Category Archives: Book Reviews

Conversations in a sixteenth century prison cell

Science writer Michael Brooks has thought up a delightful conceit for his latest book.* The narrative takes place in a sixteenth century prison cell in Bologna in the form of a conversation between a twenty-first century quantum physicist (the author) and a Renaissance polymath. What makes this conversation particularly spicy is that the Renaissance polymath is physician, biologist, chemist, mathematician, astronomer, astrologer, philosopher, inventor, writer, auto-biographer, gambler and scoundrel Girolamo Cardano, although Brooks calls him by the English translation of his name Jerome. In case anybody is wondering why I listed autobiographer separately after writer, it is because Jerome was a pioneer in the field writing what is probably the first autobiography by a mathematician/astronomer/etc. in the Early Modern Period.

Gerolamo_Cardano_(colour)

Portrait of Cardano on display at the School of Mathematics and Statistics, University of St Andrews. Source: Wikimedia Commons

So what do our unlikely pair talk about? We gets fragments of conversation about Jerome’s current situation; a broken old man rotting away the end of his more than extraordinary life in a prison cell with very little chance of reprieve. This leads to the visitor from the future, relating episodes out of that extraordinary life. The visitor also picks up some of Jerome’s seemingly more strange beliefs and relates them to some of the equally, seemingly strange phenomena of quantum mechanics. But why should anyone link the misadventures of an, albeit brilliant, Renaissance miscreant to quantum mechanics. Because our author sees Jerome the mathematician, and he was a brilliant one, as the great-great-great-great-great-great-great-great-great-great-great-great-great grandfather of quantum mechanics!

Brook001

As most people know quantum mechanics is largely non-deterministic in the conventional sense and relies heavily on probability theory for its results. Jerome wrote the first mathematical tome on probability theory, a field he entered because of his professional gambling activities. He even included a section about how to cheat at cards. I said he was a scoundrel. The other thing turns up in his Ars Magna (printed and published by Johannes Petreius the publisher of Copernicus’ De revolutionibus in Nürnberg and often called, by maths historians, the first modern maths book); he was the first person to calculate with so-called imaginary numbers. That’s numbers using ‘i’ the square root of minus one. Jerome didn’t call it ‘i’ or the numbers imaginary, in fact he didn’t like them very much but realised one could use them when determining the roots of cubic equation, so, holding his nose, that is exactly what he did. Like probability theory ‘i’ plays a very major role in quantum mechanics.

What Michael Brooks offers up for his readers is a mixture of history of Renaissance science together with an explanation of many of the weird phenomena and explanations of those phenomena in quantum mechanics. A heady brew but it works; in fact it works wonderfully.

This is not really a history of science book or a modern physics science communications volume but it’s a bit of both served up as science entertainment for the science interested reader, lay or professional. Michael Brooks has a light touch, spiced with some irony and a twinkle in his eyes and he has produced a fine piece of science writing in a pocket-sized book just right for that long train journey, that boring intercontinental flight or for the week in hospital that this reviewer used to read it. If this was a five star reviewing system I would be tempted to give it six.

*  Michael Brooks, The Quantum Astrologer’s Handbook, Scribe, Melbourne & London, 2017

Advertisements

4 Comments

Filed under Book Reviews, Early Scientific Publishing, History of Astrology, History of Astronomy, History of Physics, Renaissance Science, Uncategorized

Exposing Galileo’s strawmanning

There is a widespread, highly erroneous, popular perception in the world, much loved by gnu atheists and supporters of scientism, that as soon as Petreius published Copernicus’s De Revolutionibus in 1543 the question as to which was the correct astronomical/cosmological system for the cosmos was as good as settled and that when Galileo published his Dialogo[1] everything was finally done and dusted and anybody who still persisted in opposing the acceptance of the heliocentric world view, did so purely on grounds of ignorant, anti-science, religious prejudice. Readers of this blog will know that I have expended a certain amount of energy and several thousand words over the years countering this totally mistaken interpretation of the history of astronomy in the early modern period and today I’m going to add even more words to the struggle.

Galileo is held up by his numerous acolytes as a man of great scientific virtue, who preached a gospel of empirical scientific truth in the face of the superstitious, faith based errors of his numerous detractors; he was a true martyr for science. The fact that Galileo was capable of scientific skulduggery does not occur to them, but not only was he capable of such, his work is littered with examples of it. One of his favourite tactics was not to present his opponents true views when criticising them but to create a strawman, claiming that this represents the views of his opponent and then to burn it down with his always-red-hot rhetorical flamethrower.

Towards the end of The First Day in the Dialogo, Galileo has Simplicio, the fall guy for geocentricity, introduce a “booklet of theses, which is full of novelties.” Salviati, who is the champion of heliocentricity and at the same time Galileo’s mouthpiece, ridicules this booklet as producing arguments full of “falsehoods and fallacies and contradictions” and as “thinking up, one by one, things that would be required to serve his purposes, instead of adjusting his purposes step by step to things as they are.” Galileo goes on to do a polemical hatchet job on what he claims are the main arguments in said “booklet of theses.” Amongst others he accuses the author of “setting himself up to refute another’s doctrine while remaining ignorant of the basic foundations upon which the whole structure are supported.”

The “booklet of theses”, which Galileo doesn’t name, is in fact the splendidly titled:

locher001

English translation of the Latin title page Source: Notre Dame Press

Now most of the acolytes who fervently praise Galileo as the great defender of science against superstition probably have no idea who Johann Georg Locher was but they might well have heard of Christoph Scheiner, who was famously embroiled in a dispute with Galileo over the nature of sunspots and who first observed them with a telescope. In fact the authorship of the Mathematical Disquisitions has often falsely attributed to Scheiner and Galileo’s demolition of it seen as an extension of that dispute and it’s sequel in the pages of his Il Saggiatore.

Whereas Galileo’s Dialogo has been available to the general reader in a good English translation by Stillman Drake since 1953, anybody who wished to consult Locher’s Mathematical Disquisitions in order to check the veracity or lack thereof of Galileo’s account would have had to hunt down a 17th century Latin original in the rare books room of a specialist library. The playing field has now been levelled with the publication of an excellent modern English translation of Locher’s booklet by Renaissance Mathematicus friend, commentator and occasional guest contributor Chris Graney[2].

locher002

Graney’s translation (Christopher M. Graney, Mathematical Disquisitions: The Booklet of Theses Immortalised by Galileo, University of Notre Dame Press, Notre Dame, Indiana, 2017)  presents a more than somewhat different picture of Locher’s views on astronomy to that served up by Galileo in the Dialogo and in fact gives us a very clear picture of the definitely rational arguments presented by the opponents to heliocentricity in the early part of the seventeenth century. The translation contains an excellent explanatory introduction by Graney, extensive endnotes explaining various technical aspects of Locher’s text and also some of the specific translation decisions of difficult terms. (I should point out that another Renaissance Mathematicus friend, Darin Hayton acted as translation consultant on this volume). There is an extensive bibliography of the works consulted for the explanatory notes and an excellent index.

The book is very nicely presented by Notre Dame Press, with fine reproductions of Locher’s wonderful original illustrations.

locher003

Locher’s illustration to his discussion of diurnal rotation p. 32

Graney’s translation provides a great addition to his previous Setting Aside All Authority, which I reviewed here. Graney is doing sterling work in adjusting the very distorted view of the astronomical system discussion in the first half of the seventeenth century and anybody, who is seriously interested in learning the true facts of that discussion, should definitely read his latest contribution.

 

 

 

[1] By a strange cosmic coincidence the first printed copy of the Dialogo was presented to the dedicatee Ferdinando II d’Medici, Grand Duke of Tuscany 386 years ago today on 22 February 1632.

[2] At the end of my review of Setting Aside All Authority I wrote the following, which applies equally to this review; in this case I provided one of the cover blurbs for Chris’ latest book.

Disclosure; Chris Graney is not only a colleague, but he and his wife, Christina, are also personal friends of mine. Beyond that, Chris has written, at my request, several guest blogs here at the Renaissance Mathematicus, all of which were based on his research for the book. Even more relevant I was, purely by accident I hasten to add, one of those responsible for sending Chris off on the historical trail that led to him writing this book; a fact that is acknowledged on page xiv of the introduction. All of this, of course, disqualifies me as an impartial reviewer of this book but I’m going to review it anyway. Anybody who knows me, knows that I don’t pull punches and when the subject is history of science I don’t do favours for friends. If I thought Chris’ book was not up to par I might refrain from reviewing it and explain to him privately why. If I thought the book was truly bad I would warn him privately and still write a negative review to keep people from wasting their time with it. However, thankfully, none of this is the case, so I could with a clear conscience write the positive review you are reading. If you don’t trust my impartiality, fair enough, read somebody else’s review.

Addendum: The orthography of the neologism in the title was change—23,02,18— following a straw pole on Twitter

8 Comments

Filed under Book Reviews, Early Scientific Publishing, History of Astronomy, History of Mathematics, Myths of Science, Renaissance Science

Juggling information

One of the parlour games played by intellectuals and academic, as well as those who like to think of themselves as such, is which famous historical figures would you invite to a cocktail or dinner party and why. One premise for the game being, which historical figure or figures would you most like to meet and converse with. As a historian of mostly Early Modern science I am a bit wary of this question, as many of the people I study or have studied in depth have very unpleasant sides to their characters, as I have commented in the past in more than one blog post. However in my other guise, as a historian of formal or mathematical logic and the history of the computer there is actually one figure, who I would have been more than pleased to have met and that is the mathematician and engineer, Claude Shannon.

A young Claude Shannon
Source: Wikimedia Commons

For those who might not know who Claude Shannon was, he was a man who made two very major contributions to the development of the computers on which I am typing this post and on which you are reading it. The first was when he at the age of twenty-one, in what has been described as the most important master’s thesis written in the twentieth century, combined Boolean algebra with electric circuit design thus rationalising the whole process and simplifying the design of complex circuitry beyond measure. The second was sixteen years later when he in his A Mathematical Theory of Communication, building, it should be added, on the work of others, basically laid the foundations of our so-called information age. His work laid out how to transmit digital signals through circuitry without loss of information. He is regarded as the über-guru of information theory, to quote Wikipedia:

 Information theory studies the quantification, storage, and communication of information. It was originally proposed by Claude E. Shannon in 1948 to find fundamental limits on signal processing and communication operations such as data compression, in a landmark paper entitled “A Mathematical Theory of Communication”.

Given that the period we live in is called both the computer age and the information age, it is somewhat surprising that the first full-length biography of Shannon, A Mind at Play,[1] only appeared this year. Having somewhat foolishly said that I would hold a public lecture in November on Vannevar Bush, who was Shannon’s master’s thesis supervisor, and Shannon, I have been reading Soni’s and Goodman’s Shannon biography, which I have to say I enjoyed immensely.

 

This is a full length, full width biography that covers both the live of the human being as well as the intellectual achievements of the engineer-mathematician. Shannon couldn’t decide which to study as an undergraduate so he did a double BSc in both engineering and mathematics. This dual course of studies is what led to that extraordinary master’s thesis. Having studied Boolean algebra in his maths courses Shannon realised that he could apply it to rationalise and simplify electrical switching when working, as a postgrad, on the switching circuits for Bush’s analogue computer, the differential analyser. It’s one of those things that seems obvious with hindsight but required the right ‘prepared mind’, Shannon’s, to realise it in the first place. It is a mark of his character that he shrugged off any genius on his part in conceiving the idea, claiming that he had just been lucky.

Shannon’s other great contribution, his treatise on communication and information transmission, came out of his work at Bell Labs as a cryptanalyst during World War II. The analysis of language that he developed in order to break down codes led him to a more general consideration of the transmission of information with languages out of which he then laid down the foundations of his theories on communication and information.

Soni’s and Goodman’s and volume deals well with the algebraic calculus for circuit design and I came away with a much clearer picture of a subject about which I already knew quite a lot. However I found myself working really hard on their explanation of Shannon’s information theory but this is largely because it is not the easiest subject in the world to understand.

The rest of the book contains much of interest about the man and his work and I came away with the impression of a fascinating, very deep thinking, modest man who also possessed a, for me, very personable sense of humour. One aspect that appealed to me was that Shannon was a unicyclist and a juggler, who also loved toys, hence the title of my review. As I said at the beginning Claude Shannon is a man I would have liked to have met for a long chat over a cup of tea.

An elder Claude Shannon
Source: Wikimedia Commons

On the whole I found the biography well written and light to read, except for the technical details of Shannon information theory, and it contains a fairly large collection of black and white photos detailing all of Shannon’s life. As far as the notes are concerned we have the worst of all possible solutions, hanging endnotes; that is endnotes, with page numbers, to which there is no link or reference in the text. There is an extensive and comprehensive bibliography as well as a good index. This is a biography that I would whole-heartedly recommend to anybody who might be interested in the man or his area of work or both.

 

 

[1] Jimmy Soni & Rob Goodman, A Mind at Play: How Claude Shannon Invented the Information Age, Simon & Shuster, New York etc., 2017

2 Comments

Filed under Book Reviews, History of Computing, History of Logic, History of Technology

Men of Mathematics

This is something that I wrote this morning as a response on the History of Astronomy mailing list; having written it I have decided to cross post it here.

John Briggs is the second person in two days, who has recommended Eric Temple Bell’s “Men of Mathematics”. I can’t remember who the first one was, as I only registered it in passing, and it might not even have been on this particular mailing list. Immediately after John Briggs recommended it Rudi Lindner endorsed that recommendation. This series of recommendations has led me to say something about the role that book played in my own life and my view of it now.

“Men of Mathematics” was the first book on the history of science and/or mathematics that I ever read. I was deeply passionate fan of maths at school and my father gave me Bell’s book to read when I was sixteen years old. My other great passion was history and I had been reading history books since I taught myself to read at the age of three. Here was a book that magically combined my two great passions. I devoured it. Bell has a fluid narrative style and the book is easy to read and very stimulating.

Bell showed me that the calculus, that I had recently fallen in love with, had been invented/discovered (choose the verb that best fits your philosophy of maths), something I had never even considered before. Not only that but it was done independently by two of the greatest names in the history of science, Newton and Leibniz, and that this led to one of the most embittered priority and plagiarism disputes in intellectual history. He introduced me to George Boole, whom I had never heard of before and whose work and its reception in the 19th century I would seriously study many years later in a long-year research project into the history of formal or mathematical logic, my apprenticeship as a historian of science.

Bell’s tome ignited a burning passion for the history of mathematics in my soul, which rapidly developed into a passion for the whole of the history of science; a passion that is still burning brightly fifty years later. So would I join the chorus of those warmly recommending “Men of Mathematics”? No, actually I wouldn’t.

Why, if as I say Bell’s book played such a decisive role in my own development as a historian of mathematics/science, do I reject it now? Bell’s florid narrative writing style is very seductive but it is unfortunately also very misleading. Bell is always more than prepared to sacrifice truth and historical accuracy for a good story. The result is that his potted biographies are hagiographic, mythologizing and historically inaccurate, often to a painful degree. I spent a lot of time and effort unlearning a lot of what I had learnt from Bell. His is exactly the type of sloppy historiography against which I have taken up my crusade on my blog and in my public lectures in my later life. Sorry but, although it inspired me in my youth, I think Bell’s book should be laid to rest and not recommended to new generations.

 

18 Comments

Filed under Book Reviews, History of Logic, History of Mathematics, History of science, Myths of Science

The Great Man paradox – A coda: biographies

This is a follow up to my last post that was inspired by an interesting discussion on Twitter and by the comment on that post by Paul Engle, author of the excellent Conciatore: The Life and Times of 17th Century Glassmaker Antonio Neri.

It is clear to me that biographies, particular popular ones, play a very central roll in the creation of the great men and lone genius myths. Now don’t misunderstand me I am not condemning #histSTM biographies in general; I have one and a half metres of such biographies on my bookshelves and have consumed many, many more that I don’t own. What I am criticising is the way that many such biographies are written and presented and I am going to make some suggestions, with examples, how, in my opinion such biographies should be written in order to avoid falling into the great man and lone genius traps.

The problem as I see it is produced by short, single volume, popular biographies of #histSTM figures or the even shorter portraits printed in newspapers and magazines. Here the title figure is presented with as much emphasis as possible on the uniqueness, epoch defining, and world-moving importance of their contribution to the history of science, technology or medicine. Given the brevity and desired readability of such works the context in which the subject worked is reduced to a minimum and any imperfections in their efforts are often conveniently left out. In order to achieve maximum return on their investment publishers then hype the book in their advertising, in the choice of title and/or subtitle and in the cover blurbs. A good fairly recent example of this was the subtitle of David Loves Kepler biography, How One Man Revolutionised Astronomy, about which I wrote a scathing blog post.

The authors of such works, rarely themselves historian of science, also tend to ignore the painfully won knowledge of historians and prefer to repeat ad nauseam the well worn myths handed down by the generations – Newton and the apple, Galileo and the Tower of Pisa and so on and so forth.

#histSTM biography does not have to be like this. Individual biographies can be historically accurate, can include the necessary context, and can illuminate the failings and errors of their subjects. Good examples of this are Westfall’s Newton biography Never at Rest and Abraham Pais’ Einstein biography Subtle is the Lord. Unfortunately these are doorstep size, scholarly works that tend to scare off the non-professional reader. Are there popular #histSTM works that surmount this problem? I think there are and I think the solution lies in the multi-biography and the theme-orientated books with biographies.

A good example of the first is Laura J Snyder’s The Philosophical Breakfast Club: Four Remarkable Friends Who Transformed Science and Changed the World. Despite the hype in the subtitle this book embeds its four principal biographies in a deep sea of context and because all four of them were polymaths, manages to give a very wide picture of Victorian science in the first half of the nineteenth century.

Another good example is Jenny Uglow’s The Lunar Men: The Friends Who made the Future, once again a terrible subtitle, but with its even larger cast of central characters and even wider spectrum of science and technology delivered by them we get a true panorama of science and technology in the eighteenth and nineteenth centuries. Neither book has any lone geniuses and far too many scrambling for attention for any of them to fit the great man schema.

Two good examples of the second type are both by the same author, Renaissance Mathematicus friend and Twitter sparring partner, Matthew the Mancunian Maggot Man, aka Matthew Cobb. Both his books, The Egg and Sperm Race: The Seventeenth Century Scientists Who Unravelled the Secrets of Sex, Life and Growth

and Life’s Greatest Secret: The Race to Crack the Genetic Code

deal with the evolution of scientific concepts over a relatively long time span. Both books contain accurate portraits of the scientists involved complete with all of their failings but the emphasis is on the development of the science not on the developers. Here, once again, with both books having a ‘cast of millions’ there is no place for lone geniuses or great men.

These, in my opinion, are the types of books that we should be recommending, quoting and even buying for friends and relatives not the single volume, one central figure biographies. If more such books formed the basis of peoples knowledge of #histSTM then the myths of the lone genius and the great man might actually begin to fade out and with luck over time disappear but sadly I don’t think it is going to happen any day soon.

Having mentioned it at the beginning I should say something about Paul Engle’s Conciatore.

This is a single volume, one central figure biography of the seventeenth-century glassmaker Antonio Neri, who was the first man to write and publish a book revealing the secrets of glassmaking. His revealing of the trade secrets of a craft marks a major turning point in the history of technology. Up till the seventeenth century trade secrets were just that, secret with severe punishment for those who dared to reveal them, including death. Later in the century Joseph Moxon would follow Neri’s example publishing a whole series of books revealing the secrets of a whole range of trades including the first ever textbook on book printing his Mechanical Exercises or the Doctrine of Handy-Works. Paul’s book is a biography of Neri but because of why he is writing about Neri it is more a history of glassmaking and so sits amongst my history of technology books and not with my collection of #histSTM biographies. Here the context takes precedence over the individual, another example of how to write a productive biography and a highly recommended one at that.

 

 

 

5 Comments

Filed under Book Reviews, History of science, Myths of Science

American eclipse tourism in the nineteenth century

Steve Ruskin has achieved the history of astronomy equivalent of squaring the circle; he has written a popular history of astronomy book that is informative, enlightening, entertaining and at the same time both historically and scientifically accurate. A rare phenomenon in an age where all too many authors of popular history of science books throw accuracy out of the window in favour of a good narrative.

I assume that by now all of the readers of this blog will be aware that America is being treated to the spectacular of a total solar eclipse on 21 August this year; this event has been dubbed The Great American Eclipse! This is by no means the first great eclipse that America has experienced and Steve Ruskin has written a book on the eclipse from 1878, which in the age of the new technology of instant world wide communication with the telegraph and viable long distant travel with steam ships and steam trains became a mass eclipse tourism phenomenon.

Ruskin’s book, America’s First Great Eclipse: How Scientists, Tourists, and the Rocky Mountain Eclipse of 1878 Changed Astronomy Forever [1], is divided into three sections. The first deals with the period leading up to the eclipse, the publication of the event and the preparations for it. The second, the eclipse itself and the observations made both by the professional astronomers and by the lay tourists. The third deals with the results of those observations both the scientific evaluations and the popular public reactions.

One of the things that makes this book very good is the authors extensive use of and generous quotes from the contemporary news sources, newspapers and magazines. Ruskin lets those involved and present at the time speak for themselves, mostly just providing a framework for them to do so. The reader experiences the lead up to the eclipse, the eclipse itself and the very public aftermath, as it was experienced in the nineteenth century.

As an astronomy historian Ruskin’s main historical point, announced in the subtitle, concerns high altitude astronomical observation. He argues that the eclipse, whose path ran through the Rocky Mountains, triggered the modern debate on the advantages, or possibly lack of them, of making astronomical observations at high altitude, where the atmosphere is thinner. Several of the professional observers took the opportunity of trying mountain top observation, with all the strategic problems that this involved, in order to test the hypothesis that this would lead to better results. Although the results, in this case, were not totally convincing the debate they provoked led eventually to the construction of the first permanent high altitude observatories.

As this is a popular book there are no foot or endnotes and no index but there is a fairly extensive bibliography of original sources and books for further reading, which are also clearly referenced in the text. This is a delightful little book and I heartily recommend anybody travelling later this month to experience this year’s Great American Eclipse to acquire a copy, either paper or electronic, to read on their journey. Naturally, it is also an informative and recommended lecture for those not able or willing to join this year’s eclipse tourists.

[1] Steve Ruskin, America’s First Great Eclipse: How Scientists, Tourists, and the Rocky Mountain Eclipse of 1878 Changed Astronomy Forever, Alpine Alchemy Press, 2017

13 Comments

Filed under Book Reviews, History of Astronomy

Perpetuating the myths

Since the re-emergence of science in Europe in the High Middle Ages down to the present the relationship between science and religion has been a very complex and multifaceted one that cannot be reduced to a simple formula or a handful of clichés. Many of the practitioners, who produced that science, were themselves active servants of their respective churches and many of their colleagues, whilst not clerics, were devoted believers and deeply religious. On they other had there were those within the various church communities, who were deeply suspicious of or even openly hostile to the newly won scientific knowledge that they saw as a threat to their beliefs. Over the centuries positions changed constantly and oft radically and any historian, who wishes to investigate and understand that relationship at any particular time or in any given period needs to tread very carefully and above all not to approach their research with any preconceived conclusions or laden down with personal prejudices in one direction or another.

In the nineteenth century just such preconceived conclusions based on prejudice became dominant in the study of the history of science propagated by the publications of the English-American chemist John William Draper and his colleague the American historian and educator Andrew Dickson White. These two scholar propagated what is now know as the Conflict or Draper-White Thesis, which claims that throughout history the forces of science and religion have been in permanent conflict or even war with each other. Draper wrote in his provocatively titled, History of the Conflict between Religion and Science (1874)

The history of Science is not a mere record of isolated discoveries; it is a narrative of the conflict of two contending powers, the expansive force of the human intellect on one side, and the compression arising from traditionary faith and human interests on the other.

In 1876 in his equally provocative The Warfare of Science, White wrote:

In all modern history, interference with science in the supposed interest of religion, no matter how conscientious such interference may have been, has resulted in the direst evils both to religion and to science—and invariably. And, on the other hand, all untrammeled scientific investigation, no matter how dangerous to religion some of its stages may have seemed, for the time, to be, has invariably resulted in the highest good of religion and of science.

Twenty years later White ramped up the heat in his A History of the Warfare of Science with Theology in Christendom.

Draper’s and White’s polemics became widely accepted and Galileo, Darwin and other figures out of the history of science came to be regarded as martyrs of science, persecuted by the bigoted forces of religion.

Throughout the twentieth century historians of science have striven to undo the damage done by the Draper-White thesis and return the history of the relationship between science and religion to the complex and multifaceted reality with which I introduced this post. They were not helped in recent decades by the emergence of the so-called New Atheists and the ill considered and unfortunately often historically ignorant anti-religious polemics spewed out by the likes of Richard Dawkins and Sam Harris, supposedly in the name of freedom of thought. I have, although a life-long atheist myself, on more than one occasion taken up arms, on this blog, against the sweeping anti-religious generalisations with respect to the history of science spouted by the new atheist hordes.

So it was with more than slight sense of despair that I read the preview in The Atlantic of

A Graphic Novel About 17th-Century Philosophy with the title Heretics!

This is described by its publishers the Princeton University Press as follows:

An entertaining, enlightening, and humorous graphic narrative of the dangerous thinkers who laid the foundation of modern thought

The Atlantic’s review/preview confirmed my darkest suspicions. We get informed:

Dark spots across the sun, men burned at the stake, an all-powerful church that brooks no idea outside its dogma—there is no subject so imbued with drama, intrigue, and fast-paced action as 17th-century Western philosophy. And thus no medium does it justice like the graphic novel.

No, really.

Heretics!, a graphic novel by Steven and Ben Nadler, introduces readers to what is arguably the most interesting, important, and consequential period in the history of Western philosophy. While respecting recent scholarship on 17th-century thought, [my emphasis] the Nadlers sought to make these stories and ideas as accessible and engaging to as broad an audience as possible without condescension. At times, this called for some historical liberties and anachronism. (Full disclosure: there were no laptop computers or iPods in the 17th century.)

We are back in Draper-White territory with a vengeance! The last thing that the Nadlers do is to respect recent scholarship, in fact they turn the clock back a long way, deliberately avoiding all the work done by modern historians of science.

The sample chapter provided by The Atlantic starts with Giordano Bruno, who else, much loved as a martyr for science by the new atheist hordes.

Source: The Atlantic

We see here that, as usual, Bruno’s cosmology is featured large, whilst his theological views are tucked away in the corner. Just two comments, Bruno was by no stretch of the imagination a scientist, read this wonderful essay by Tim O’Neill if you don’t believe me, and his “highly unorthodox” theological views included denial of the trinity, denial of Jesus’ divinity and denial of the virgin birth any one of which would have got him a free roasting courtesy of the Catholic Church if he had never written a single word about cosmology.

Up next, prime witness for the prosecution, who else but our old friend Galileo Galilei. We get the hoary old cliché of him throwing rocks off the Leaning Tower of Pisa, which he almost certainly never did.

We now move on to Galileo the astronomer,

Source: The Atlantic

who having made his telescopic discoveries claims that, “Copernicus was right.”

Source: The Atlantic

Know what, in 1615 Galileo was very careful not to claim that because he knew that it was a claim that he couldn’t back up. What he did do, which brought him into conflict with the Church was to suggest that the Church should change its interpretations of the Bible, definitely not on for a mere mathematician in the middle of the Counter Reformation and for which he got, not unsurprisingly, rapped over the knuckles. In 1616 Pope Paul V did not condemn Copernicus’s theory as heresy, in fact no pope ever did.

We then have Galileo sulking in his room and he isgoing to show them! In fact Galileo courted the Catholic Church and was a favourite of the papal court in Rome; he received official permission from Pope Urban VIII to write his Diologo. I’m not going to go into the very complex detail as to why this backfired but a couple of short comments are necessary here. At that time the heliocentric theory did not do a much better job of explain the phenomena in the heavens and on earth. Galileo’s book is strong on polemic and weak on actual proofs. Also, and I get tired of pointing this out, Galileo was not condemned as a heretic but found guilty of grave suspicion of heresy. There is a massive legal difference between the two charges. Paying attention to the fine detail is what makes for a good historian. We close, of course with the classic cliché, “And yet the earth moves.” No, he didn’t say that!

Source: The Atlantic

We then get a comic book description of the differences between the philosophies of Aristotle and Descartes that unsurprisingly doesn’t do either of them justice. All of this is of course only a lead up to the fact that Descartes decided not to publish his early work explicating his philosophy including his belief in heliocentricity, Traité du monde et de la lumière, on hearing of Galileo’s trial and punishment. This is dealt with by the Nadlers with a piece of slapstick humour, “Zut alors! I don’t want to get into trouble too!” Has anybody ever actually heard a Frenchman say “Zut alors!”?

Source: The Atlantic

This episode in intellectual history is actually of great interest because as far as is known Descartes is the only author in the seventeenth century who withdrew a book from publication because of the Pope’s edict against teaching heliocentricity. He appears to have done so not out of fear for his own safety but out of respect for his Jesuit teachers, whom he did not wish to embarrass. This was rather strange as other Jesuits and students of Jesuit academies wrote and published books on heliocentrism merely prefacing them with the disclaimer that the Holy Mother Church in its wisdom has correctly condemned this theory but it’s still quite fun to play with it hypothetically. The Church rarely complained and appearances were maintained.

This very superficial and historically highly inaccurate comic book in no way does justice to its subject but will do a lot of damage to the efforts of historians of science to present an accurate and balanced picture of the complex historical relationship between science and religion.

For anybody who is interested in the real story I recommend John Hadley Brooke’s classic Science and Religion: Some Historical Perspectives (1991) and Peter Harrison’s, soon to be equally classic, The Territories of Science and Religion (2015). On reading The Atlantic review/preview Peter Harrison tweeted the following:

Oh dear…. Not the optimal format for communicating the complexities of history – Peter Harrison (@uqharri)

James Ungureanu another expert on the relations between science, religion and culture also tweeted his despair on reading The Atlantic review/preview:

When I saw this earlier, I died a little. It must be right because it’s funny! – James C Ungureanu (@JamesCUngureanu)

20 Comments

Filed under Book Reviews, History of science, Myths of Science