Category Archives: History of Astronomy

A Herschel comes seldom alone.

On the excellent website Lady Science Anna Reser and Leila McNeill recently posted an article entitled Well, Actually Mythbusting History Doesn’t Work, which I shall not be addressing. However it contained the interesting statement, When the likes of Caroline Herschel and Ada Lovelace are brought up, a common response is a historical version of “what about the men?!” The men in this case being William Herschel and Charles Babbage. Ignoring Lovelace and Babbage I would like to address the case of the siblings Caroline and William Herschel.

Of course Caroline Herschel is a very important figure in the history of astronomy and deserves to be recognised on her own extensive merits but is it possible to discuss her life and work without mentioning her elder brother? The answer to this question is a clear yes and no. If one were to present a brief bullet point outline of her life then yes, as follows.

Caroline Herschel Source: Wikimedia Commons

Caroline Herschel
Source: Wikimedia Commons

Caroline Herschel German/ British Astronomer

  • Born Hanover 16 March 1750
  • Lived in England 1772–1822
  • Died Hanover 9 January 1848
  • Discoverer of eight comets
  • Recipient of a pension from George III 1787
  • Recipient of the Gold Medal of the Royal Astronomical Society 1828
  • One of the first Woman members of the Royal Astronomical Society, elected 1835
  • Awarded Gold Medal for Science by the King of Prussia 1846

However if one goes beyond the highly impressive outline and starts to examine her biography in depth then it is impossible not to mention her brother William who played a decisive role at almost every stage of her live.

Stunted and disfigured by a bout of typhus in her childhood, Caroline was not considered a suitable candidate for marriage. Her illiterate mother did not hold much of education for women so it seemed that Caroline was destined for a life of domestic drudgery. However William her elder brother, having established himself as a professional musician in the city of Bath, fetched her from Hanover to come and live with him as his housekeeper in 1772. In Bath she shared the attic flat with their younger brother Alexander, of whom more later, whilst William lived on the first floor, which was also his music studio where amongst other things he delivered music lessons. The ground floor was occupied by a married couple, who worked as William servants, also paying rent for their accommodation. Caroline took over the running of this household.

William Herschel 1785 portrait by Lemuel Francis Abbott Source: Wikimedia Commons

William Herschel 1785 portrait by Lemuel Francis Abbott
Source: Wikimedia Commons

William took over Caroline’s education teaching her to sing as well as instructing her in arithmetic and English. Soon she began to appear as a soloist in William public recitals and made such a positive impression that am impresario offered her the opportunity of going on tour as a singer, an offer that she declined preferring to stay in Bath with her brother.

When William developed his passion for astronomy Caroline became his assistant, rather grudgingly at first but later with enthusiasm, recording and tabulating her brother telescopic observations. When William began to manufacture his own telescopes Caroline was once again at hand, as assistant. When I visited the Herschel Museum in Bath I learnt that one of Caroline’s tasks was to sieve the horse manure that they used to embed the cast telescope mirrors to grind and polish them. I highly recommend visiting this museum, where you can view the Herschel’s telescope workshop in the cellar. Caroline also took over the task of calculating and compiling the catalogue of William’s observation. It should be very clear that the siblings worked as a team, each playing an important role in their astronomical endeavours.

Later after the discovery of Uranus, when William became the King’s astronomer and they moved to Datchet near Windsor, he encouraged Caroline to become an astronomer in her own right teaching her how to sweep the skies looking for comets and constructing a small reflecting telescope for this purpose. Caroline would go on to have a very successful career as a comet hunter, as already noted above.

I hope that in this very brief sketch that I have made it clear that William played a key role at each juncture in Caroline’s life and that without him she never would have become an astronomer, so any full description of her undoubted achievements must include her bother and his influence. However there is a reverse side to this story, as should be very clear from my brief account, any description of William Herschel’s achievements, as an astronomer, must include an explanation of Caroline’s very central role in those discoveries.

Any account of William’s and Caroline’s dependency on each other in their astronomical careers should also include the role played by their younger brother Alexander. Like William and their father, Alexander was a highly proficient professional musician, who had moved into William’s house in Bath, as Caroline was still living in Hanover. Alexander apparently played a role in the decision to bring Caroline to Bath. As well as being a talented musician Alexander was a highly skilled craftsman and when William decided to start building his own Newtonian telescopes, it was Alexander who provided the necessary metal components including the telescope tubes for the small objective scopes used to view the image in a Newtonian. The Herschel telescope production was very much a family business. The Herschel telescopes enjoyed a very good reputation and manufacturing and selling them became a profitable sideline for the siblings. The two sides of the Herschel’s astronomical activities fertilised each other. The quality of the telescopes underlined the accuracy of the observations and the accuracy of the observations was positive advertising for the telescopes.

Replica of a Herschel Newtonian Reflector. Herschel Museum Bath Source: Wikimedia Commons

Replica of a Herschel Newtonian Reflector. Herschel Museum Bath
Source: Wikimedia Commons

It should be now clear that when considering the Herschel’s astronomical activities we really have to view all three siblings as a unit, as well as viewing them as individuals but our collection of Herschels does not end here. As should be well known William’s son John would go on to be a highly significant and influential polymath in the nineteenth century, amongst other things setting forth the family’s astronomical tradition. John was very close to his aunt Caroline and it was she and not his father who first introduced the young Herschel sprog to the joys and fascinations of astronomical observation.

ohn Frederick William Herschel by Alfred Edward Chalon 1829 Source: Wikimedia Commons

ohn Frederick William Herschel by Alfred Edward Chalon 1829
Source: Wikimedia Commons

Although the Herschels form a relatively closed family unit in their astronomical activities, they also employed a joiner to make the tubes and stands for their reflectors, they also provide a very good example of they fact that observational astronomy, and in fact much scientific activity, is team work and not the product of individuals.

 

 

6 Comments

Filed under History of Astronomy, History of science, Ladies of Science

Another public service announcement

Marius Book Launch

In September 2014 a conference was held in Nürnberg, as the climax of a year dedicated to celebrating the life and work of the Franconian astronomer, astrologer and mathematician Simon Marius, whose magnum opus Mundus Iovialis was published four hundred years earlier in 1614.

The papers held at that conference together with some other contributions from people who could not attend in person have now been collected together in the book Simon Marius und Seine Forschung, eds. Hans Gaab and Pierre Leich (= Acta Historica Astronomiae, Band 57) which will be official launched in the Thalia bookshop in Nürnberg on this coming Thursday, 13 October at 18:30 MET.

This volume contains papers by a wide range of scholars and could/should be of interest to anybody studying the histories of astronomy, astrology and/or mathematics in the Early Modern Period. It can be purchased online, after Thursday, directly from the publishers, Leipziger Universitätsverlag

01755_b9d6647f7e002c0100bb65e363cc4fae

For those who would like to know more about the book including a table of contents (Inhaltsverzeichnis) they can inform themselves on the Marius Portal here.

For those who cannot read German, an English edition of the book is in planning for next year, for which further contributions on the life and work of Simon Marius would also be welcome. If anybody has any questions regarding this volume I would be happy to answer them.

 

P.S. For those waiting for blogging to resume here at the Renaissance Mathematicus I can report that there is light at the end of the tunnel!

 

 

 

 

1 Comment

Filed under History of Astrology, History of Astronomy, History of Mathematics, Renaissance Science

Not a theology student

On the 10 August 1591 (os) (according to Max Caspar, 11 August according to Owen Gingerich!) Johannes Kepler graduated MA at the University of Tübingen. This is a verified undisputed historical fact, however nearly all secondary sources go on to state that he then went on to study theology, his studies being interrupted, shortly before completion, when he was appointed school teacher and district mathematicus in Graz. A post he took up on 11 April 1594. The part about the theology studies is however not true. This myth was created by historians and it would be interesting to trace who first put it out in the world and it is also interesting that nobody bothered to check this claim against the sources until Charlotte Methuen published her Kepler’s Tübingen: Stimulus to a Theological Mathematics in 1998.

Johannes Kepler Source: Wikimedia Commons

Johannes Kepler
Source: Wikimedia Commons

One reason for the lack of control is because the version with the theology studies seems so plausible. At medieval universities all student started their studies with the seven liberal arts graduating BA, in Kepler’s case in 1588 having matriculated two years earlier. Those, who stayed on at the university now intensified those studies graduating MA, essentially a teaching qualification. Those, who now wished to continue in academia had, in the normal run of events, the choice between taken a doctorate in law, medicine or theology. We know that Kepler was initially very disappointed with his appointment as a school teacher for mathematics because he would have preferred to become a Protestant pastor, so it would seem logical that because he stayed on at the university after graduating MA he must have studied theology. However appearances can be, and in this case are, deceptive. The problem is that Tübingen, or at least the Tübinger Stift in which Kepler studied was not a conventional medieval university.

A major problem that the Lutheran Protestant Church faced following the Reformation was finding enough pastors to run their churches and enough schoolteachers for their schools. In areas that converted to Protestantism the churches naturally had Catholic priest many of whom were not prepared or willing to convert and the education system, including both schools and universities, was firmly in the hands of the Catholic Church. This meant that the Lutheran Church had to build its own education system from scratch. This was the task taken on by Phillip Melanchthon, whom Luther called his Preceptor Germania – Germany’s schoolteacher – a task that he mastered brilliantly.

The state of Baden-Württemberg, one of the largest and most important early Protestant states gasped here the initiative, setting up a state sponsored school and university system to educate future Protestant schoolteachers and pastors. The Tübinger Stift was established in 1536 for exactly this purpose. The Dukes of Württemberg also provided stipends for gifted children of less wealthy families to enable them to attend the Stift. Kepler was the recipient of such a stipend.

Tübinger Still (left and University (right) Source: Kepler-Gesellschaft e.V.

Tübinger Still (left) and University (right)
Source: Kepler-Gesellschaft e.V.

All the students did a general course of studies, which upon completion with an MA qualified them to become either a schoolteacher or a pastor depending on the positions required to be filled, when they graduated. Allocation was also to some extent conditioned by the abilities of the individual student. Upon completion of their MAs student remained at the university receiving instruction in the various practical aspects of their future careers, teaching practice, basic theology for sermons and so forth until a suitable vacancy became available. Only a very, very small percentage of these students formally matriculated for a doctorate in theology, an unnecessary qualification for a simple pastor. Most Catholic priest of the period also did not possess a doctorate in theology. Kepler was not one of those who chose to do a doctorate in theology but was simply a participant in the general career preparation course for schoolteachers and pastor; a course for which there were no formal final exams or qualifications.

Kepler had been in this career holding pattern, so to speak, for not quite three years when the Evangelical Church authorities in Graz asked the University in Tübingen to recommend a new mathematics teacher for their school. After due consideration the university chose Kepler, who had displayed a high aptitude for mathematics, for the position. After some hesitation Kepler accepted the posting. He could have refused but it would not have placed him as a stipendiary in a very good position with the authorities. He was also free to leave the system and return to civil life but this would have meant having to reimburse his stipend.

It was clear from the beginning of his studies that he could, or would, be appointed either a schoolteacher or a pastor but the young Johannes had set his heart on serving his God as a pastor and was thus initially deeply disappointed by his appointment. The turning point came in Graz when he realised, in a moment of revelation, that he could best serve his God, a geometrical creator, by revealing the mathematical wonders of that creation. And so he dedicated his life to being God’s geometer, a task that he fulfilled with some distinction.

6 Comments

Filed under History of Astronomy, History of science, Myths of Science

Getting Kepler wrong

In recent times a bit of philosophy of science bun fight took place on the Intertubes. It started off in the New York Times with an opinion piece by James Blachowicz entitled, There is no Scientific Method. The title is actually a misnomer, as what Blachowicz actually argues is that the problem solving procedure usually called the scientific method is not unique to science. I’m not going to discuss it here but it is hardly an original theory, in fact I’ve argued something very similar myself in the past. I will, however, say that I don’t think that Blachowicz argues his case very well. Above all I think that his final three paragraphs in which he explains why, if the method is not exclusive to science, science is different to other form of knowledge are pretty crappy and largely wrong. Someone who also disparages those final three paragraphs in physics blogger Chad Orzel, who has written a pretty nifty book about the scientific method himself.[1] Chad wrote a post on his Uncertain Principles blog entitled, Why Physicists Disparage Philosophers, In Three Paragraphs, which if your read or have already read Blachowicz’s opinion piece you should definitely also read.

Chad was not the only physicist who weighed in on Blachowicz’s opinion piece with Ethan Siegel posting on his Forbes blog, Starts with a Bang, a rejoinder entitled Yes, New York Times, There Is a Scientific Method. In his piece Blachowicz illustrates his interpretation of the use of the scientific method in actual science with a brief discussion of Kepler’s search for the shape of the orbit of Mars using Tycho Brahe’s observational data as extensively described by Kepler in his Astronomia Nova in 1609. Here are the actual paragraphs from Blachowicz:

Now compare this with a scientific example: Johannes Kepler’s discovery that the orbit of Mars is an ellipse.

In this case, the actual meaning of courage (what a definition is designed to define) corresponds with the actual observations that Kepler sought to explain — that is, the data regarding the orbit of Mars. In the case of definition, we compare the literal meaning of a proposed definition with the actual meaning we want to define. In Kepler’s case, he needed to compare the predicted observations from a proposed explanatory hypothesis with the actual observations he wanted to explain.

 Early on, Kepler determined that the orbit of Mars was not a circle (the default perfect shape of the planetary spheres, an idea inherited from the Greeks). There is a very simple equation for a circle, but the first noncircular shape Kepler entertained as a replacement was an oval. Despite our use of the word “oval” as sometimes synonymous with ellipse, Kepler understood it as egg-shaped (in the asymmetrical chicken-egg way). Maybe he thought the orbit had to be lopsided (rather than symmetrical) because he knew the Sun was not at the center of the oval. Unfortunately, there is no simple equation for such an oval (although there is one for an ellipse).

When a scientist tests a hypothesis and finds that its predictions do not quite match available observations, there is always the option of forcing the hypothesis to fit the data. One can resort to curve-fitting, in which a hypothesis is patched together from different independent pieces, each piece more or less fitting a different part of the data. A tailor for whom fit is everything and style is nothing can make me a suit that will fit like a glove — but as a patchwork with odd random seams everywhere, it will also not look very much like a suit.

The lesson is that it is not just the observed facts that drive a scientist’s theorizing. A scientist would, presumably, no more be caught in a patchwork hypothesis than in a patchwork suit. Science education, however, has persistently relied more on empirical fit as its trump card, perhaps partly to separate science from those dangerous seat-of-the-pants theorizings (including philosophy) that pretend to find their way apart from such evidence.

Kepler could have hammered out a patchwork equation that would have represented the oval orbit of Mars. It would have fit the facts better than the earlier circle hypothesis. But it would have failed to meet the second criterion that all such explanation requires: that it be simple, with a single explanatory principle devoid of tacked-on ad hoc exceptions, analogous to the case of courage as acting in the face of great fear, except for running away, tying one’s shoelace and yelling profanities.

 It is here that Ethan launches his attack accusing Blachowicz of not having dug deep enough and of misrepresenting what Kepler actually did. After posting a picture of Kepler’s wonderful 3D model of his Platonic cosmos:

Kepler

Ethan posted the following:

Kepler’s original model, above, was the Mysterium Cosmographicum, where he detailed his outstandingly creative theory for what determined the planetary orbits. In 1596, he published the idea that there were a series of invisible Platonic solids, with the planetary orbits residing on the inscribed and circumscribed spheres. This model would predict their orbits, their relative distances, and — if it were right — would match the outstanding data taken by Tycho Brahe over many decades.

But beginning in the early 1600s, when Kepler had access to the full suite of Brahe’s data, he found that it didn’t match his model. His other efforts at models, including oval-shaped orbits, failed as well. The thing is, Kepler didn’t just say, “oh well, it didn’t match,” to some arbitrary degree of precision. He had the previous best scientific model — Ptolemy’s geocentric model with epicycles, equants and deferents — to compare it to. In science, if you want your new idea to supersede the old model, it has to prove itself to be superior through experiments and observations. That’s what makes it science. And that’s why the ellipses succeeded, because they gave better, more accurate prediction than all the models that came before, including Ptolemy’s, Copernicus’, Brahe’s and even Kepler’s own earlier models.

Unfortunately Ethan has hoisted himself with his own petard. He has not dug deep enough and what he presents here is presentist interpretation of what Kepler actually thought and did over a period of around thirty years. I will explain.

At the various stages of Kepler’s development that Ethan sketches Kepler is dealing with and providing answers for different non-exclusive question, which don’t replace each other sequentially.

At the beginning Kepler was looking for an answer to the question, why there are only six planets? In the Copernican system the seven planets of the Greek’s had been reduced to six as the Earth and the Sun exchanged places and the Moon became the Earth’s satellite (a word that Kepler would coin later with reference to the newly discovered moons of Jupiter). This metaphysical question seems rather strange to us today but it fitted into Kepler’s metaphysics. Kepler was deeply religious and his God was a rational, logical creator of a mathematical (read geometrical) cosmos. Kepler’s cosmos was also finite, so there were and could only be six planets. He was later mortified when Galileo announced the discovery of four new celestial bodies and infinitely relieved when there turned out to be satellites and not planets. Kepler’s answer to his question was the model shown above with the spheres of the six planets inscribing and circumscribing the five regular Platonic solids. There are, and can only be, only five regular Platonic solids therefore there can only be six planets, Q.E.D. Using the available data on the size of the planetary orbits Kepler turned his vision into a mathematical model of the cosmos and discovered that it fit roughly but not accurately enough. His passion for precision and accuracy was a major driving force throughout Kepler’s scientific career. Kepler was aware that Tycho had been collecting new more accurate astronomical data for thirty years and this was one of his major reasons for wanting to work with Tycho in Prague; the other reason was that Kepler, as a Protestant who refused to convert to Catholicism, was being expelled from Graz and desperately needed a new job.

In Prague Tycho, who thought he had been plagiarised by Ursus, was not prepared to hand over his precious data to a comparative stranger and instead gave Kepler a couple of commissions. The first was to write an account of Tycho’s dispute with Ursus, which Kepler did producing a classic in the history and philosophy of science, which unfortunately was not published at the time. Kepler second task was to determine the orbit of Mars based on Tycho’s observational data. At this time, this had nothing to do with his previous work in the Mysterium Cosmographicum. Famously, what Kepler thought would be a simple mathematical exercise taking a couple of weeks turned into a six year battle to tame the god of war, published in all its gory detail in his Astronomia nova in 1609. Having at some point abandoned the traditional circular orbits Kepler hit upon his oval, meaning egg shaped rather than elliptical, orbit and calculated it using Tycho’s data. His calculations displayed eight arc minutes of error in places, that’s eight sixtieths of one degree, a level of accuracy way above anything that either Ptolemaeus or Copernicus had ever produced. He had superseded the old model easily to quote Ethan, however eight arc minutes of error was an affront to Kepler’s love of accuracy and in his opinion an insult to Tycho’s observational accuracy, so it was back to the drawing board. In his further efforts Kepler finally discovered his first two laws of planetary motion and his elliptical orbits[2]. This set of answers were however to a different set of questions to those in the Mysterium Cosmographicum and in no way were considered to replace them.

Throughout his life Kepler remained convinced that his Platonic model just required fine-tuning, which he meant quite literally. Already in the Mysterium Cosmographicum he muses about the Pythagorean music of the spheres and his magnum opus, the Harmonices Mundi published in 1619, is a truly amazing conglomeration of plane and spherical geometry, music theory, astrology and astronomy containing many gems but most famous for his third law of planetary motion, the harmonic law. Throughout all of this work the Platonic solids model of the Mysterium Cosmographicum remained Kepler’s vision of the cosmos and in 1621 he published a revised and extended version of his first book confirming his belief in it. It is this combination of, from our point of view, weird Renaissance heuristics, Platonic solids, harmony of the spheres, combined with the high level highly accurate modern science that it generated, the laws of planetary motion etc., that led Arthur Koestler to title his biography of Kepler, The Watershed. He saw Kepler as straddling the watershed between the Middle Ages and the Early Modern Period with one foot planted firmly in the past and the other striding determinedly into the future. The inherently contradictory duality is what leads presentists such as Ethan to misunderstand and misrepresent Kepler. He didn’t replace his metaphysical Platonic solids model of the cosmos with his mathematical elliptical model of the planetary orbits but considered them as equal parts of his whole astronomical/cosmological vision. We do not have Ethan’s Whig march of progress of one model replacing another but rather a Renaissance concept of the cosmos that can only be considered on its own terms and simply doesn’t make sense if we try to interpret it from our own modern perspective.

Since I started writing this post there have been two further contributions to the debate that inspired it. On the bigthink Jag Bhalla interviews Rebecca Newberger Goldstein on the topic under the title, What’s Behind A Science vs. Philosophy Fight?

On The Multidisciplinarian, William Storage, in his The Myth of Scientific Method, takes apart Ethan’s (mis)use of Galileo in his contribution. This one is highly recommended

 

[1] Chad Orzel, Eureka! Discover Your Inner Scientist, Basic Books, New York, 2014

[2] As I’ve said more than once in the past the best account of Kepler’s Astronomia nova is James R. Voelkel, The Composition of Kepler’s Astronomia nova, Princeton University Press, 2001

11 Comments

Filed under History of Astronomy, Myths of Science

Not an expert

BBC Radio 4 has a series called Great Lives, which is presented by former Conservative MP and now journalist, writer and broadcaster Matthew Parris. On the programme a ‘lay person’ talks about a figure, usually from history, who is their hero or role model, their comments being filled out by an ‘expert’ on the life of the figure in question. The format is in the form of a light-hearted three-way chat. Three years ago the BBC DJ Bobby Friction chose Galileo Galilei as his Great Life. At the time I listened and not surprisingly found the programme cringe worthy, dismissed it and forgot about it. However over the weekend people, who should know better, were promoting the programme on social media. Against my better judgement I listened to the whole thing again and decided to write this brief post on just one aspect, the greatest historical blunder, of the programme.

Before turning to the main topic of this post there is an aspect of the programme that needs to be addressed first. As explained above the discussion always includes an ‘expert’ to fill out with facts the account given of the subject of the programme. A programme about Galileo, so we can expect a historian of science as expert, yes? No! Instead of a historian of science what we get is Dr David Berman a reader in theoretical physic from Queen Mary College London. This is unfortunately a very common habit amongst journalists and broadcasters. They want someone to comment on, or explicate some aspect of, or episode out of the history of science, they ask a scientist and not a historian of science. Whilst I’m quite happy to acknowledge that there are some scientists who are also competent historians of science, they are unfortunately a small minority. The majority of scientists when asked to talk about the history of their subject usually deliver something highly inaccurate, factually false and toe curlingly cringe worthy. David Berman is no exception. As I wrote above, I’m not going to waste my time, and yours, doing a blow by blow analysis of this sorry mess but just address the one truly glaring clangour that our so-called expert drops towards the end of the discussion.

In an exchange beginning at about 22.20mins we hear the following:

MP: But he was friends with the Pope, why didn’t the Pope stick up for him?

DB: Oh, so he was friends with Urban VII who was the Pope, who was around the time when he started the book and the original censor but by then he died and we had Urban VIII…

He we have the classic example of a so-called expert who has literally no idea what he’s talking about and just makes something up that he thinks sounds plausible. For those that don’t know their papal history and/or the story of Galileo’s interaction with the papacy I will explain.

Paul V (1552–1621) was the Pope (1605–1621) who set up the commission of theologians in 1616 to consider the status of heliocentricity, which ruled it “foolish and absurd in philosophy, and formally heretical since it explicitly contradicts in many places the sense of Holy Scripture”. He then instructed Cardinal Bellarmine to meet with Galileo and to inform him that he was no longer allowed to teach the truth of heliocentricity.

Pope Paul V by Caravaggio. Source: Wikimedia Commons

Pope Paul V by Caravaggio.
Source: Wikimedia Commons

Both Bellarmine and Paul, however, assured Galileo that he was, at this time, in no personal danger. Paul died in 1621 and was succeeded by Gregory XV (1554–1623) who as Pope (1621–1623) played no significant role in the life of Galileo.

Pope Gregory XV Source: Wikimedia Commons

Pope Gregory XV
Source: Wikimedia Commons

Gregory was succeeded in 1623 by Cardinal Maffeo Barberini (1568–1644) who became Urban VIII.

Circa 1598 painting of Maffeo Barberini at age 30 by Caravaggio. Source: Wikimedia Commons

Circa 1598 painting of Maffeo Barberini at age 30 by Caravaggio.
Source: Wikimedia Commons

Those of you wondering where Urban VII fits into this, he doesn’t. Giovanni Battista Castagna (1521–1590) ruled as Pope Urban VII for just twelve days between 15 and 27 September 1590, when Galileo was just beginning his career as professor for mathematics in Pisa. Urban VII’s twelve-day papacy was the shortest in history.

Pope Urban VII – Pope for Twelve Days Source: Wikimedia Commons

Pope Urban VII – Pope for Twelve Days
Source: Wikimedia Commons

As an additional comment no Pope was ever the censor, as claimed by Berman, but naturally employed others to do this work for the Church.

As Matthew Parris rightly claims Cardinal Maffeo Barberini had been a friend and supporter of Galileo’s since the publication of the Sidereus nuncius in 1610 as well as being a patron of the Accademia dei Lincei, the small elite scientific society that had elected Galileo a member in 1611 on the strength of his telescopic discoveries. It was also the Lincei who gave the telescope its name. When Barberini was elected Pope in 1623 the Lincei published a broadsheet celebrating his election, which contained the first every illustrations made with a microscope.

Accademia dei Lincei Flyer celebrating the elevation of Maffeo Barberini to Pope 1623 Stelutii Melissographia

Accademia dei Lincei Flyer celebrating the elevation of Maffeo Barberini to Pope 1623
Stelutii Melissographia

The Lincei also published Galileo’s Il Saggiatore (The Assayer), which was dedicated to the new Pope in 1623.

Title page Il Saggiatore !623 Source: Wikimedia Commons

Title page Il Saggiatore !623
Source: Wikimedia Commons

Barberini much enjoyed Il Saggiatore and showed Galileo much favour. Galileo grasped the opportunity and persuaded the Pope to let him write a book describing the geocentric and heliocentric systems to prove that the Catholics did not favour the former out of ignorance of the latter, as he claimed the Protestants were alleging. Urban agreed to his request but under the condition that the two systems were presented equally without bias and without favouring either.

A portrait of Pope Urban VIII by Pietro da Cortona (1627) Source: Wikimedia Commons

A portrait of Pope Urban VIII
by Pietro da Cortona (1627)
Source: Wikimedia Commons

The book that Galileo wrote, his Dialogo, a polemic masterpiece, was of course anything but unbiased, tilting the arguments so far that any reader would be led to the conclusion that the heliocentric system was vastly superior to the geocentric one; a claim for which he had no empirical proof. He topped the whole thing off by putting the Pope’s own thoughts on the subject, a direct quote, into the mouth of a figure who was close to being a simpleton at the climax of the book.

Frontispiece and title page of the Dialogo, 1632 Source: Wikimedia Commons

Frontispiece and title page of the Dialogo, 1632
Source: Wikimedia Commons

That Urban was pissed off by the results should not have come as a surprise to Galileo and things took their inevitable course. The motto of the story is don’t play your friend for a fool when he happens to be an all powerful absolutist ruler.

9 Comments

Filed under History of Astronomy, Renaissance Science

How do we kill off myths of science zombies?

The Internet is a sort of cyberspace limbo where myths in the history of science, which have been debunked a long time ago, keep popping up on social media as #histsci zombies, the history of science undead. One such that has popped up to haunt me several times in recent weeks is the claim that Johannes Kepler murdered Tycho Brahe. This claim was at best ludicrous and, having been thoroughly debunked, is now just pathetic but continues to ghost through cyberspace as a #histsci zombie. Where does it come from, who put it into the world and did it ever have any validity?

Portrait of Kepler by an unknown artist, 1610 Source: Wikimedia Commons

Portrait of Kepler by an unknown artist, 1610
Source: Wikimedia Commons

After protracted negotiations and a return to Graz to fetch his family Johannes Kepler began to work with Tycho Brahe in Prague as his assistant in late 1600, not as his student as is often falsely stated. In September 1601, Tycho managed to negotiate an official position for Kepler at the Imperial Court of the German Emperor Rudolph II. Their partnership was however short lived, as Tycho died 24 October 1601. According to Kepler’s account Tycho had retained his urine during a banquet eleven days earlier, so as not to breach etiquette by leaving the table. Upon returning home he was unable to urinate, fell ill and falling into delirium died, apparently of some sort of urinary infection. This was the state of play in 1601 and remained unchanged until 1901.

Tycho Brahe Source: Wikimedia Commons

Tycho Brahe
Source: Wikimedia Commons

In 1901 Tycho’s body was exhumed and an autopsy carried out that failed to establish a cause of death. However when the corpse was reburied a sample of his beard hair was retained. In 1990 this hair sample was analysed and found to contain abnormally high levels of mercury, which led to the speculation that Tycho had died of mercury poisoning. At this point there was no real suspicion of murder but more speculation about an accidental mercury poisoning. Tycho was a Paracelsian pharmacist, who along with his observatory on Hven ran a pharmacy that produced various medical remedies. The speculation was that he had either poisoned himself whilst working with mercury, a not uncommon problem amongst pharmacists in the Early Modern period when mercury was used extensively in medicines, or that he had poisoned himself by taking one of his own mercury containing remedies.

The first real accusations that Tycho had been murdered, that is poisoned by another person, came with the publication in 2004 of Joshua & Anne-Lee Gilder’s book Heavenly Intrigue: Johannes Kepler, Tycho Brahe, and the Murder Behind One of History’s Greatest Scientific Discoveries. Put simply the Gilders claimed that Kepler had poisoned Tycho to gain access to his astronomical data. The first part of their book, in which they outline the lives of Tycho and Kepler is actually well researched and well written but it’s when they come to the cause of Tycho’s death the book goes of the rails.

The Gilder’s build a chain of speculative, unsubstantiated, circumstantial evidence leading to their conclusions that Tycho was murdered and Johannes Kepler did the evil deed. Any able defence lawyer or competent historian of science could dismantle the Gilder’s rickety and highly dubious chain of evidence without too much effort leading to a full acquittal of the accused. Unfortunately most book reviewers are neither lawyers nor historians of science and the popular press reviewers jumped on the book and swallowed the Gilder’s arguments hook, line and sinker. The result was that Kepler went from being a hero of the scientific revolution to being a perfidious murderer, almost overnight.

Fascinatingly, the furore created by the popular press led to an international team of experts being granted permission to exhume Tycho’s corpse and to carry out yet another autopsy. The noble Dane would not be allowed to rest in peace. This was duly done in 2010 and the corpse, or what was left of it, was subjected to a battery of scientific tests. All of this activity led to the popular science press publishing a cart load of articles, many of them on the Internet, asking if Kepler had indeed poisoned Tycho most of them skewing their articles strongly in the direction of a guilty verdict.

The international team of archaeologists, forensic anthropologists, pathologists and whoever took their time but in 2012 they finally published their results. There was not enough mercury present in the samples to have caused mercury poisoning and there were no other poison found in any quantities whatsoever. Tycho was not poisoned by Johannes Kepler or anybody else for that matter. A second independent team re-analysed the beard hairs taken from the corpse in 1901 and confirmed that there was not enough mercury present to have caused mercury poisoning.

The press outlets both popular and scientific that had trumpeted the Gilder’s highly dubious claims out into the world did not apply the same enthusiasm to reporting the negative results of the autopsy. Those lengthy articles in the Internet claiming, implying, insinuating or suggesting that Kepler had done for his employer were not updated, amended or corrected to reflect the truth and the Gilder’s book was not withdrawn from the market or consigned to the wastepaper basket, where it very definitely belongs. Below is part of the sales pitch for that book taken just a couple of hours ago from Amazon.com:

But that is only half the story. Based on recent forensic evidence (analyzed here for the first time) and original research into medieval and Renaissance alchemy—all buttressed by in-depth interviews with leading historians, scientists, and medical specialists—the authors have put together shocking and compelling evidence that Tycho Brahe did not die of natural causes, as has been believed for four hundred years. He was systematically poisoned—most likely by his assistant, Johannes Kepler.

An epic tale of murder and scientific discovery, Heavenly Intrigue reveals the dark side of one of history’s most brilliant minds and tells the story of court politics, personal intrigue, and superstition that surrounded the protean invention of two great astronomers and their quest to find truth and beauty in the heavens above.

The result of all this is that historian of astronomy of the Early Modern period are forced to indulge in a game of historical Whac-A-Mole every time that somebody stumbles across one of those articles in the Internet and starts broadcasting on Twitter, Facebook or wherever that Johannes Kepler murdered Tycho Brahe.

 

 

 

20 Comments

Filed under History of Astronomy, History of science, Myths of Science

Galileo Super Star – Galileo Galilei to get Hollywood biopic

My attention was drawn recently to a Hollywood gossip website that announced that a movie is to be made of a play by Richard Goodwin about Galileo, The Hinge of the World. I must admit that my curiosity was piqued, not least because I had never heard of either Mr Goodwin or his play and I naturally wondered what his line on the Tuscan mathematicus would be. It turns out that Richard Goodwin is a former high power Washington political advisor and speechwriter who served Presidents Kennedy and Johnson as well as JFK’s brother Robert, not exactly the best qualifications for the author of a play about the history of science. My doubts about this particular production were only heightened upon reading the full original title of the play, The Hinge of the World: In Which Professor Galileo Galilei, Chief Mathematician and Philosopher to His Serene Highness the Grand Duke of Tuscany, and His Holiness Urban VIII, Bishop of Rome, Battle for the Soul of the World. This title does not bode well for a historically accurate account of Galileo’s clash with the Catholic Church. However I will reserve judgement, because as I say, I do not know the play. I have however ordered a second hand copy that is at this very moment wending its way from some distant land to my humble abode and when it arrives and I have perused it with due diligence, I will report back with a critical assessment.

A scene from the stage production of The Hinge of the World

A scene from the stage production of The Hinge of the World

The website report does however offer a précis of the contents of the soon to be film and this is possibly the most confused and inaccurate presentation of the affair and the events leading up to it that I have read in a very long time:

The film will stay true to the spirit of the play in that it will revolve around the one-time friends whose vehement disagreements led to the Church calling Galileo out for heresy when science started to challenge long-held beliefs.

Science had been challenging long held beliefs long before Galileo came along. Apart from anything else Galileo was tried for defending the truth of Copernicus’ heliocentric hypothesis and Copernicus had died twenty-one years before Galileo was born. Just for the record Copernicus was also by no means the first person to present science that challenged the Church’s long-held beliefs.

Just to be a little bit pedantic, the one-time friends, Galileo and Maffeo Barberini (Pope Urban VIII) only had one vehement disagreement.

During that time, around 1610, the Church was never questioned,…

Somebody really ought to have consulted a historian of the Catholic Church. People both inside and outside of the Church questioned it continuous, some with impunity, for example Galileo’s friend Paolo Sarpi, and some with dire consequences, such as Giordano Bruno.

…yet Galileo who had a passion, curiosity and a telescope started to question everything after logging what he was learning through his scientific research. He published much of his findings in a book that were disavowed by Pope Urban VIII and the Catholic Church. Despite delving into dangerous territory, Galileo continued his research into comets, tide movements until he was ultimately ordered by the Church to stop teaching his ideas.

 The above is just a historical train wreck. The book of Galileo’s disavowed by Urban VII and the Church was the Dialogue Concerning the Two Chief World Systems, published in 1632, which led directly to his trail and imprisonment in 1633. However, he was told to stop teaching the truth of the heliocentric hypothesis and only that, the rest of his ideas were not the subject of Church condemnation, in 1616 following the semi-public distribution of the so-called Letter to Castelli, much later published in expanded form, as the Letter to the Grand Duchess Christina. Also in 1616 Paul V was Pope and Maffeo Barberini was a mere Cardinal and still a good friend of Galileo’s.

 The brilliant scientist, engineer, physicist and mathematician who helped discover the law of the pendulum (which became the basis for modern-day clocks), who pushed scientists to conduct experiments to prove theorems, who continued the work of Nicolaus Copernicus to help understand our own universe and laid the groundwork for modern astronomy eventually lost his battle with the powerful Roman Catholic Church.

Again being somewhat pedantic, Galileo got the law of the pendulum wrong and modern day clocks stopped being pendulum driven some time ago. Also, and this is not so pedantic, it was Kepler, and not Galileo, who laid the groundwork for modern astronomy.

 He was tried for heresy and sentenced to imprisonment at the age of 68 where he would remain until his death nine years later at age 77.

A final point, that people love to forget because it rather spoils the image of Galileo the martyr, his sentence of imprisonment imposed for vehement suspicion of heresy, not heresy, was instantly commuted to house arrest, which whilst somewhat restrictive was by no means harsh.

–––––––––––––––––––––––––––––––––––––––––––––––

All of this ties in rather nicely with an exchange that I took part in yesterday evening on twitter. Tim Skellet (@Gurdur) asked me and others, “what’s the very best, most comprehensive bio of Galileo, please?” My answer was, “I don’t think it exists. Read several: Wootton, Heilbron, Biagioli, Shea/Artigas.” I was not trying to be clever or awkward. I genuinely believe that if you wish to study any major figure out of the history of science then you should consult multiple sources, as all sources have their advantages and disadvantages. History is, to a large extent, a game of interpretation. There are facts but they only give a partial picture and it is the role or responsibility of the historian to complete that picture to the best of their ability. All historians have agendas and biases and to obtain a rounded picture it is always advisable to view the facts through the eyes of more than one historian.

Turning to the special case of Galileo, the two most recent complete biographies are J. L. Heilbron’s Galileo (OUP, 2010) and David Wootton’s Galileo: Watcher of the Skies (Yale University Press, 2010). Both are very good but differ in their interpretations and emphases. I wouldn’t recommend one over the other, so if you only want to read one then toss a coin or something. If you really want to get to grips with Galileo then read both. One important aspect of Wootton’s book is that he systematically dismantles the myth that Galileo was a good devout Catholic. This myth is trotted out regularly to make the Church look even worse for having persecuted him. Wootton demonstrates, I think convincingly, that Galileo was at best an indifferent Catholic and in no way the devout son of the Church that historical myth has made him out to be.

Although not a complete biography in the traditional sense I would also strongly recommend Mario Biagioli’s Galileo Courtier: The Practice of Science in the Culture of Absolutism (University of Chicago Press, 1993) Biagioli examines Galileo the social climber who uses his scientific discoveries to further his social status rather than for any idealistic belief in truth. Biagioli’s work is a useful complement to the more conventional scientific style of biography; what did Galileo discover and when. In what is effectively a second volume to his first book, Galileo’s Instruments of Credit: Telescopes, Images, Secrecy (University of Chicago Press, 2006), Biagioli explains how Galileo used the telescopes that he manufactured and the images that he produced to broker social advantages.

William R. Shea’s and Mariano Artigas’ Galileo in Rome: The Rise and Fall of a Troublesome Genius (OUP; 2003) just deals with the six extended visits that Galileo made to Rome, the home-base of the Church and the centre of political and social power in the period, during his lifetime. These include, his triumphal visit in 1611, as the author of his sensational Sidereus Nuncius, his visit in 1615-1616 and his failed attempt to prevent the Church condemning heliocentricity and finally his summons to his trial in 1633. By concentrating only on Galileo’s interactions with the Roman culture of the period the authors succeed in shedding light from a different angle on Galileo’s fateful path to his condemnation and fall.

At some point David Wootton joined the Twitter discussion and he recommended Pietro Redondi’s Galileo Heretic (Princeton University Press, 1992), a recommendation that I would one hundred pro cent endorse. Although Redondi’s central thesis, that Galileo was actually attacked by the Church for his atomism has, in the meantime, been largely refuted this is a superb book and still very much worth reading by anyone who wishes to learn about Galileo and the culture in which he lived and worked.

If you read all of the books that I have recommended above you should, by the time you have finished, have a fairly good all round picture of the life and work of Galileo Galilei and the footnotes and bibliographies will have given you lots of information for further reading. I will however close with a warning, do not read Michael White’s Galileo Antichrist: a Biography (Weidenfeld & Nicolson, 2007). I can deliver a comprehensive and profound review of White’s book in three words, “It is crap!”

 

18 Comments

Filed under History of Astronomy, History of science, Myths of Science, Renaissance Science