Books about the book

Most readers are probably aware that I live not very far away from the Renaissance city of Nürnberg in Southern Germany. It is a city rich in the history of science particularly during the Renaissance and so it was only a mater of time, after I moved here, that I would get sucked into becoming a local historian. In the end it was the fact that Copernicus’ magnum opus was printed and published there that proved to be the bait. This, however, also took me down another path, the early history of scientific printing in which the city is particularly rich. Not only was it the home of Johannes Petreius, who printed and published the De revolutionibus, as well as many other important early scientific titles, but it was also where Johannes Müller, aka Regiomontanus, chose to set up the world’s first-ever scientific publishing house. Researching Regiomontanus as a printer publisher leads automatically to Erhard Ratdolt, who, whilst not a Nürnberger printer publisher, published several of those titles that Regiomontanus intended to publish but was unable to due to his untimely demise. Around 1500 CE, the world’s biggest printed publisher was the Nürnberger Anton Koberger, who printed, amongst many other volumes, the Liber Chronicarum. Better know as the Nuremberg Chronicle in English and Die Schedel’sche Weltchronik in German, the world’s first-ever printed encyclopaedia. As always when I develop an interest for a historical topic I try to view it not as isolated incidents but to develop knowledge of and a feeling for the complete historical context, as far as this is possible. This inevitably leads to the acquisition of books on the topic, preferably general, wide ranging, good quality reference books to which I can return as the situation demands. I now have a small, but I think, high-quality collection of books about the book. Last week saw a new addition to this collection Erik Kwakkel’s Books Before Print[1].

Kwakkel002

Having followed Erik on Twitter for a small eternity, at the same time reading his blog and also having had the pleasure of meeting him in person and hearing him lecture on the subject of the medieval book, I knew his book wouldn’t disappoint and it doesn’t. This is an introduction to the medieval book for people, who like me, have little or no knowledge of them. Basically a modified version of his blog on the subject it consists of short, clear simple chapters on each individual aspect of medieval manuscripts, divided into five sections: 1. Filling the Page: Script, Writing, and Page Design 2. Enhancing the Manuscript: Binding and Decoration 3. Reading in Context: Annotations, Bookmarks, and Libraries 4. The Margins of Manuscript Culture 5. Contextualizing the Medieval Manuscript.

Excellently structured, well written and beautifully illustrated this volume fulfils its intended purpose admirably; it really is everything you wanted to know about the medieval manuscript book and were too afraid to ask.

Books006

As I often get asked to recommend books on a given topic and so having started this post I decided to give a small overview of the books that I have and use on the history of the book. As a historian of science my main interest is in the invention of moving type printing, which according to conventional wisdom was one of the major driving forces of the so-called scientific revolution, thus most of the books I have deal primarily with the emergence of the printed book.

DSC00813

The Renaissance Mathematicus book-history-books bookshelf

However, the first book I would recommend is one for the general reader covering the entire history of the book from clay tablets to the modern printed book, Keith Houston’s The Book:A Cover-to-Cover Exploration of the Most Powerful Object of Our Time, which I reviewed here, so I won’t say anything more now. As a small bonus I also recommend Houston’s Shady Characters:The Secret Life of Punctuation, Symbol & Other Typographical Marks[2]. It’s eccentric, unique and a delight.

In his essay in TheCambridge Companion to the History of the Book(of which more later) Adrian Johns writes: “The introduction of Printing into western Europe has counted as the signature event of the history of the book ever since Lucien Febvre and Henri-Jean Martin’s l’Apparition du Livre launched the modern discipline in 1958. The purpose of l’Apparitionwas to demonstrate that Johann Gutenberg’ innovation was the most important turning point in human history, separating modernity from everything before”[3]The Febvre/Martin, The Coming of the Book[4]in English translation is a classic and was the book that introduced me to book history. Although now dated both in its historical facts and its historiography I still think it can be read with profit, although if wishing to quote anything from it one should check against more up to date works.

Next up is another absolute classic Elizabeth Eisenstein’s The printing press as an agent of change[5] probably the most famous and most influential volume on book history. Originally published in two volumes it is now available as a single volume paperback weighing in at just under 800 pages. Eisenstein introduced the concept of print culture, which she contrasts with the preceding age of the manuscript and to which she attributes massive influence (change) not only in the scientific revolution but also in the Reformation, claiming it as an unacknowledged revolution. It is a cornucopia of information, thoughts, ideas and theories that repays careful reading.

Books003

However Eisenstein’s central thesis does not go unchallenged. Our next book is Adrian Johns’ equally massive The Nature of the Book.[6] Johns’ sets out his stall thus, “The unifying concept of Eisenstein’s argument is that of “print culture.” This “culture” is characterized primarily in terms of certain traits that print is said to endow on texts. Specifically, those produced in such an environment are subject to conditions of standardization, dissemination, and fixity. The last of these is perhaps the most important.”[7] Johns’ then devotes his 700 plus pages to supposedly proving that Eisenstein’s “print culture” and above her fixity did not exist. Like Eisenstein’s tome it is also a cornucopia of information, thoughts, ideas and theories that repays careful reading. However, I personally don’t think he actually succeeds in proving his central thesis.

Books005

The American Historical Review staged a forum[8], introduced by Anthony Grafton, with a defence of her thesis by Eisenstein followed by a response from Johns and then a reply from Eisenstein in which the adversaries mostly argued past each other rather than with each other. However you can read both volumes and the forum and decide for yourself who is right! Happy reading.

If you wanted something shorter than the Eisenstein/Johns debate then you can turn to Andrew Pettegree’s The Book in the Renaissance.[9] Pettegree starts with the book before printing and follows with the invention of printing. He then introduces what he defines as the crisis in printing. This is the fact that there was not a large enough market for the Latin academic and theological texts that was the original fare of the earliest printing houses leading to an economic crisis. Out of this crisis emerged new forms of literature generated by the publishing houses to create new markets to finance their presses. This ‘creation of a European book market’, as he terms it is the central theme of Pettegree’s interesting and stimulating book.

Books002

Already mention above, The Cambridge Companion to the History of the Book (see footnote 3) is a collection of papers covering a wide-ranging series of book history topics from a very modern standpoint and is more than worth reading as a supplement to the volumes sketched above.

Another slightly dated but still useful volume is Colin Clair’s A History of European Printing.[10] This is basically an annotated chronology of the spread of the book printing business throughout Europe from its beginnings down to the end of the nineteenth century.

I close with a beautiful volume issued by the Gutenberg-Gesellschaft and Gutenberg-Museum, which is, unfortunately for those who don’t read the language, only available in German, Blockbücher des Mittelalters: Bilderfolgen als Lektüre.[11] Which is a collection of detailed essays on the books printed in Europe in the second half of the fifteenth century with woodblocks, issued as a guide to an exhibition of these books in the Gutenberg-Museum from 22 June to 1 September 1991. The book forms a complete history of this interesting anomaly in the European history of the printed book.

Books001

There has been, of course, since Levbre/Martin established the modern book history discipline with their tome in 1958 a vast flood of academic literature on the history of the book in Europe and indeed the world much of which the interested reader can find listed in the very extensive bibliographies of the volumes described above. As I also said above, happy reading!

 

 

[1]Erik Kwakkel, Books Before Print, ARC Humanities Press, Leeds, 2018

[2]Keith Houston, Shady Characters: The Secret Life of Punctuation, Symbol & Other Typographical Marks, W. W. Norton, New York & London, 2013.

[3]Adrian Johns, The coming of print to Europe, in The Cambridge Companion to the History of the Book, ed. Leslie Howsam, CUP, Cambridge, 2015

[4]Lucien Febvre and Henri-Jean Martin, The Coming of the Book, Verso, London & New York, ppb. 1997

[5]Elizabeth L. Eisenstein, The printing press as an agent of change: Communications and cultural transformations in early-modern Europe, CUP, Cambridge et al., ppb. 1980

[6]Adrian Johns, The Nature of the Book: Print and Knowledge in the Making, Chicago University Press, Chicago and London, ppb. 1998

[7]Johns, The Nature of the Book p. 10

[8]American Historical Review: Volume 107, Issue 1, 2002, pp. 84-128

[9]Andrew Pettegree, The Book in the Renaissance, Yale University Press, New Haven & London, ppb. 2011

[10]Colin Clair, A History of European Printing, Academic Press, London, New York, San Francisco, 1976

[11]Blockbücher des Mittelalters: Bilderfolgen als Lektüre, Herausgegeben von Gutenberg-Gesellschaft und Gutenberg-Museum, 1991.

Advertisements

3 Comments

Filed under Book Reviews, Early Scientific Publishing, Uncategorized

If you’re going to lecture others on the need to learn history then it pays to get your own history right.

The HIST_SCI HULK has been slumbering very peaceably somewhere deep in the catacombs under Mathematicus Mountain the home of the Renaissance Mathematicus’ humble cave. However, the pungent smell of #histsci bullshit drifted downwards on a draft disturbing his slumbers and now he is raging through the underground chambers demanding access to the blog.

In the Guardian, journalist Van Badham has written an article criticising Senator Simon Birmingham’s vetoing of research grants approved by the Australian Research Council, with the following title.

Simon Birmingham is the one who needs a history lesson in western civilisation

Her criticism centres round what she sees as Birmingham’s lack of historical awareness, banging on about the fact that the vetoes are mostly of humanities research and that if Birmingham had more knowledge of history then he would be more aware of the origins of the western civilisation he wishes to defend. For itself Van Badham’s criticism is valid and would be OK if her own knowledge of the history of science weren’t so abysmal, as illustrated by the following paragraph.

It’s a tender solidarity exhibited here by a man of science to the humanities community. The habit of scientists to offend the “common sense” standards of their times with research has historically proven quite dangerous.Rhazes, the medical pioneer of ninth century Baghdad, was beaten blind with his own compendium by a priest. The humanist Michael Servetus, a 16th century physician credited with discovering pulmonary circulation, was tortured and burned along with his books on the shores of Lake Geneva at the personal behest of John Calvin. In the 17th century, Galileo spent his last years under house arrest, forced by the church to recant the heretical belief that the earth orbited the sun.

We can of course assume that Badham got her history of science information from all those professional humanities scholars that she is arguing Birmingham should be supporting with research grants. However, if we did so, we would be very wrong. Her source is a pop article published in Wired in 2012 by a woefully ignorant staff journalist, Olivia Solon, under the title:

Galileo to Turing: The Historical Persecution of Scientists

There are several more horrors in the original article but I shall only deal here with the three examples that Badham paraphrased. The original Rhazes paragraph reads as follows:

Rhazes (865-925)
Muhammad ibn Zakariyā Rāzī or Rhazes was a medical pioneer from Baghdad who lived between 860 and 932 AD. He was responsible for introducing western teachings, rational thought and the works of Hippocrates and Galen to the Arabic world. One of his books, Continens Liber, was a compendium of everything known about medicine. The book made him famous, but offended a Muslim priest who ordered the doctor to be beaten over the head with his own manuscript, which caused him to go blind, preventing him from future practice.

1024px-Portrait_of_Rhazes_(al-Razi)_(AD_865_-_925)_Wellcome_L0005053_(cropped)

Portrait of Rhazes (al-Razi) (AD 865 – 925), physician and alchemist who lived in Baghdad Wellcome Images via Wikimedia Commons

I love the arrant chauvinism of He was responsible for introducing western teachings, rational thought and the works of Hippocrates and Galen to the Arabic world.It smacks of the old style: the Islamic world only conserved the Greek heritage until Renaissance Europe could inherit it and develop it further. The Persian physician Abū Bakr Muhammad ibn Zakariyyā al-Rāzī (854–925) or al-Rāzī for short was one of the two most significant Islamic medical authorities, who made important original contributions to medical knowledge. He was also, like many other Islamic scholars, a polymath who wrote on medicine, alchemy, philosophy, logic, astronomy and grammar. Historians of medicine are convinced that al-Rāzī suffered from cataracts at the end of a long, very productive and very successful life, which caused him to go blind. There are various anecdotes about the cause of his blindness. One of them attributed to Ibn Jujil (c.944–c.994), an Adulusian Arab physician, says that it was caused by a blow to his head by his patron Mansur ibn Ishaq, the governor of his birthplace Rey and an early employer, for failing to provide proof for his alchemy theories. Note, not a Muslim priest. Another, recorded by Gregory Bar Hebraeus (1226–1286), a Syriac Christian Bishop, and Miguel Casiri (1710–1791), a Maronite scholar, was that it was caused by a diet of only beans. Somehow this differs somewhat from the film ripe fantasy account delivered up by Solon and parroted by Badham

Michael Servetus (1511-1553)
Servetus was a Spanish physician credited with discovering pulmonary circulation. He wrote a book, which outlined his discovery along with his ideas about reforming Christianity – it was deemed to be heretical. He escaped from Spain and the Catholic Inquisition but came up against the Protestant Inquisition in Switzerland, who held him in equal disregard. Under orders from John Calvin, Servetus was arrested, tortured and burned at the stake on the shores of Lake Geneva – copies of his book were accompanied for good measure.

Michael_Servetus

Miguel Serveto Source: Wikimedia Commons

I’ve actually written a whole blog post on the Spanish physician, theologian, cartographer and Renaissance humanist Miguel Serveto (1509 or 1511–1553) under the title Not a martyr for science. Serveto was even more of a polymath than al-Rāzīand made contribution to a bewildering range of topics. His execution had absolutely nothing to do with his discovery of the pulmonary circulation but was entirely the result of his highly heterodox religious views. He did not escape from Spain but from Vienne in France, where he had been imprisoned on suspicion of heresy. Fleeing to Italy he stopped in Geneva, a strange decision as he had already had a major dispute, by exchange of letters, with Calvin on the subject of Christian doctrine. He was arrested, tried, found guilty of heresy and burnt at the stake. Interestingly not only the Catholics and Calvin were happy to see him executed but Luther and Melanchthon as well. Serveto really knew how to make enemies.

Galileo (1564-1642)
The Italian astronomer and physicist Galileo Galilei was trialled and convicted in 1633 for publishing his evidence that supported the Copernican theory that the Earth revolves around the Sun. His research was instantly criticized by the Catholic Church for going against the established scripture that places Earth and not the Sun at the center of the universe. Galileo was found “vehemently suspect of heresy” for his heliocentric views and was required to “abjure, curse and detest” his opinions. He was sentenced to house arrest, where he remained for the rest of his life and his offending texts were banned.

Galileo_Galilei_by_Ottavio_Leoni_Marucelliana_(cropped)

Galileo Galilei. Portrait by Ottavio Leoni Marucelliana Source: Wikimedia Commons

If I were God, I would arrange it so that every time a journalist typed the name Galileo a miniature thermo-nuclear device would materialise over their workplace and upon detonating would reduce their computer to a meagre pile of radioactive dust and a small mushroom cloud.

If Galileo didn’t exist then people like Solon and Badham would have to invent him. He’s the one example that is always used when they want to prove that somebody, in particular somebody religious, tried to suppress science or a scientist. The trial in 1633 had multiple causes of which the nominal scientific one was probably the least important. It was simply the stick used to beat an uppity subject. To stretch an analogy it’s about the same as Al Capone being charged with tax evasion.

The main cause was a clash of egos: Galileo with an ego the size of the Peter’s dome, whose hubris made him blind to every day reality and Maffeo Barberini, Pope Urban VII, with an equally large ego and the manic paranoia of an absolutist ruler beset on all sides by real and imaginary enemies. Galileo’s hubris misled him into thinking that he, a mere mathematicus, could hoodwink an absolutist, paranoid Pope. He discovered that he couldn’t and was brought down to earth rather quickly if, for the circumstances, comparatively gently. As for Galileo “publishing his evidence that supported the Copernican theory”, his problem was that he didn’t really have any. As I have said on previous occasions, Dialogo is strong on polemic but lacking in facts. Galileo’s crowning proof, Day 4’s theory of the tides would be funny if it wasn’t so pathetic. As has been pointed out many times, and not just by me, in 1633 the empirical evidence still spoke clearly in favour of geocentrism and not for heliocentrism. I will add the usual caveat that this does not excuse the Church’s behaviour towards Galileo but also doesn’t let Galileo off the hook for having poked a sleeping bear with a sharp stick.

Ms Badham would have been wise if she had checked her ‘historical sources’ before using them as an example to support her attack on Simon Birmingham’s apparent lack of historical awareness.

P.S. I promise that after three negative ones in a row the next post will be a positive one.

 

 

 

 

 

 

7 Comments

Filed under History of Astronomy, History of medicine, Myths of Science, Uncategorized

Don’t criticise what you don’t understand!

I was pleasantly surprised by the level of positive support my latest anti-Ada polemic received on Twitter, I had expected much more negative reaction to be honest. But I did receive two attacks that I would like to comment on more fully here. The first came from a certain Yael Moussaieff (@sachaieff) and reads as follows:

 

It still blows my mind how convinced mediocre men are that they’re not mediocre and that their opinions are in fact urgent and needed.

I’m not really sure in what sense here I am supposedly mediocre: my intelligence, my expertise, my abilities, all three, in all aspects of my existence? And how does Ms Moussaieff (I assume she is a she) know this, never having met me, on the basis of one, what I consider to be a fairly reasonably argued, blog post on the evaluation of the contributions of one Victorian woman to computer science. If she had brought some counter arguments to demonstrate the mediocrity of my thought processes or the mediocrity of my understanding of the historical period or the mediocrity of my abilities as a historian of computing (and I am one, see the reply to the next comment) then perhaps I could understand the intension or meaning of her criticism but for the moment I remain perplexed. Maybe my inability to comprehend is, in itself, a sign of my mediocrity.

Peter Robinson (@PeterRobinson76) chose a different line of attack:

We also love to put down anyone that dares to have popularity. Even long dead women.

To which I spontaneously responded:

There is a difference between a put down and a reasoned argument based on facts. I formally studied and researched both Babbage and Lovelace long before the current Lovelace hagiography started, as a professional historian of logic and computing. What are your qualifications?

For his benefit I would like to elucidate and explain my claim to professionalism in this matter. Some or even most of what I am now going to relate ought to be already known to those who have been reading this blog for a number of years for newer readers it might prove instructive.

Throughout the 1980s and the early 1990s I studied as a mature student at the Friedrich-Alexander University of Erlangen & Nürnberg. The first two and a half years I studied mathematics with philosophy as my subsidiary. I then changed to philosophy with English philology and history as my subsidiaries. The emphasis of my studies was always on the history and philosophy of science. During this time I worked for ten years as a paid research assistant in a major research project into the history of formal/symbolic/mathematical logic under the supervision of one of the world’s leading logic historians. This means that somebody, who is considered knowledgeable in these things, thought me competent enough to appoint me to this position. The fact that I was still there ten years later shows that he still believed in my competence. Possibly because I was the only English native speaker in the research team, my main area of research was nineteenth century British algebraic logics, which means I was researching Boole, Jevons, De Morgan, Venn, Cayley, McColl and others including the Americans working together with Peirce. Because algebraic logic was just a small part of the much wider field of abstract algebras emerging in the nineteenth century, I also researched Peacock, John Herschel, Babbage, Cayley, Sylvester, William Rowan Hamilton and various others. Calculating machines was also a part of our remit so Babbage and his computers along with the good Countess Lovelace came in for extensive study on my part.

Now ten plus years might seem a rather long time to study as a student but as I said I was a mature student without grant or parental support, which meant I had to earn money to do silly things like pay the rent or even on occasions eat and the pittance paid to research assistants in those days did not cover my daily living costs, so I also worked outside of the university. I had virtually finished my studies with just my master thesis to complete and my final exams to write–not a very big deal, as there was in those days a strong emphasis on continual assessment–when I crashed out with serious mental health problems. You can only burn the candle at both ends for a limited period of time until the two flames meet in the middle. Coming out of the loony bin I chucked my studies because being a qualified historian of science was never going to pay those pesky bills.

When I quit I had completed the entire research for both my master’s thesis and my doctoral thesis. I had written about 50–70% of my master’s thesis and a complete, highly detailed outline for my doctoral thesis. Now it might seem strange that I was writing both theses at the same time but my original master’s thesis, a wide-ranging study of the entire English speaking nineteenth century algebraic logic community, had grown far too big to be a master’s thesis, so I had cut out one section, on the life and work of Hugh McColl, to be my master’s thesis and turned the main project into a potential doctoral thesis. I recently, whilst clearing out some old cartons, came across all the material for that doctoral thesis. I was stunned at how far I had got with it, having in the intervening years forgotten most of the work I had invested. I sat and stared at it for three days then threw it all away.

So you see, if I say that I have researched and studied Babbage and Lovelace in a professional capacity it is simply the truth. I should point out that if I write about either of them now, I don’t rely on my memory of work done long ago but go back and read the original sources that I sorted out and studied then, modifying if necessary my views, as my knowledge has grown over the intervening years. In more recent years I have been paid by reputable, educational institutions to hold public lectures on Mr Babbage and his computing engines, so yes through preparing those lectures my knowledge has grown.

Let us return to my critics. Over the years battling the Ada hagiography I have come to the conclusion that the majority of her acolytes don’t actually bother to look at the sources at all. It seems some of them have read a blog post or an article in a non-academic Internet magazine, highly biased and based on dubious secondary sources rather than primary ones (and yes I am aware of the irony of writing that on a blog post). The rest have only ever read a short précis of those blog posts/articles posted on one or other of the Internet’s social media, which parrot the inaccurate accounts of their sources. This majority continue to parrot this ‘fake news’ without bothering to check whether it is historical accurate. The result is that we now have a major Ada myth industry.

If I had the chance to discuss with Yael, Peter or any of the acolytes who have criticised and attacked me over the years I would ask them the following questions:

Which Ada biography have you read?

 I have read five of which I have what I regard as the two best ones standing on my bookshelf.

What about Babbage? Have you read his autobiography?

It’s actually a fascinating piece of literature covering much more than the computing engines for which Babbage is famous.

Maybe you have instead read the more modern and objective biography contained in Laura Snyder’s “The Philosophical Breakfast Club”?

A wonderful book, as I wrote in my review of it for the journal Endeavour

Have you read his 9thBridgewater Treatise, in which Babbage discusses religion and expands on his theory that one could explain miracles by unexpected changes in computer programmes?

An interesting if slightly bizarre  argument.

Or perhaps, you have read his On the Economy of Machinery Manufactures, the result of his extensive research into automation?

Babbage’s interest in automation drove much of his studies including his work on computing and computers. His On the Economy was a highly influential book in the nineteenth century.

Maybe you have read his unpublished writings on abstract algebra, now in the British Library, that are thought to have inspired George Peacock’s “Treatise on Algebra”?

 I will admit that I haven’t but it’s on my bucket list. I have however read Peacock’s book, fascinating and an important milestone in the history of mathematics,

Maybe you’ve read up on the Analytical Society, the student group Babbage and Herschel created in Cambridge to convince the university to introduce continental methods of analysis to replace Newton?

I stumbled across this intriguing piece of maths history during my research; it shows the dynamic that drove Babbage even from an early age.

This might seem like an intellectual pissing contest but if you wish to criticise me and maybe show me that I have erred, that I am mistaken or that I’m just plain wrong then I expect you to at least do the leg work. I actually like being shown that I am wrong because it means that I have learnt something new and I love to learn, to improve and to expand my knowledge of a subject. It is what I live for. I am a historian of science with a good international reputation that I have worked very hard to earn. I also work very hard to get my facts right. If you criticise me and hold a different opinion on some topic that I have written about but treat me with respect then I will treat you with respect even if I know that you are wrong. If, however, you just gratuitously insult me, as, in my opinion, Yael and Peter have done then I will treat you with disdain and if the mood suits me with a generous portion of sarcasm.

 

 

 

2 Comments

Filed under Autobiographical, History of Computing, Uncategorized

NO, SIMPLY NO!

I realise that in writing this blog post I am banging my head against a reinforced concrete wall, pissing against a hurricane, crying into the void and definitely not going to do my reputation any good with a certain class of feminist historians of science, but I cannot stay silent.

The Bank of England has announced that there is going to be a new British £50 banknote and that it will be graced with the portrait of a notable British scientist. To this end they have invited the great British public, renowned for their forethought and wisdom, see for example Brexit, to nominate potential candidates for this great honour. The only rules are that the nominated scientist must be British and dead! Upon this announcement going public Internet social media became an instant hotbed of wishes, suggestions, claims, counterclaims and sure-fire certs.

Unfortunately, the acolytes of Augusta Ada King, Countess of Lovelacewere immediately out in force shouting their, in their minds indisputable, claims from the rooftops and proclaiming their, in their minds unchallengeable, right to this honour for their saintly heroine in the highways and byways of the Internet. Unfortunately, the only criterion by which she qualifies is that she is dead. She was in no way by any meaningful definition of the term a scientist. Some have, however, pled that the honour should in fact not be awarded to a scientist at all but to a mathematician and that she would thus be an eminently suitable candidate. However, she was in no way by any meaningful definition of the term a mathematician and none of the recent published research on the topic does anything whatsoever to change this fact.

Although I have addressed this subject on a number of occasions on this blog let us briefly recap the largely mythical claims made on behalf of the good Countess. Indisputable is the fact that she translated, from the original French, at the suggestion of Charles Wheatstone, a memoir on Charles Babbage’s planned Analytical Engine written by Luigi Menabrea and based on a series of talks that Babbage had given on his planned computer in Turin in 1840. She was also asked by Babbage to expand on Menabrea’s original essay with an appended series of long notes. Indisputable is also the fact that these note were not compiled by Lovelace alone but in extensive cooperation with Babbage.

Note G of these appended notes contains the outline of a programme for the Analytical Engine to calculate the so-called Bernoulli numbers. On the basis of this note Lovelace has been incorrectly dubbed the first computer programmer. I say incorrectly, as Babbage had already demonstrated several programs for the Analytical Engine during his talks in Turin, some of which are outlined by Menabrea in his published memoir that Lovelace translated. If this were not enough Babbage actually states very clearly in his autobiography that although Countess Lovelace suggested the topic for Note G, he actually wrote the programme. In order to maintain their dubious claim on behalf of the Countess her acolytes either simply ignore this statement by Babbage or accuse him of lying. One interesting variant is to claim that the actual real first computer programme is the tabular presentation of the Bernoulli number programme that is appended to Note G and that this is alone the work of Lovelace. There are no such tabular representations of the programmes in Menabrea’s memoir. Again, unfortunately, in her correspondence Lovelace remarks on this subject that her table is an improvement on Babbage’s version. In what sense she improved it–simplified, made more readable, attractive, clearer–is not known, but this correspondence clearly shows that the tabular presentation also was originated by Babbage.

Not content with declaring her to be the first computer programmer, her acolytes moved on to making the, quite frankly ludicrous, claim that the appended notes show that she clearly understood the potential of the computer and computing much better than its inventor, Charles Babbage. Whilst anybody who can read must freely acknowledge that Lovelace can write considerable better than Babbage, whose prose tends to be rather turgid, whereas she has a poetic turn of phrase, such a claim can only be made by someone who simply ignores Babbage’s own extensive writings on the topic of the Analytical Engine. There is not a single idea or concept on the computer or computing in the Notes that cannot be found either in Babbage’s published writings, his masses of unpublished notes or his correspondence before Lovelace even became involved in the promotion of his project. At best she is a tech journalist and at worst Babbage’s sock puppet used by him to popularise his project and try to get financial backing for it.

Let us be generous and take the first option, this would make Ada Lovelace a female nineteenth century science writer, of which there were quite a few notable examples. It is not unusual that an intelligent, literate science writer can express the ideas of a scientist or inventor better for the lay reader than the originator of those ideas. That does not make the science writer a scientist or co-inventor, merely a communicator of concepts and ideas. If I, as a non-physicist, wish to acquire an understanding of the current state of quantum physics then I stand a better chance of doing so if I read Philip Ball’s Beyond Weird, than if I try to plough through the original papers published by the physicists who created the discipline. Ada Lovelace was perhaps a talented science writer but she was definitely neither a scientist nor a mathematician and thus although dead does not qualify as a potential candidate to adorn the new British £50 banknote.

I am personally totally in favour of a female scientist being chosen to adorn the new piece of British currency and a host of eminently good suggestions have already been made on social media from Dorothy Hodgkin, Britain’s only female Nobel Laureate, and inevitably Rosalind Franklin for her contributions to the discovery of the structure of DNA, to Jonathan Healey’s charming suggestion of Margaret Cavendish, as well as a whole host more of highly deserving and often neglected female scientists. So let us all nominate one of these genuine female scientists and not Ada Lovelace.

 

14 Comments

Filed under History of Computing, Uncategorized

Apples & Pears – comparing print technologies

 

On Facebook I recently stumbled across a link to a piece on 3 Quarks Daily, which in turn was only a lede for a short essay on the London Review of Books entitled, The Oldest Printed Book in the World. This is an article about the Chinese Dunhuang Diamond Sūtra

Jingangjing

Frontispiece of the Chinese Diamond Sūtra, the oldest known dated printed book in the world. The colophon, at the inner end, reads: Reverently [caused to be] made for universal free distribution by Wang Jie on behalf of his two parents on the 13th of the 4th moon of the 9th year of Xiantong [i.e. 11th May, CE 868 ] Source: British Library via Wikimedia Commons

 from the ninth century explaining its origin and how it came to be housed in the British Library. The article contains the following sentence:

A colophon at the end of the Dunhuang Diamond Sūtra scroll dates it to 868, nearly six centuries before the first Gutenberg Bible.

Although not stated explicitly the intention of this sentence seems to be, the Chinese invented book printing six hundred years before the Europeans. Although on a very superficial level this is true it is actually a case of comparing apples with pears, as the two books in question are printed with very different reproduction technologies. The Dunhuang Diamond Sūtra is a woodblock print, whereas the Gutenberg Bible is printed with movable type.

Gutenberg_bible_Old_Testament_Epistle_of_St_Jerome

First page of the first volume: The Epistle of St. Jerome from the University of Texas copy. Source: Ransom Center of the University of Texas at Austin via Wikimedia Commons

For woodblock printing the image to be printed is carved into a woodblock or rather the parts that are not to be printed are cut away with a knife or chisel. This is then inked and pressed onto the sheet of material, cloth or paper, to be printed. The used block produced by this difficult process can only be used to print this one page. With moveable type the individual pieces of type, or sorts, are composed into the image to be printed, inked and pressed into the sheet of material to be printed. When finished the sorts can be reused to compose a new page and so on. Once cut a set of woodblocks can only be used to print the same book over and over again. A full set of type can be continually reconfigured to print literally thousand of different books. This difference is important and the six hundred year gap throws up some very important and intriguing historical questions.

Metal_movable_type

A case of cast metal type pieces and typeset matter in a composing stick Source: Wikimedia Commons

Central to these is the question of technological transfer. Woodblock printing was developed in East Asia sometime before the third century CE. The oldest fragments of printed cloth date to 220 CE. The oldest woodblock prints on paper date to the late seventh century CE. And as stated above to oldest extant woodblock printed book the Dunhuang Diamond Sūtra dates to 868 CE. Although the Chinese invention of paper arrived in Spain via the Islamic Empire in the late eleventh century CE and crossed the Alps into Northern Europe in the late fourteenth century CE, woodblock printing does not appear to have accompanied it. Strangely European books printed with woodblocks, block books, apparently only appeared after Gutenberg had introduced printing with movable type in the second half of the fifteenth century. There are a very limited number of such books mostly dating from the 1460s and 1470s and printed in the Netherlands of Southern Germany.

Blokboek,_Biblia_pauperum

Block book – Biblia Pauperum (“Bible of the Poor”) Netherlands 1460s/70s Source: Wikimedia Commons

Gutenberg was by no means the first to use moveable type. Around 1040 CE a Chinese inventor, Bi Sheng (990–1051) invented a form of moveable type with the pieces of type made of ceramics. Beyond a short description of his invention nothing more is known about it and nothing he might have printed has survived. This was followed in East Asia by various other forms of moveable type carved from wood or made of various metals. The oldest book printed with wooden movable type was Records of Jingde County printed by Wang Zhen in 1298. In 1313 he published an account of his invention A method of making moveable wooden types for printing books.

Chinese_movable_type_1313-ce

A revolving typecase for wooden type in China, from Wang Zhen’s book published in 1313 Source: Wikimedia Commons

The oldest known book printed with metal moveable type is the two volume Jikji, a collection of excerpts from the analects of revered Buddhist monks, printed with metal type in Korea in 1377; that is at least seventy years before Gutenberg’s famous Bible. However, whereas 49 copies of Gutenberg’s Bible still exist, of which 21 are complete, only one copy of the second volume of the Jikji is still extant.

JikjiType

Korean movable type from 1377 used for the Jikji Source: Wikimedia Commons

Korean_book-Jikji-Selected_Teachings_of_Buddhist_Sages_and_Seon_Masters-1377

Jikji or “Selected Teachings of Buddhist Sages and Seon Masters”, published in 1377, Korea during the Goryeo Dynasty. Source: Wikimedia Commons

Even within Europe Gutenberg was not the first to use moveable type, with several people experimenting with varying system. However Gutenberg was the first to produce anything functional and in reality his greatest inventions were not so much moveable type as the printing press (he converted a wine press) and printing ink or to put it another way he didn’t just invent moveable type but the whole printing process.

PrintMus_038

Replica of the Gutenberg press at the International Printing Museum in Carson, California Source: Wikimedia Commons

Although extensive effort has been invested into the research on the topic, no evidence has been found of a technology transfer from East Asia to Europe and it is thought that Gutenberg’s was an independent (re)invention.

Although my account is itself only a sketch of the development of printing, both woodblock and moveable type ( I don’t even touch upon book (re)production before woodblock printing or after moveable type), my main argument is that the London Review of Books article in just making its invalid comparison between the Dunhuang Diamond Sūtra and Gutenberg’s Bible creates an inadequate and distorted impression of a long and complex historical process; an impression that uninformed readers will take away with them. A mythical historical meme has been created “the first printed book is the Dunhuang Diamond Sūtra and not the Gutenberg Bible” to replace the Eurocentric myth that Gutenberg invented movable type printing and his Bible is the earliest printed book. If writing short popular historical pieces for the general public we should avoid simplistic descriptions and thereby the risk of creating myths rather than transmitting real knowledge.

 

8 Comments

Filed under Early Scientific Publishing, History of Technology, Uncategorized

A Newtonian Refugee

Erlangen, the Franconian university town, where I (almost) live and where I went to university is known in German as ‘Die Hugenottenstadt’, in English the Huguenot town. This name reflects the religious conflicts within Europe in the 17thcentury. The Huguenots were Calvinists living in a strongly and predominantly Catholic France. Much persecuted their suffering reached a low point in 1572 with the St Bartholomew’s Day massacre, which started in the night of 23-24 August. It is not know how many Huguenots were murdered, estimates vary between five and thirty thousand. Amongst the more prominent victims was Pierre de la Ramée the highly influential Humanist logician and educationalist. The ascent of Henry IV to the French Throne saw an easing of the situation for the Huguenots, when he issued the Edict of Nantes confirming Catholicism as the state religion but giving Protestants equal rights with the Catholics. However the seventeenth century saw much tension and conflict between the two communities. In 1643 Louis XIV gained the throne and began systematic persecution of the Huguenots. In 1685 he issued the Edict of Fontainebleau revoking the Edict of Nantes and declaring Protestantism illegal. This led to a mass exodus of Huguenots out of France into other European countries.

Franconia had suffered intensely like the rest of Middle Europe during the Thirty Years War (1618-1648) in which somewhere between one third and two thirds of the population of this area died, most of them through famine and disease. The Margrave of Brandenburg-Bayreuth, Christian Ernst invited Huguenot refugees to come to Erlangen to replace the depleted inhabitants. The first six Huguenots reached Erlangen on 17 May 1686 and about fifteen hundred more followed in waves. Due to the comparatively large numbers the Margrave decided to establish a new town south of the old town of Erlangen and so “Die Hugenottenstadt” came into being.

Schlossplatz_Erlangen3

The earliest known plan of New Erlangen (1686) Attributed to Johann Moritz Richter Source: Wikimedia Commons

In 1698 one thousand Huguenots and three hundred and seventeen Germans lived in Erlangen. Many of the Huguenot refugees also fled to Protestant England establish settlements in many towns such as Canterbury, Norwich and London.

1280px-Hohmann

Town plan of Erlangen 1721 Johann Christoph Homann Source: Wikimedia Commons

In the early eighteenth century Isaac Newton, now well established in London at the Royal Mint, would hold court in the London coffee houses surrounded by a group of enthusiastic mathematical scholars, the first Newtonian, eager to absorb the wisdom of Europe’s most famous mathematician and to read the unpublished mathematical manuscripts than he passed around for their enlightenment. One of those coffee house acolytes was the Huguenot refugee, Abraham de Moivre (1667–1754).

abraham-de-moivre

Abraham de Moivre artist unknown

Abraham de Moivre the son of a surgeon was born in Vitry-le-François on 26 May 1667. Although a Huguenot, he was initially educated at the Christian Brothers’ Catholic school. At the age of eleven he moved to Protestant Academy at Sedan, where he studied Greek. As a result of the increasing religious tension the Protestant Academy was suppressed in 1682 and de Moivre moved to Saumur to study logic. By this time he was teaching himself mathematics using amongst others Jean Prestet’s Elémens desmathématiquesand Christiaan Huygens’ De Rationciniis in Ludo Aleae, a small book on games of chance. In 1684 he moved to Paris to study physics and received for the first time formal teaching in mathematics from Jacques Ozanam a respected and successful journeyman mathematician.

Although it is not known for sure why de Moivre left France it is a reasonable assumption that it was Edict of Fontainebleau that motivated this move. Accounts vary as to when he arrived in London with some saying he was already there in 1686, others that he first arrived a year later, whilst a different account has him imprisoned in France in 1688. Suffering the fate of many a refugee de Moivre was unable to find employment and was forced to learn his living as a private maths tutor and through holding lectures on mathematics in the London coffee houses, the so-called Penny Universities.

Shortly after his arrival in England, de Moivre first encountered Newton’s Principia, which impressed him greatly. Due to the pressure of having to earn a living he had very little time to study, so according to his own account he tore pages out of the book and studied them whilst walking between his tutoring appointments. In the 1690s he had already become friends with Edmund Halley and acquainted with Newton himself. In 1695 Halley communicated de Moivre’s first paper Methods of Fluxions to the Royal Society of which he was elected a member in 1697.

Edmund_Halley

Edmund Halley portrait by Thomas Murray Source: Wikipedia Commons

In 1710 de Moivre, now an established member of Newton’s inner circle, was appointed to the Royal Society Commission set up to determine whether Newton or Leibniz should be considered the inventor of the calculus. Not surprisingly this Commission found in favour of Newton, the Society’s President.

De Moivre produced papers in many areas of mathematics but he is best remembered for his contributions to probability theory. He published the first edition of The Doctrine of Chances: A method of calculating the probabilities of events in playin 1718 (175 pages).

Abraham_de_Moivre_-_Doctrine_of_Chance_-_1718

Title page of he Doctrine of Chances: A method of calculating the probabilities of events in playin 1718

An earlier Latin version of his thesis was published in the Philosophical Transactionsof the Royal Society in 1711. Although there were earlier works on probability, most notably Cardano’s Liber de ludo aleae(published posthumously 1663), Huygens’De Rationciniis in Ludo Aleaeand the correspondence on the subject between Pascal and Fermat, De Moivre’s book along with Jacob Bernoulli’s Ars Conjectandi(published posthumously in 1713) laid the foundations of modern mathematical probability theory. There were new expanded editions of The Doctrine of Chance sin 1738 (258 pages) and posthumously in 1756 (348 pages).

De Moivre is most well known for the so-called De Moivre’s formula, which he first

(cos θ + i sin θ)n = cos n θ + i sin n θ

published in a paper in 1722 but which follows from a formula he published in 1707. In his Miscellanea Analytica from 1730 he published what is now falsely known as Stirling’s formula, although de Moivre credits James Stirling (1692–1770) with having improved his original version.

Although a well known mathematician, with a Europa wide reputation, producing much original mathematics de Moivre, the refugee (he became a naturalised British citizen in 1705), never succeeded in obtaining a university appointment and remained a private tutor all of his life, dying in poverty on 27 November 1754. It is claimed that he accurately predicted the date of his own death.

 

 

 

 

 

 

3 Comments

Filed under Autobiographical, History of Mathematics, Newton, Uncategorized

Two Greek scholars butting heads in the Renaissance and the consequences for astronomy

The adversaries of the title were Georg of Trebizond (1395–1472) and Basilios Bessarion (1403–1472). There is an ironic twist to their names. George of Trebizond derived his name from his ancestors, who originated in the Empire of Trebizond but he was born in Crete. His later antagonist Basilios Bessarion, however, was born in Trebizond.

At sometime unknown point, whilst he was still relatively young, George of Trebizond moved to Italy, where he learnt Latin and acted as amanuensis to the politician Francesco Barbaro (1390–1454) in Venice. A brilliant Aristotelian scholar he entered the entourage of Pope Nicholas V (1397–1455) a convinced Aristotelian.

Georgius_Trapezuntius

George of Trebizond Source: Wikimedia commons

Basilios Bessarion was educated in Constantinople then went in 1423 to study Plato under Georgius Gemistus (c.1355–c. 1452), known as Plethon, a highly influential revivalist and teacher of Neo-Platonism. He became an orthodox monk, advancing to abbot in 1436 and metropolitan of Nicaea in 1437. In 1439 he travelled with the Orthodox delegation to Italy to try to persuade the Catholic Church to join the Orthodox Church in a crusade against the Ottoman Turks. Bessarion’s political position led to him being heavily criticised in Byzantium and so he stayed in Italy where Pope Eugene IV (1383–1447) appointed him a cardinal of the Catholic Church. A convinced humanist he devoted his life to spreading support for humanism and to amassing a large private library, containing an extensive collection of Greek manuscripts. He presented his library to the Senate of Venice in 1468 and the 482 Greek manuscripts and 264 Latin manuscripts today still form the core of the St. Mark’s Biblioteca Marciana.

Bessarion_1476

Basilios Bessarion Justus van Gent and Pedro Berruguete Source: Wikimedia Commons

Initially Bessarion and George of Trebizond were friends and Bessarion did much to support his colleague. However in the early 1450s their friendship began to unravel. In that year George undertook a translation from Greek into Latin of Ptolemaeus’ Mathēmatikē Syntaxis or as it is better known the Almagest, as a replacement for Gerard of Cremona’s twelfth-century translation from Arabic.  Bessarion lent him his best Greek manuscript for the purpose and suggested that he used Theon of Alexandria’s Commentary, as a guide. He duly produced his translation and an extensive commentary in nine months finishing in December 1451. His work was hurried, sloppy and strewn with errors and the Pope’s evaluator Jacopo di San Cassiano (ca.1400–ca.1454) judged the work deficient and the Pope, Nicholas V, rejected the dedication. Bessarion took issue with George’s treatment of Theon. The incident ruined George’s reputation and he was forced to flee from Rome.

The situation between the two Greek immigrants escalated when in 1458 George published a vicious attack on Plato in his Comparatio Aristotelis et Platonis, which historian James Hankins has described as “one of the most remarkable mixtures of learning and lunacy ever penned.” In this work he accused Plato of being a traitor to Athens, a besmircher of rhetoric, an advocate of paedophilia, and a pagan who lent aid and comfort to Greek Christians. Bessarion, a Platonist, could not let this stand and issued a powerful response, In calumnatorem Platonis, which was printed in 1469. The situation became even more heated when George offered to dedicate his Commentary on the Almagest to Mehmet II, the Ottoman Turk Sultan, who had conquered Constantinople and ended the Byzantine Empire. George entreated Mehmet to convert to Christianity, to conquer Rome and thus to unite Islam and Christianity under his sovereignty. Bessarion got hold of George’s correspondence with Mehmet and appealled to the Pope, Pius II (for whom George might have been working as an agent!), accusing George of treachery and George was imprisoned for four months in 1466-67. Released from prison, George now offered to dedicate both translation and commentary to Matthias Corvinus (1443–1490), the king of Hungary.

We now need to back peddle to 1460. In that year, Bessarion, who was a Papal legate, visited Vienna to negotiate with Frederick III and made the acquaintance of Georg von Peuerbach (1423–1461), who was at the time the leading astronomical scholar in Europe. Bessarion, still deeply upset by George’s abortive Almagest efforts, asked Peuerbach to produce a new commentary on Ptolemaeus’ work. Peuerbach acquiesced and began immediately to produce an epitome or digest of the Almagest. This was an updated, modernised, shortened, mathematically improved version of the Almagest. Peuerbach died in 1461, having only completed the first six of thirteen book of his epitome. He did, however, extract the deathbed promise from his star pupil, Regiomontanus, to finish the work. In the same year Regiomontanus left Vienna for Italy as a member Bessarion’s entourage, where he spent the next four years learning Greek, finishing the epitome and acting as Bessarion’s manuscript collector and librarian. The Epitome of the Almagestis a masterpiece:

The Epitome is neither a translation (an oft repeated error) nor a commentary but a detailed sometimes updated, overview of the Almagest. Swerdlow once called it “the finest textbook of Ptolemaic astronomy ever written.”[1]

I’ve already written an earlier blog post on Regiomontanus so we don’t need to outline the rest of his life but Shank does have an interesting hypothesis. He suggests that Regiomontanus went to Hungary at Bessarion’s behest in order to counter any influence that George might win at the Court of Corvinus through his second attempt to rededicate his Almagest and Commentary.

800px-johannes_regiomontanus

Johannes Regiomontanus, Woodcut Source: Wikimedia Commons

When he set up his printing business in Nürnberg, Regiomontanus published Peuerbach’s lectures on astronomy, Theoricae Novae Planetarum, as his first book.

Peuerbach-Theoricarum-1515

Georg von Peuerbach: Theoricarum novarum planetarum testus, Paris 1515 Source: Wikimedia Commons

Peuerbach_Theoricae_novae_planetarum_1473

Peuerbach Theoricae novae planetarum 1473 Source: Wikimedia Commons

Although he included the Epitome in his publisher’s prospect he didn’t succeed in publishing it before his untimely death in 1476. The Epitoma in Almagestum Ptolemae was first published in 1496 in Venice by Johannes Hamman. Together with Peuerbach’s lectures the Epitome became the standard textbooks for teaching astronomy at the European universities for much of the next century. The influence of the Epitome goes much deeper than this in the history of astronomy.

929246142-612x612

Title page Epitoma in Almagestum Ptolemae Source: Wikimedia Commons

It is well known that Copernicus modelled his De revolutionibus on Ptolemaeus’ Almagest. In fact text analysis has shown that he actually modelled his magnum opus on the Peuerbach-Regiomontanus Epitome, for example taking most of his knowledge of Arabic astronomy from Regiomontanus’ work. This is, however, rather minor compared to what several expert think is the most important influence that Regiomontanus had on Copernicus.

Nikolaus_Kopernikus

Nicolaus Copernicus portrait from Town Hall in Toruń – 1580 Source: Wikimedia Commons

According to ancient Greek cosmology the planets orbit the earth with uniform circular motion. Any extended observation of the planets show that this is not the case and it was the job of the astronomers to construct geometrical model, which corrected the visible deviation from the cosmological norm; these deviations are known as the anomalies. Ptolemaeus had basically two geometrical tools to describe planetary orbits. With the eccentric deferent the centre of the circle that describes the orbit, the deferent, is not in the same position as the earth, i.e. the earth is not at the centre of the planets orbit. The alternative is the epicycle-deferent model in which the planet is carried around an epicycle, which is itself carried around the deferent. The mathematician Apollonius (late 3rdcentury–early 2ndcentury BCE) had shown that the two models were in fact mathematically equivalent; meaning any motion that could be described with the one model could equally well be described with the other.

Ptolemaeus, however, argued in the Almagest that whereas the retrograde motion (the so-called second anomaly, when the planet appears to reverse its orbital direction for a period of time) of the outer planets could be described with either model that of the inner planets (Venus and Mercury) could only be described with the epicycle-deferent model. In Book XII of the Epitome, Regiomontanus proved that the second anomaly of the inner planets could also be described with the eccentric deferent model. Without going into detail this seems to have led Copernicus directly to his heliocentric system for the inner planets, which he then extended to the outer ones.

Thinking hypothetically, if George had not written his translation of and commentary on the Almagest, then Bessarion would not has asked Peuerbach to write the Epitomeand Regiomontanus might never have provided Copernicus with that vital clue.

Regiomontanus wrote a second book inspired by George’s work. His Defensio Theonis contra Georgium Trapezuntium is a vast rambling mathematical work centred on a defence of Theon of Alexandria against what he saw as George’s unfair treatment of him. He accused George as having both misrepresenting Theon and plagiarising him. This work has never been published but Regiomontanus’ antagonism against George was known at the time. The Defensio was announced in Regiomontanus’ prospect and also in works published by Erhard Ratdolt. This situation led to a rather strange claim made by Pierre Gassendi. In the 1650s Gassendi published a collective biography of the great astronomers Brahe, Copernicus, Regiomontanus etc. in which he claimed that Regiomontanus was murdered in Rome by two of George’s sons in 1476. George had many vocal critics, none of whom were murdered and sensible historians think that Regiomontanus died in one of the epidemics that regularly swept Rome.

 

[1]Michael H. Shank, Regiomontanus and Astronomical Controversy in the Background of Copernicus, pp. 79-109 in Rivka Feldhay and F. Jamil Ragep eds., Before Copernicus: The Cultures and Contexts of Scientific Learning in the Fifteenth Century, McGill-Queen’s University Press, Montreal& Kingston, London, Chicago, 2017, p. 90

This blog post owes much to the above paper and to Michael H. Shank, The Almagest, Politics, and Apocalypticism in the Conflict between George of Trebizond and Cardinal Bessarion, in Almagest International Journal for the History of Scientific Ideas, Volume 8, Issue 2, 2017, pp. 49-83

9 Comments

Filed under Early Scientific Publishing, History of Astronomy, History of science, Renaissance Science, Uncategorized