Category Archives: History of Geodesy

The emergence of modern astronomy – a complex mosaic: Part XLVI

The discovery of stellar aberration was empirical evidence that the Earth orbits the Sun; finding empirical evidence that the Earth rotates daily on its axis proved, perhaps surprisingly, difficult. The first indirect evidence for diurnal rotation in interesting in two ways. Firstly, it is based, not on a single theory but on a chain of interdependent theories. Secondly, it is an interdisciplinary proof involving physics, astronomy, geophysics and geodesy.

That the Earth was a sphere had been accepted in educated European circles since at least the fifth century BCE. The acceptance of this knowledge automatically led to attempts to estimate or in fact measure the size of that sphere. Aristotle claimed that mathematicians had measured the circumference of the Earth to be 400,000 stadia (between 62,800 and 74,000km) which is far to large. Archimedes set an upper limit of 3,000,000 stadia (483,000km), making Aristotle look almost reasonable. One of the earliest serious attempts to measure the circumference of the Earth was that of Eratosthenes, which now has legendary status. It is reported that he calculated a figure of 250,000 stadia. What is not known is which stadium he was using so the error in his value lays somewhere between about 2% and 17%. Eratosthenes was by no means the only thinker in antiquity to give a calculated figure for the Earth’s circumference. Posidonius produced a value, which varies considerably in size in the literature in which it is quoted. Ptolemaeus gives two completely different values 252,000 stadia in his Mathēmatikē Syntaxis and later 180,000 stadia in his Geōgraphikḕ Hyphḗgēsis. In the Middle Ages, the Indian mathematician, Aryabhata, calculated a value for the Earth’s diameter of 12,500km. Islamic scholars also produced varying figures, most famously al-Khwarizmi and al-Biruni. Up till the Early Modern Period nobody could actually say, which of the various values, that were floating around in the available literature, was the correct one, Columbus famously chose the wrong value.

The basic method of determining the circumference of the Earth is to determine the length of a stretch of a meridian, a line of longitude through both poles, and then determine how many degrees of latitude this represents. From this data it is then possible to determine the circumference. This process took a major turn in accuracy with the invention, by Gemma Frisius (1508–1555), of triangulation in the sixteenth century. This meant that it was now possible to exactly measure the length of a stretch of a meridian and by taking the latitudes of the ends of the stretch to determine the length of one degree of latitude.


The Libellus de locorum describendum ratione, Gemma Frisius’ pamphlet outlining completely and in detail the technique of triangulation.

The first mathematicus to try and determine the circumference of the Earth using triangulation was the Dutchman Willebrord Snel (1580–1626), who carried out a triangulation of the Netherlands in the early part of the seventeenth century. He published the results of survey in his Eratosthenes Batavus, De Terræ ambitus vera quantitate in 1617.


The first part of the title translates as the Dutch Eratosthenes. Taking the distance between Alkmaar and Breda, which almost lie on the same meridian, he calculated one degree of latitude to be 107.37km giving a circumference of 38,653km, an error of about 3.5%.


Snel’s triangulation netwerk Source

Later in the seventeenth century the French astronomer Jean-Félix Picard (1620–1682) now triangulated a meridian arc through Paris, between 1669 and 1670, calculating a value for one degree of latitude of 110.46km producing values for the Earth’s polar radius and circumference with more than 99% accuracy.


Picard’s triangulation and his instruments

In 1672 Jean-Dominique Cassini (1625–1712) made an attempt to measure the parallax of Mars in order to determine the astronomical unit, the distance between the Earth and the Sun.


Jean-Dominique Cassini (artist unknown) Source: Wikimedia Commons

He sent his assistant Jean Richer (1630–1696) to Cayenne in French Guiana, so that he and Cassini could make simultaneous observations of Mars during its perihelic opposition. We shall return to this in a later episode, but it is another experiment or better said discovery of Richer’s, whilst in Cayenne, that is of interest here. Richer was equipped with all the latest equipment including a state-of-the-art pendulum clock with a seconds pendulum, that is a pendulum whose period is exactly two seconds, or at least it was a seconds pendulum when calibrated in Paris. Richer discovered that in Cayenne that he needed to shorten the pendulum by 2.8mm. As gravity is the driving force of a pendulum clock this meant that the Earth’s gravity was different in Cayenne to in Paris or that Cayenne was further from the Earth’s centre than Paris. The Earth was not, after all, a sphere.


Jean Richer working in French Guiana from an engaging by Sébastien Leclerc.

Jean-Dominique Cassini and later his son Jacques (1677–1756) extended Picard’s Paris meridian northwards to Dunkirk and southwards to the Spanish border.


Jacques Cassini Source: Wikimedia Commons

They split the meridian into two and compared lengths for one degree of latitude thus obtained, combining the results with Richer’s pendulum discovery, they proposed and defended the theory that the Earth was not a sphere but a prolate spheroid or an ellipsoid created by rotating an ellipse along its major axis; put in simple terms the Earth was lemon shaped. Jacques Cassini published these results and this theory in his De la grandeur et de la figure de la terre in 1723.


Both Newton and Huygens interpreted Richer’s pendulum discovery differently. Newton arguing from an assumption of diurnal rotation and his theory of gravity theorised that the Earth was in fact flattened to the poles and a bulge at the equator. That is the Earth is an oblate spheroid or ellipsoid created by rotating an ellipse along its minor axis, put in simple terms the Earth was shaped like an orange. Huygens also arguing from an assumed diurnal rotation but Descartes’ vortex theory, rather than Newton’s theory of gravity, arrived at the same conclusion. What is important here is that the theory depended on the existence of diurnal rotation.


Given the already strident philosophical debate between the largely French supporters of Descartes and the largely English supporters of Newton, this new dispute between the Cassini, Cartesian, model of the Earth and the Newton-Huygens, Newtonian model, Huygens actually a Cartesian was here viewed as a Newtonian, rumbled on into the early decades of the eighteenth century. Finally, in the 1730s, the Académie des sciences in Paris decided to solve the issue empirically. They equipped and sent out two scientific expeditions to Lapland and to Peru, now part of Ecuador, to measure one degree of latitude.

The expedition to Meänmaa or Torne Valley in Lapland


Traditional location of Meänmaa in Norrbotten County (Sweden) and Finnish Lapland Source: Wikimedia Commons

under the leadership of Pierre Louis Maupertuis (1698–1755)


Portrait of Maupertuis wearing the costume he adopted for his Lapland expedition by Robert Le Vrac de Tournières

took place successfully in 1736-37, despite atrocious conditions, and their results combined with the results of the Paris meridian showed that the Newton-Huygens model was indeed correct.


Map of the Lapland triangulation Source

Maupertuis published his account of the expedition La Figure de la Terre, déterminée par les Observations de Messieurs Maupertuis, Clairaut, Camus, Le Monier & de M, L’Abbé Outhier accompagnés de M. Celsius. (Paris, 1738).


Jacques Cassini launched a last-ditch attempt to defend his father’s honour and wrote a scathing criticism of the expeditions work in his Méthode de déterminer si la terre est sphérique ou non (Method to determine if Earth is a sphere or not) in 1738. However, the Swedish scientist Anders Celsius (1704–1744), who had also taken part in the expedition completely demolished Cassini’s paper and the Newtonians, of whom Maupertuis although a Frenchman was one, carried the day. Celsius’ De observationibus pro figura telluris determinanda (Observations on Determining the Shape of the Earth) from 1738 made his reputation.


Portrait of Anders Celsius by Olof Arenius

The second expedition to Peru under the leadership of Pierre Bouguer (1698–1758)


Portrait of Pierre Bouguer by Jean-Baptiste Perronneau Source: Wikimedia Commons

and Charles Marie de La Condamine (1701–1774)


Portrait of La Condamine by Carmontelle 1760 Source: Wikimedia Commons

actually left Paris a year earlier that the Lapland expedition in 1735. This team had even more difficulties than their northern colleagues and only returned to Paris in 1744. Their results, however confirmed those of the Lapland expedition and the Newton-Huygens oblate spheroid. Bouguer published his account of the expedition in his La figure de la terre (1749),


La Condamine his Journal du voyage fait par ordre du roi, a l’équateur, 1751.


Through these two expeditions the Earth had acquired a new shape, it was no longer a sphere but an oblate spheroid, an important advance in the history of geodesy. However, possible more important, because the prediction of the Newton-Huygens model was based on the assumption of diurnal rotation, these results produced the first indirect empirical evidence that the Earth rotates around its own axis. This result combined with the return of Comet Halley in 1759 also led to the final general acceptance of Newtonian theory over Cartesian theory.


Filed under History of Astronomy, History of Cartography, History of Geodesy