Category Archives: History of Chemistry

How Chemistry came to its first journal – and a small-town professor to lasting prominence

Being fundamentally a lazy sod I am always very pleased to welcome a guest blogger to the Renaissance Mathematicus, because it means I don’t have to write anything to entertain the mob. Another reason why I am pleased to welcome my guest bloggers is because they are all better educated, better read and much more knowledgeable than I, as well as writing much better than I ever could, meaning I get princely entertained and educated by them. Todays new guest blogger, Anna Gielas, maintains the high standards of the Renaissance Mathematicus guests. Anna, who’s a German studying in Scotland whereas I’m an English man living in Germany, helps me to put together Whewell’s Gazette the #histSTM weekly links list. I’ll let her tell you somewhat more about herself.

 I’m a doctoral candidate at the University of St Andrews (Dr Aileen Fyfe and Prof Frank James from the Royal Institution of Great Britain are my supervisors) and I study the editorship and the establishment of early scientific journals in Britain and the German lands. I focus on the decades between 1760 and 1840 because this was the time when commercial (as opposed to society-based) science periodicals took off and became a central means of scientific communication and knowledge production

 As you can see Anna is an expert for the history of scientific journals and her post honours the 200th anniversary of the death Lorenz Crell, 7 June 1816, who edited and published the world’s first commercial journal devoted exclusively to chemistry. Read and enjoy.

 


 

 

In early February 1777, the famous Swiss physiologist Albrecht von Haller received a letter from an obscure small-town professor named Lorenz Crell. Crell had studied medicine, travelled Europe and returned to his hometown, where he succeeded his former professor of medicine at the local university.

The young professor asked Haller for feedback on a few essays he had submitted anonymously. Haller’s favourable comments encouraged Crell not only to reveal his name but also his risky plan: “I have a chemical journal in the works”, Crell announced to Haller in February 1777.

Lorenz Crell Source: Wikimedia Commons

Lorenz Crell
Source: Wikimedia Commons

The thirty-three year old professor had hardly any experiences with publishing, let alone with editing a learned journal. Yet his periodical would go on to become the first scientific journal devoted solely to chemical research—and would influence the course of chemical research throughout the German speaking lands.

In February of 1777—roughly one year before the inaugural issue of his Chemisches Journal appeared—things looked rather dire for Crell. At this time, there were essentially two professional groups in the German speaking lands devoted to chemical endeavours: university professors and apothecaries. The core of professorial work—and the task they were paid for—was teaching. And chemistry was taught as part of the medical curriculum. Apothecaries, in turn, focused mainly on producing remedies. Neither profession was based on chemical research. Experimentation would remain secondary until the nineteenth century.

So whom did Crell expect to pick up his periodical? He hoped to garner the attention of the eminent Andreas Sigismund Marggraf and his peers. Marggraf was the first salaried chemist at the Royal Prussian Academy of Sciences in Berlin. Like most of the leading chemical researchers, Marggraf was an apprenticed apothecary. He had audited lectures and seminars at the University of Halle, an epicentre of the Enlightenment, but he never graduated. Before taking on his post at the Academy, Marggraf earned his living through the apothecary shop that he had inherited from his father, the “Apotheke zum Bären” (Bear’s Pharmacy) on Spandauer Straße in Berlin.

Hoping that renowned chemical experimenters like Marggraf would pick up Crell’s journal was one thing—catching their attention and actually persuading them to contribute to the periodical a very different one. But Crell, it appears, had a plan. Later in 1777 he contacted Friedrich Nicolai, a famous publisher and bookseller of the German Enlightenment, and asked for the honour of reviewing a few chemical books for Nicolai’s Allgemeine deutsche Bibliothek (ADB). Crell picked a good moment to do so: in 1777, the ADB experienced record sales. But the editor-to-be approached Nicolai without any letter of introduction, which according to the mores of his times, the Prussian Aufklärer could have easily interpreted as impudence. Nicolai apparently saw moxie where others might have seen brazenness: the publisher commissioned reviews from Crell within days of receiving his letter. Within roughly two months, from November 1777 until mid-January 1778, Crell submitted no less than eleven pieces for Nicolai’s famous periodical. “I still owe you five reviews which shall follow quickly”, he wrote to the Prussian publisher in January. Nicolai received them by February.

Title page from the Chemisches Journal for 1778 Source: Wikimedia Commons

Title page from the Chemisches Journal for 1778
Source: Wikimedia Commons

Crell was aware that Nicolai had close ties to leading chemical investigators. The publisher was about to become an extraordinary member of the Prussian Academy of Sciences and chemical researchers such as Johann Christian Wiegleb and Johann Friedrich Gmelin contributed to the ADB. Wiegleb was a pharmacist who expanded his laboratory in Langensalza to teach chemistry. Wiegleb’s students lived, learned, and—most importantly—researched at his Privat-Institut. Johann Friedrich Göttling was one of Wiegleb’s pupils—as was the English industrialist Matthew Boulton.

Crell tried to tap into this network when he first contacted Nicolai. Maybe he even hoped to recruit the renowned chemical researchers for the inaugural issue of his Chemisches Journal. But the editor had to pace himself: the first issue of his periodical was almost entirely authored by himself and Johann Christian Dehne, a close friend and physician from a neighbouring village.

Ultimately, Crell’s concerted efforts as a regular contributor to the ADB and the editor of the Chemisches Journal paid off: all three—Wiegleb, Gmelin and Göttling—submitted articles for the second issue of Crell’s novel journal. Throughout the years many other joined them, including the Irish chemist Richard Kirwan, the Scottish researcher Joseph Black and the German Martin Heinrich Klaproth, the first professor of chemistry at the University of Berlin. Andreas Sigismund Marggraf, however, never published in Crell’s journal, maybe due to health issues following a stroke.

Crell devoted decades of his life to his journals. Within nearly 27 years he published nine periodicals, the longest-running and most famous of which is the Chemische Annalen (1784-1804). It was here that the German chemists debated (and death-bedded) phlogiston. During a busier year, such as 1785, Crell published over 2,000 pages of chemical facts, findings and flapdoodle.

Today, some scientists and historians belittle his role in chemistry, arguing that Crell did not contribute anything crucial to science. To judge Crell by what he did not achieve in his laboratory is to present science as a solitary undertaking, tucked away in labs. But if we acknowledge that science is a joint endeavour, based on communication, on-going exchange and discussions, Crell’s contribution appears vital.

According to the Berkeley-historian Karl Hufbauer, Crell’s Chemische Annalen was crucial in the formation of the German chemical community. Even more, Crell provided German and European researchers with an instrument for the production of chemical knowledge.

Today is the 200th anniversary of his death. Let’s use the date to commemorate all the editors throughout the centuries who spent countless hours at their desks—and contributed to the giant’s shoulders on which we stand today.

 

 

Advertisements

4 Comments

Filed under Early Scientific Publishing, History of Chemistry, History of science

DO IT!

DO IT! is the title of a book written by 1960s Yippie activist Jerry Rubin. In the 1970s when I worked in experimental theatre groups if somebody suggested doing something in a different way then the response was almost always, “Don’t talk about it, do it!” I get increasingly pissed off by people on Twitter or Facebook moaning and complaining about fairly trivial inaccuracies on Wikipedia. My inner response when I read such comments is, “Don’t talk about it, change it!” Recently Maria Popova of brainpickings posted the following on her tumblr, Explore:

The Wikipedia bio-panels for Marie Curie and Albert Einstein reveal the subtle ways in which our culture still perpetuates gender hierarchies in science. In addition to the considerably lengthier and more detailed panel for Einstein, note that Curie’s children are listed above her accolades, whereas the opposite order appears in the Einstein entry – all the more lamentable given that Curie is the recipient of two Nobel Prizes and Einstein of one.

How ironic given Einstein’s wonderful letter of assurance to a little girl who wanted to be a scientist but feared that her gender would hold her back. 

When I read this, announced in a tweet, my response was a slightly ruder version of “Don’t talk about it, change it!” Within minutes Kele Cable (@KeleCable) had, in response to my tweet, edited the Marie Curie bio-panel so that Curie’s children were now listed in the same place as Einstein’s. A couple of days I decided to take a closer look at the two bio-panels and assess Popova’s accusations.

Marie Curie c. 1920 Source Wikimedia Commons

Marie Curie c. 1920
Source Wikimedia Commons

The first difference that I discovered was that the title of Curie’s doctoral thesis was not listed as opposed to Einstein’s, which was. Five minutes on Google and two on Wikipedia and I had corrected this omission. Now I went into a detailed examination, as to why Einstein’s bio-panel was substantially longer than Curie’s. Was it implicit sexism as Popova was implying? The simple answer is no! Both bio-panels contain the same information but in various areas of their life that information was more extensive in Einstein’s life than in Curie’s. I will elucidate.

Albert Einstein during a lecture in Vienna in 1921 Source: Wikimedia Commons

Albert Einstein during a lecture in Vienna in 1921
Source: Wikimedia Commons

Under ‘Residences’ we have two for Curie and seven for Einstein. Albert moved around a bit more than Marie. Marie only had two ‘Citizenships’, Polish and French whereas Albert notched up six. Under ‘Fields’ both have two entries. Turning to ‘Institutions’ Marie managed five whereas Albert managed a grand total of twelve. Both had two alma maters. The doctoral details for both are equal although Marie has four doctoral students listed, whilst Albert has none. Under ‘Known’ for we again have a major difference, Marie is credited with radioactivity, Polonium and Radium, whereas the list for Albert has eleven different entries. Under ‘Influenced’ for Albert there are three names but none for Marie, which I feel is something that should be corrected by somebody who knows their way around nuclear chemistry, not my field. Both of them rack up seven entries under notable awards. Finally Marie had one spouse and two children, whereas Albert had two spouses and three children. In all of this I can’t for the life of me see any sexist bias.

Frankly I find Popova’s, all the more lamentable given that Curie is the recipient of two Nobel Prizes and Einstein of one, comment bizarre. Is the number of Nobel Prizes a scientist receives truly a measure of their significance? I personally think that Lise Meitner is at least as significant as Marie Curie, as a scientist, but, as is well known, she never won a Nobel Prize. Curie did indeed win two, one in physics and one in chemistry but they were both for two different aspects of the same research programme. Einstein only won one, for establishing one of the two great pillars of twentieth-century physics, the quantum theory. He also established the other great pillar, relativity theory, but famously didn’t win a Nobel for having done so. We really shouldn’t measure the significance of scientists’ roles in the evolution of their disciplines by the vagaries of the Nobel awards.

 

8 Comments

Filed under History of Chemistry, History of Physics, History of science, Ladies of Science

The Phlogiston Theory – Wonderfully wrong but fantastically fruitful

There is a type of supporter of gnu atheism and/or scientism who takes a very black and white attitude to the definition of science and also to the history of science. For these people, and there are surprisingly many of them, theories are either right, and thus scientific, and help the progress of science or wrong, and thus not scientific, and hinder that progress. Of course from the point of view of the historian this attitude or stand point is one than can only be regarded with incredulity, as our gnu atheist proponent of scientism dismisses geocentrism, the phlogiston theory and Lamarckism as false and thus to be dumped in the trash can of history whilst acclaiming Copernicus, Lavoisier and Darwin as gods of science who led as out the valley of ignorance into the sunshine of rational thought.

I have addressed this situation before on more than one occasion but as a historian of science I think that it’s a lesson that needs to be repeated at regular intervals. Because it is the American Chemical Society’s “National Chemistry Week 2015” I shall be re-examining the Phlogiston Theory whose creator Georg Ernst Stahl was born on 22 October 1659 in Ansbach, which is in Middle Franconia just down the road from where I live.

Georg_Ernst_Stahl

Georg Ernst Stahl (1660–1734) Source: Wikimedia Commons

Stahl had a fairly conventional career, studying medicine at Jena University from 1679 to 1684. 1687 he became court physician to the Duke of Sachen-Weimar and in 1694 he was appointed professor of medicine at the newly founded University of Halle, where he remained until 1715 when he became personal physician to Friedrich Wilhelm I, King of Prussia. Stahl like most chemists in the Early Modern Period was a professional physician, chemistry only existing within the academic context as a sub-discipline of medicine.

To understand the phlogiston theory we need to go back and take a brief look at the development of the theory of matter since the ancient Greeks. Empedocles introduced the famous four-element theory, Earth, Water, Air and Fire, in the fifth century BCE and this remained the basic theory in Europe until the Early Modern Period. In the ninth century CE Abu Mūsā Jābir ibn Hayyān added Sulphur and Mercury to the four-elements as principles, rather than substances, to explain the characteristics of the seven metals. In the sixteenth century CE, Paracelsus took over al- Jābir’s Sulphur and Mercury adding Salt as his tria prima to explain the characteristics of all matter. In the seventeenth century, when Paracelsus’ influence was at its height, many alchemists/chemists adopted a five-element theory – Earth, Water, Sulphur, Mercury and Salt – dropping air and fire. Robert Boyle, in his The Sceptical Chymist (1661), threw out both the Greek four-element theory and Paracelsus’ tria prima, groping towards a more modern concept of element. We now arrive at the origins of the phlogiston theory.

The German Johann Joachim Becher (1635–1682), a physician and alchemist, was a big fan of Boyle and his theories and even travelled to London to learn at the feet of the master.

Jjbecher

Johann Joachim Becher (1635-1682) Source: Wikimedia Commons

Like Boyle he rejected both the Greek four-element theory and Paracelsus’ tria prima, in his Physica Subterranea (1667) replacing them with a two-element theory Earth and Water with Air present just as a mixing agent for the two. However he basically reintroduced Paracelsus’ tria prima in the form of three different types of Earth.

  • terra fluida or mercurial Earth giving material the characteristics, fluidity, fineness, fugacity, metallic appearance
  • terra pinguis or fatty Earth giving material the characteristics oily, sulphurous and flammable
  • terra lapidea glassy Earth, giving material the characteristic fusibility

Stahl took up Becher’s scheme of elements concentrating on his terra pinguis, making it his central substance and renaming it phlogiston. In his theory all substances, which are flammable contain phlogiston, which is given up when they burn, the combustion ceasing when the phlogiston is exhausted. The classic demonstration of this was the combustion of mercury, which turns to ash, in Stahl’s terminology (mercuric oxide in ours). If this ash is reheated with charcoal the phlogiston is restored (according to Stahl) and with it the mercury. (In our view the charcoal removes the oxygen restoring the mercury). In a complex series of experiment Stahl turned sulphuric acid into sulphur and back again, explaining the changes once again through the removal and return of phlogiston. Through extension Stahl, an excellent experimental chemist, was able to explain, what we now know as the redox reactions and the acid-base reactions, with his phlogiston theory based on experiment and empirical observation. Stahl’s phlogiston theory was thus the first empirically based ‘scientific’ explanation of a large part of the foundations of chemistry. It is a classic example of what Thomas Kuhn called a paradigm and Imre Lakatos a scientific research programme.

Viewed with hindsight the phlogiston theory is gloriously, wonderfully and absolutely wrong in all of its aspects thus leading to the scorn with which it is viewed by our gnu atheist proponent of scientism, however they are wrong to do so. I prefer Lakatos’ scientific research programme to Kuhn’s paradigm exactly because it describes the success of the phlogiston theory much better. For Lakatos it’s irrelevant whether a theory is right or wrong, what matters are its heuristics. A scientific research programme that produces new facts and phenomena that fit within the descriptive scope of the programme has a positive heuristic. One that produces new facts and phenomena that don’t fit has a negative heuristic. Scientific research programmes have both positive and negative heuristics simultaneously throughout their existences, so long as the positive heuristic outweighs the negative one the programme continues to be accepted. This was exactly the case with the phlogiston theory.

Most European eighteenth-century chemist accepted and worked within the framework of the phlogiston theory and produced a great deal of new important chemical knowledge. Most notable in this sense are the, mostly British, so-called pneumatic chemists. Working within the phlogiston theory Joseph Black (1728–1799), professor for medicine in Edinburgh, isolated and identified carbon dioxide whilst his doctoral student Daniel Rutherford (1749–1819) isolated and identified nitrogen. The Swede Carl Wilhelm Scheele (1742–1786) produced, identified and studied oxygen for which he doesn’t get the credit because although he was first, he delayed in publishing his results and was beaten to the punch by Joseph Priestley (1733–1804), who had independently also discovered oxygen labelling it erroneously dephlogisticated air. Priestley by far and away the greatest of the pneumatic chemists isolated and identified at least eight other gases as well as laying the foundations for the discovery of photosynthesis, perhaps his greatest achievement.

Henry Cavendish (1731–1810) isolated and identified hydrogen, which he thought for a time might actually be phlogiston, before going on to make the most important discovery within the framework of the phlogiston theory, the structure of water. By a series of careful experiments Cavendish was able to demonstrate that water was not an element but a compound consisting of two measures of phlogiston (hydrogen) with one of dephlogisticated air (oxygen). With the same level of precision he also demonstrated that normal air consists of four parts of nitrogen to one of oxygen or better said not quite. He constantly found something he couldn’t identify present in one one-hundredth and twentieth of the volume of nitrogen. In the nineteenth century this would finally be identified as the gas argon.

All of these discoveries are to be counted to the positive heuristic of the phlogiston theory. What weighed heavily on the negative side is the fact that as the accuracy of measurement increased in the eighteenth century it was discovered that the ashes, of mercury for example, left behind on burning were heavier than the original substance being burnt. This was troubling as combustion was supposed to be the release of phlogiston. Some supporters of the theory even suggested negative phlogiston to explain this anomaly. This suggestion, which never caught on, gets particularly mocked today, something I find somewhat strange in an age that has had to accept anti-matter and is now being asked to accept dark matter and dark energy to explain known anomalies in current theories.

Ironically it was the discoveries of oxygen and the composition of water that gave Lavoisier the necessary building blocks to dismantle the phlogiston theory and build his own competing theory, which would in the end prove successful and commit the phlogiston theory to the scrap heap of the history of chemistry. However one should never forget that it was exactly this theory that delivered him the tools he needed to do so. As I wrote in my sub-title even a theory that is wonderfully wrong can be fantastically fruitful and should be treated with respect when viewed with hindsight.

 

27 Comments

Filed under History of Chemistry, History of science, Myths of Science

A breath of fresh air

I’m supposed to be preparing a lecture on the eighteenth-century pneumatic chemists and I noticed this morning that today is the birthday of Stephen Hales who was responsible for a small invention that made pneumatic chemistry possible, so I decided to write a post about him.

Stephen Hales, aged 82, by J.McArdell after T. Hudson Source: Wikimedia Commons

Stephen Hales, aged 82, by J.McArdell after T. Hudson
Source: Wikimedia Commons

Hales, who is largely unknown today, except by experts, was regarded in the eighteenth century as one of the most important English natural historians with an international reputation amongst both natural historians and chemists. Born on the 17th September 1677 the tenth child and sixth son of Thomas Hales, heir to the Baronetcy of Beakesbourne and Brymore. As a younger son he was destined for the clergy and duly ordained in 1703 after graduating BA in 1700 at Corpus Christi College Cambridge. He obtained a fellowship in the same year and qualified MA in 1704. He remained in Cambridge until 1708 devoting his time to the study of the sciences mostly in tandem with William Stukeley, who would later become Newton’s physician. The two of them, being Cambridge men, studied Newton’s physics and astronomy as well as John Ray’s natural history.

Family connections found a curacy for Hales, which was the start of his long and successful church career, the high point of which was being appointed private chaplain to Princess Augusta, Dowager Princess of Wales and mother of George III in 1751. He was awarded a Doctor of Divinity by the University of Oxford in 1733 and is said to have turned down the offer of a canonry at Windsor from George II. Princess Augusta held him in such esteem that she had a monument erected to his memory in Westminster Abbey after his death in 1761, at the ripe old age of 83.

Stephen Hales monument Westminster Abbey Copyright: Westminster Abby

Stephen Hales monument Westminster Abbey
Copyright: Westminster Abby

However as stated above Hales was not only a successful pastor but also a very successful and important amateur natural historian making him an excellent example of the eighteenth- and nineteenth-century Anglican clergymen who devoted themselves to the study of the sciences making substantial advances to many fields. This historical phenomenon, of course, makes a mockery of the claims of the Gnu Atheists that religion and science are incompatible and that belief in God somehow hinders scientific thought.

Hales who became a member of the Royal Society in 1718 devoted his scientific studies to the circulatory systems of plants and animals. The results of his experimental studies on plants where published in his Vegetable Staticks. Hales determined the direction and force of sap flow in plants by inserting glass tubes into the stump of a vine with the branches cut off. He also inserted glass tubes containing water into the root systems of plants to determine the water absorption rate. Hales’ greatest achievement in his plant studies was to measure the transpiration rate. Through a series of complex and ingenious experiments he was able to determine how much water a plant perspired during its growing season and to demonstrate that this transpiration helped to draw water up through the roots.

Hales carries out similar experiments over many years on the circulatory systems of animals, which he published in his Haemastaticks in 1733. He later published both books together as his Statical Essays. Using the same method of inserting glass tubes into arteries and veins of various animals, Hales made the first ever blood pressure measurements. He then went on to measure cardiac output and compare pulse rates and blood pressure. These experiments were conducted on live animals without the benefits of sedation, which led his friend and neighbour, Alexander Pope, a dog lover, to condemn him for his cruelty to animals.

During his plant experiments Hales noted that air was expelled by his plants along with the water and he set out to devise methods to collect and measure the quantities of air thus produced. This is where Hales becomes interesting for the pneumatic chemists, who succeeded him in the eighteenth century and thus for my planned lecture. Hales devised a series of apparatuses to collect the air, which culminated in his invention of the pneumatic trough. A device that could be set to the general purpose of collecting gases separated from the generating apparatus.

Pneumatic Tr From Vegetable Staticks, opposite page 262 Source: Wikimedia Commons

Pneumatic Tr From Vegetable Staticks, opposite page 262
Source: Wikimedia Commons

The pneumatic trough would go on to be further developed by Henry Cavendish, William Brownrigg, Joseph Priestly and Antoine Lavoisier all of whom would use it in the discovery of various gasses, most notably hydrogen and oxygen; discoveries that would lead to the discovery of the composition of water and the beginnings of modern molecular chemistry. All of these researchers acknowledged their debt to Hales and his invention.

Throughout the late eighteenth century and the nineteenth century all of the great natural historians who laid the foundations of modern biology also acknowledge their debt to Hales for his pioneering work in both animal and plant physiology. It is only in the late nineteenth century that he began to be forgotten and to slide into obscurity; to become only the subject of study of specialist historians of science and no longer to be counted amongst the great natural historians.

As we have seen Hales was not just a brilliant theorist but also a very practical investigator designing and building complex experimental apparatus with which to conduct his researches. He applied this practical bent to the solution of an important social problem. His researches into air were a continuation of work begun in the seventeenth century by people such as Boyle and Hooke into air and its properties. One of the central concerns of these researches was the investigation of bad or foul airs, like those found in swamps, mines and enclosed spaces, such as prisons or ships. In fact Brownrigg’s development of Hales’ pneumatic trough was dedicated to this research. Hales was one of several researchers to invent a ventilator driven by bellows worked by hand and in larger versions by windmills to provide fresh air to enclosed spaces. Hales’ ventilators were a success and were widely employed in ships, prisons and mines.

Image of a Ventilation Bellows devised by Stephen Hales Source: Wellcome Library via Wikimedia Commons

Image of a Ventilation Bellows devised by Stephen Hales
Source: Wellcome Library via Wikimedia Commons

Hales is a classic example of those small scientific researchers, who upon investigation turn out not to be so small after all, who get lost and forgotten in our hagiographical presentation of the so-called giants of science. Next time you are at your doctors having your blood pressure checked spare a thought for the Reverend Stephen Hales the very first person to measure blood pressure.

3 Comments

Filed under History of Chemistry, History of medicine