter solstice end of the meridian line Source: Wikimedia Commons

As Europe’s leading telescopic astronomer Cassini discovered and published surface markings on Mars, determined the rotation periods of Mars and Jupiter, discovered four satellites of Saturn–Iapetus and Rhea in 1671 and 1672 followed by Tethys and Dione in 1684–he is also credited with the co-discovery with Robert Hooke of the big red spot on Jupiter. He was able to determine the orbits of the moons of Jupiter with enough accuracy that they could be used as a clock to determine longitude, as originally suggested by Galileo. A spin off of this research was the determination of the speed of light by Cassini’s assistant, Ole Rømer (1644–1710). He also showed that both the moons of Jupiter and Saturn obeyed Kepler’s third law, a fact used later by Newton in his Principia Mathematica.

The problem of aberration and the semi-solution of having objectives with ever-longer focal lengths led to the development of the aerial telescope. These are extremely long focal length telescopes that have an objective lens and an eyepiece but no tube, instead having some mechanism to keep the two lens units aligned. Christiaan Huygens constructed one with a cord between the objective and the ocular.

Aerialtelescope

An engraving of Huygens’s 210-foot aerial telescope showing the eyepiece and objective mounts and connecting string. Source: Wikimedia Commons

The most famous aerial telescope, however, was that of Johannes Hevelius (1611–1687), a wealthy beer brewer and amateur astronomer who lived in Danzig.

hevelius_and_wife1

Johannes Hevelius and his wife Elizabeth observing together Source: Wikimedia Commons

Hevelius constructed a telescope with a focal length of 150 feet, which became a tourist attraction.

1920px-Houghton_Typ_620.73.451_-_Johannes_Hevelius,_Machinae_coelestis,_1673

1673 engraved illustration of Johannes Hevelius’s 8 inch telescope with an open work wood and wire “tube” that had a focal length of 150 feet to limit chromatic aberration. Source: Wikimedia Commons

He also built a fully equipped observatory on the roof of his brewery and undertook extensive astronomical observations. He, like other, produced a very detailed map of the Moon, discovered four comets and hypothesised that comets obit the Sun on parabolic orbits, created an extensive star atlas in which he described and named ten new constellations, seven of which are still included in official star maps.

With the exception of the discovery of the five largest moons of Saturn, this second wave of seventeenth century telescopic astronomy, starting in about 1640 and continuing till the end of the century, was not as spectacular as the first one. However by the end of the century the small discoveries had accumulated to create a completely different picture of the heavens to the one that existed at the beginning. Planets were no longer Aristotle’s perfectly smooth, spherical bodies but had satellites and surface features, rotated on their axes and had determinable day lengths. The Moon had been accurately mapped by several independent astronomers and there was absolutely no doubt in the minds of the observers that it was fundamentally earth like. The position of many more stars had been accurately mapped and the orbits of the newly discovered satellites had been accurately determined. The celestial spheres of Aristotle and Ptolemaeus had been totally banished. During this second wave of telescopic observation and discovery telescopic astronomy came of age and became a recognised scientific discipline.

In 1669 Cassini was appointed the first director of the Paris Observatory, which had been founded in 1667 by the French minister of finance, Jean-Baptiste Colbert (1619–1683).

Paris_Observatory_XVIII_century

An engraving of The Paris Observatory in the beginning of the 18th century with the wooden “Marly Tower” on the right, erected by Cassini to support both tubed and aerial very long telescopes Source: Wikimedia Commons

The founding of the Paris observatory was followed in 1675 with the founding in England of the Royal Observatory in Greenwich by Charles II, with John Flamsteed appointed in the same year as the first Astronomer Royal.

1280px-Royalobs

Royal Observatory Greenwich Source: Wikimedia Commons

Berlin came somewhat later in 1700 with the appointment of Gottfried Kirch (1639–1710) but who never lived to see his observatory, which first opened in 1711. What we see here is a radical change in the status of astronomy. Whereas for most of the seventeenth century astronomy had been the province of either private citizens or university professors it now became the province of governments with astronomers appointed as civil servants required to deliver astronomical data for cartographical and navigational purposes.

 

 

 

 

 

 

 

 

 

 

1 Comment

Filed under History of Astronomy, History of Optics, History of science

How Renaissance Nürnberg became the Scientific Instrument Capital of Europe

This is a writen version of the lecture that I was due to hold at the Science and the City conference in London on 7 April 2020. The conference has for obvious reasons been cancelled and will now take place on the Internet. You can view the revised conference program here.

The title of my piece is, of course, somewhat hyperbolic, as far as I know nobody has ever done a statistical analysis of the manufacture of and trade in scientific instruments in the sixteenth century. However, it is certain that in the period 1450-1550 Nürnberg was one of the leading European centres both for the manufacture of and the trade in scientific instruments. Instruments made in Nürnberg in this period can be found in every major collection of historical instruments, ranging from luxury items, usually made for rich patrons, like the column sundial by Christian Heyden (1526–1576) from Hessen-Kassel

heyden002

Column Sundial by Christian Heyden Source: Museumslandschaft Hessen-Kassel

to cheap everyday instruments like this rare (rare because they seldom survive) paper astrolabe by Georg Hartman (1489–1564) from the MHS in Oxford.

49296

Paper and Wood Astrolabe Hartmann Source: MHS Oxford

I shall be looking at the reasons why and how Nürnberg became such a major centre for scientific instruments around 1500, which surprisingly have very little to do with science and a lot to do with geography, politics and economics.

Like many medieval settlements Nürnberg began simply as a fortification of a prominent rock outcrop overlooking an important crossroads. The first historical mention of that fortification is 1050 CE and there is circumstantial evidence that it was not more than twenty or thirty years old. It seems to have been built in order to set something against the growing power of the Prince Bishopric of Bamberg to the north. As is normal a settlement developed on the downhill slopes from the fortification of people supplying services to it.

Nuremberg_chronicles_-_Nuremberga

A fairly accurate depiction of Nürnberg from the Nuremberg Chronicle from 1493. The castles (by then 3) at the top with the city spreading down the hill. Large parts of the inner city still look like this today

Initially the inhabitants were under the authority of the owner of the fortification a Burggraf or castellan. With time as the settlement grew the inhabitants began to struggle for independence to govern themselves.

In 1200 the inhabitants received a town charter and in 1219 Friedrich II granted the town of Nürnberg a charter as a Free Imperial City. This meant that Nürnberg was an independent city-state, which only owed allegiance to the king or emperor. The charter also stated that because Nürnberg did not possess a navigable river or any natural resources it was granted special tax privileges and customs unions with a number of southern German town and cities. Nürnberg became a trading city. This is where the geography comes into play, remember that important crossroads. If we look at the map below, Nürnberg is the comparatively small red patch in the middle of the Holy Roman Empire at the beginning of the sixteenth century. If your draw a line from Paris to Prague, both big important medieval cities, and a second line from the border with Denmark in Northern Germany down to Venice, Nürnberg sits where the lines cross almost literally in the centre of Europe. Nürnberg also sits in the middle of what was known in the Middle Ages as the Golden Road, the road that connected Prague and Frankfurt, two important imperial cities.

p500ME_Eng_g1

You can also very clearly see Nürnberg’s central position in Europe on Erhard Etzlaub’s  (c. 1460–c. 1531) pilgrimage map of Europe created for the Holy Year of 1500. Nürnberg, Etzlaub’s hometown, is the yellow patch in the middle. Careful, south is at the top.

1024px-Rompilger-Karte_(Erhard_Etzlaub)

Over the following decades and centuries the merchant traders of Nürnberg systematically expanded their activities forming more and more customs unions, with the support of various German Emperors, with towns, cities and regions throughout the whole of Europe north of Italy. Nürnberg which traded extensively with the North Italian cities, bringing spices, silk and other eastern wares, up from the Italian trading cities to distribute throughout Europe, had an agreement not to trade with the Mediterranean states in exchange for the Italians not trading north of their northern border.

As Nürnberg grew and became more prosperous, so its political status and position within the German Empire changed and developed. In the beginning, in 1219, the Emperor appointed a civil servant (Schultheis), who was the legal authority in the city and its judge, especially in capital cases. The earliest mention of a town council is 1256 but it can be assumed it started forming earlier. In 1356 the Emperor, Karl IV, issued the Golden Bull at the Imperial Diet in Nürnberg. This was effectively a constitution for the Holy Roman Empire that regulated how the Emperor was to be elected and, who was to be appointed as the Seven Prince-electors, three archbishops and four secular rulers. It also stipulated that the first Imperial Diet of a newly elected Emperor was to be held in Nürnberg. This stipulation reflects Nürnberg’s status in the middle of the fourteenth century.

The event is celebrated by the mechanical clock ordered by the town council to be constructed for the Frauenkirche, on the market place in 1506 on the 150th anniversary of the Golden Bull, which at twelve noon displays the seven Prince-electors circling the Emperor.

MK40639_Kunstuhr_Frauenkirche_(Nürnberg)

Mechanical clock on the Frauenkirche overlooking the market place in Nürnberg. Ordered by the city council in 1506 to celebrate the 150th anniversary of the issuing of the Golden Bull at the Imperial Diet in 1356

Over time the city council had taken more and more power from the Schultheis and in 1385 they formally bought the office, integrating it into the councils authority, for 8,000 gulden, a small fortune. In 1424 Emperor, Sigismund appointed Nürnberg the permanent residence of the Reichskleinodien (the Imperial Regalia–crown, orb, sceptre, etc.).

Arolsen_Klebeband_16_091

The Imperial Regalia

This raised Nürnberg in the Imperial hierarchy on a level with Frankfurt, where the Emperor was elected, and Aachen, where he was crowned. In 1427, the Hohenzollern family, current holders of the Burggraf title, sold the castle, which was actually a ruin at that time having been burnt to the ground by the Bavarian army, to the town council for 120,000 gulden, a very large fortune. From this point onwards Nürnberg, in the style of Venice, called itself a republic up to 1806 when it was integrated into Bavaria.

In 1500 Nürnberg was the second biggest city in Germany, after Köln, with a population of approximately 40,000, about half of which lived inside the impressive city walls and the other half in the territory surrounding the city, which belonged to it.

a0004795f47e9ac8e47b93f935e325c5

Map of the city-state of Nürnberg by Abraham Ortelius 1590. the city itself is to the left just under the middle of the map. Large parts of the forest still exists and I live on the northern edge of it, Dormitz is a neighbouring village to the one where I live.

Small in comparison to the major Italian cities of the period but even today Germany is much more decentralised with its population more evenly distributed than other European countries. It was also one of the richest cities in the whole of Europe.

Pfinzing_Nürnberg_Grundriss

Nürnberg, Plan by Paul Pfinzing, 1594 Castles in the top left hand corner

Nürnberg’s wealth was based on two factors, trading, in 1500 at least 27 major trade routes ran through Nürnberg, which had over 90 customs unions with cities and regions throughout Europe, and secondly the manufacture of trading goods. It is now time to turn to this second branch of Nürnberg’s wealth but before doing so it is important to note that whereas in other trading centres in Europe individual traders competed with each other, Nürnberg function like a single giant corporation, with the city council as the board of directors, the merchant traders cooperating with each other on all levels for the general good of the city.

In 1363 Nürnberg had more than 1200 trades and crafts masters working in the city. About 14% worked in the food industry, bakers, butchers, etc. About 16% in the textile industry and another 27% working leather. Those working in wood or the building branch make up another 14% but the largest segment with 353 masters consisted of those working in metal, including 16 gold and silver smiths. By 1500 it is estimated that Nürnberg had between 2,000 and 3,000 trades and crafts master that is between 10 and 15 per cent of those living in the city with the metal workers still the biggest segment. The metal workers of Nürnberg produced literally anything that could be made of metal from sewing needles and nails to suits of armour. Nürnberg’s reputation as a producer rested on the quality of its metal wares, which they sold all over Europe and beyond. According to the Venetian accounts books, Nürnberg metal wares were the leading export goods to the orient. To give an idea of the scale of production at the beginning of the 16th century the knife makers and the sword blade makers (two separate crafts) had a potential production capacity of 80,000 blades a week. The Nürnberger armourers filled an order for armour for 5,000 soldiers for the Holy Roman Emperor, Karl V (1500–1558).

The Nürnberger craftsmen did not only produce goods made of metal but the merchant traders, full blood capitalists, bought into and bought up the metal ore mining industry–iron, copper, zinc, gold and silver–of Middle Europe, and beyond, (in the 16th century they even owned copper mines in Cuba) both to trade in ore and to smelt ore and trade in metal as well as to ensure adequate supplies for the home production. The council invested heavily in the industry, for example, providing funds for the research and development of the world’s first mechanical wire-pulling mill, which entered production in 1368.

Duerer_Drahtziehmuehle

The wirepulling mills of Nürnberg by Albrecht Dürer

Wire was required in large quantities to make chainmail amongst other things. Around 1500 Nürnberg had monopolies in the production of copper ore, and in the trade with steel and iron.  Scientific instruments are also largely made of metal so the Nürnberger gold, silver and copper smiths, and toolmakers also began to manufacture them for the export trade. There was large scale production of compasses, sundials (in particular portable sundials), astronomical quadrants, horary quadrants, torquetum, and astrolabes as well as metal drawing and measuring instruments such as dividers, compasses etc.

The city corporation of Nürnberg had a couple of peculiarities in terms of its governance and the city council that exercised that governance. Firstly the city council was made up exclusively of members of the so-called Patrizier. These were 43 families, who were regarded as founding families of the city all of them were merchant traders. There was a larger body that elected the council but they only gave the nod to a list of the members of the council that was presented to them. Secondly Nürnberg had no trades and crafts guilds, the trades and crafts were controlled by the city council. There was a tight control on what could be produced and an equally tight quality control on everything produced to ensure the high quality of goods that were traded. What would have motivated the council to enter the scientific instrument market, was there a demand here to be filled?

It is difficult to establish why the Nürnberg city corporation entered the scientific instrument market before 1400 but by the middle of the 15th century they were established in that market. In 1444 the Catholic philosopher, theologian and astronomer Nicolaus Cusanus (1401–1464) bought a copper celestial globe, a torquetum and an astrolabe at the Imperial Diet in Nürnberg. These instruments are still preserved in the Cusanus museum in his birthplace, Kues on the Mosel.

1280px-Bernkastel_Kues_Geburtshaus_Nikolaus_von_Kues

The Cusanus Museum in Kue

In fact the demand for scientific instrument rose sharply in the 15th & 16th centuries for the following reasons. In 1406 Jacopo d’Angelo produced the first Latin translation of Ptolemy’s Geographia in Florence, reintroducing mathematical cartography into Renaissance Europe. One can trace the spread of the ‘new’ cartography from Florence up through Austria and into Southern Germany during the 15th century. In the early 16th century Nürnberg was a major centre for cartography and the production of both terrestrial and celestial globes. One historian of cartography refers to a Viennese-Nürnberger school of mathematical cartography in this period. The availability of the Geographia was also one trigger of a 15th century renaissance in astronomy one sign of which was the so-called 1st Viennese School of Mathematics, Georg von Peuerbach (1423–1461) and Regiomontanus (1436–176), in the middle of the century. Regiomontanus moved to Nürnberg in 1471, following a decade wandering around Europe, to carry out his reform of astronomy, according to his own account, because Nürnberg made the best astronomical instruments and had the best communications network. The latter a product of the city’s trading activities. When in Nürnberg, Regiomontanus set up the world’s first scientific publishing house, the production of which was curtailed by his early death.

Another source for the rise in demand for instruments was the rise in interest in astrology. Dedicated chairs for mathematics, which were actually chairs for astrology, were established in the humanist universities of Northern Italy and Krakow in Poland early in the 15th century and then around 1470 in Ingolstadt. There were close connections between Nürnberg and the Universities of Ingolstadt and Vienna. A number of important early 16th century astrologers lived and worked in Nürnberg.

The second half of the 15th century saw the start of the so-called age of exploration with ships venturing out of the Iberian peninsular into the Atlantic and down the coast of Africa, a process that peaked with Columbus’ first voyage to America in 1492 and Vasco da Gama’s first voyage to India (1497–199). Martin Behaim(1459–1507), son of a Nürnberger cloth trading family and creator of the oldest surviving terrestrial globe, sat on the Portuguese board of navigation, probably, according to David Waters, to attract traders from Nürnberg to invest in the Portuguese voyages of exploration.  This massively increased the demand for navigational instruments.

258

The Erdapfel–the Behaim terrestial globe Germanische National Museum

Changes in the conduct of wars and in the ownership of land led to a demand for better, more accurate maps and the more accurate determination of boundaries. Both requiring surveying and the instruments needed for surveying. In 1524 Peter Apian (1495–1552) a product of the 2nd Viennese school of mathematics published his Cosmographia in Ingolstadt, a textbook for astronomy, astrology, cartography and surveying.

1024px-peter_apian

The Cosmographia went through more than 30 expanded, updated editions, but all of which, apart from the first, were edited and published by Gemma Frisius (1508–1555) in Louvain. In 1533 in the third edition Gemma Frisius added an appendix Libellus de locorum describendum ratione, the first complete description of triangulation, the central method of cartography and surveying down to the present, which, of course in dependent on scientific instruments.

g-f_triangulation

In 1533 Apian’s Instrumentum Primi Mobilis 

754l18409_9jhfv.jpg.thumb_.500.500

was published in Nürnberg by Johannes Petreius (c. 1497–1550) the leading scientific publisher in Europe, who would go on ten years later to publish, Copernicus’ De revolutionibus, which was a high point in the astronomical revival.

All of this constitutes a clear indication of the steep rise in the demand for scientific instruments in the hundred years between 1450 and 1550; a demand that the metal workers of Nürnberg were more than happy to fill. In the period between Regiomontanus and the middle of the 16th century Nürnberg also became a home for some of the leading mathematici of the period, mathematicians, astronomers, astrologers, cartographers, instrument makers and globe makers almost certainly, like Regiomontanus, at least partially attracted to the city by the quality and availability of the scientific instruments.  Some of them are well known to historians of Renaissance science, Erhard Etzlaub, Johannes Werner, Johannes Stabius (not a resident but a frequent visitor), Georg Hartmann, Johannes Neudörffer and Johannes Schöner.**

There is no doubt that around 1500, Nürnberg was one of the major producers and exporters of scientific instruments and I hope that I have shown above, in what is little more than a sketch of a fairly complex process, that this owed very little to science but much to the general geo-political and economic developments of the first 500 years of the city’s existence.

WI12; WI33 WI3; WI2; WI30;

One of the most beautiful sets on instruments manufactured in Nürnberg late 16th century. Designed by Johannes Pretorius (1537–1616), professor for astronomy at the Nürnberger University of Altdorf and manufactured by the goldsmith Hans Epischofer (c. 1530–1585) Germanische National Museum

 

**for an extensive list of those working in astronomy, mathematics, instrument making in Nürnberg (542 entries) see the history section of the Astronomie in Nürnberg website, created by Dr Hans Gaab.

 

 

 

 

 

 

 

 

 

 

14 Comments

Filed under Early Scientific Publishing, History of Astronomy, History of Cartography, History of Mathematics, History of Navigation, History of science, History of Technology, Renaissance Science