Revealing the secrets of the fire-using arts

During the Middle Ages it was common practice for those working in the crafts to keep the knowledge of their trades secret, masters passing on those secrets orally to new apprentices. This protection of trade secrets, perhaps, reached a peak during the Renaissance in the glassmaking centre of Venice, where anybody found guilty of revealing the secrets of the glassmaking was sentenced to death. Although there were in some crafts manuscripts, which made it into print, describing the work processes involved in the craft these were of very limited distribution. All of this began to change with the invention of moving type book printing. Over the sixteenth and seventeenth centuries printed books began to appear describing in detail the work processes of various crafts. I have already written a post about one such book, De re metallica by Georgius Agricola (1494–1555). However, Agricola’s book was not the first printed book on metallurgy that honour goes to the Pirotechnia of Vannoccio Biringuccio published posthumously in Italian in 1540. Agricola was well aware of Biringuccio’s book and even plagiarised sections of it in his own work.

800px-De_la_pirotechnia_1540_Title_Page_AQ1_(1)

Title page, De la pirotechnia, 1540, Source: Science History Museum via Wikipedia Commons

Whereas Agricola was himself not a miner or metal worker but rather a humanist physician, whose knowledge of the medieval metallurgical industry was based on observation and questioning of those involved, Biringuccio, as we will see, spent his whole life engaged in one way or another in that industry and his book was based on his own extensive experiences.

Born in Siena 20 October 1480 the son of Lucrezia and Paolo Biringuccio, an architect.

16866

Siena 1568

As a young man Vannoccio travelled throughout Italy and Germany studying metallurgical operations. In Siena he was closely associated with the ruling Petrucci family and after having run an iron mine and forge for Pandolfo Petrucci, he was appointed to a public position at the arsenal and in 1513 director of the mint.

Petrucci_Coat_of_Arms

Petrucci coat of arms Source: Wikimedia Commons

He was exiled from Siena in 1516 after the Petruccis fell from power and undertook further travels throughout Italy and visited Sicily in 1517. In 1523 the Petruccis were reinstated and Vannoccio returned to Siena and to his position in the arsenal. In 1526 the Petruccis fell from power again and he was once again forced to leave his hometown. He worked in both the republics of Venice and Florence casting cannons and building fortifications. In 1531 in a period of political peace he returned once more to Sienna, where he was appointed a senator, and architect and director of building construction. Between 1531 and 1535 he cast cannons and constructed fortification in both Parma and Venice. In 1536 he was offered a job in Rome and after some hesitation accepted the post of head of the papal foundry and director of papal munitions. It is not known when or where he died but there is documentary evidence that he was already dead on 30 April 1539.

His Pirotechnia was first published posthumously in Venice in 1540, it was printed by Venturino Roffinello, published by Curtio Navo and dedicated to Bernardino di Moncelesi da Salo. Bernardino is mentioned both in the book’s preface as well as in the text. The Pirotechnia consists of ten books, each one dealing with a separate theme in the world of Renaissance metallurgy, transitioning from the wining of metal ores, over their smelting to the use of the thus produced materials in the manufacture of metal objects and dealing with a whole host of side topic on the way. Although by no means as lavishly illustrated as De re metallica, the book contains 84 line drawings** that are as important in imparting knowledge of the sixteenth century practices as the text.

Book I, is titled Every Kind of Mineral in General, after a general introduction on the location of ores it goes on the deal separately with the ores of gold, silver, copper, lead, tin and iron and closes with the practice of making steel and of making brass.

pirotechnia001

pirotechnia002

Book II continues the theme with what Biringuccio calls the semi-minerals an extensive conglomeration of all sorts of things that we wouldn’t necessarily call minerals. Starting with quicksilver he moves on to sulphur then antimony, marcasite (which includes all the sulphide minerals with a metallic luster), vitriol, rock alum, arsenic, orpiment and realgar.

pirotechnia003

pirotechnia004

This is followed by common salt obtained from mine or water and various other salts in general then calamine Zaffre and manganese. The book now takes a sharp turn as Biringuccio deals with the loadstone and its various effects and virtues. His knowledge in obviously not first hand as he repeats the standard myths about loadstones losing their power and virtue in the presence of diamonds, goat’s milk and garlic juice. He now move on to, ochre, bole, emery, borax, azure and green azure. Pointing out that many of the things he has dealt with are rocks rather than metals he now introduces rock crystal and all important gems in general before closing the book with glass.

pirotechnia005

Book III covers the assaying and smelting metal ores concentring on silver, gold and copper.

pirotechnia006

pirotechnia007

pirotechnia008

pirotechnia009

Book IV continues with a related theme, the various methods for separating gold from silver.

pirotechnia010

pirotechnia011

Having covered separation of gold and silver Book V covers the alloys of gold, silver, copper, lead and tin.

Following the extraction of metals, their assays, separation and alloys, Book VI turns to practical uses of metals: the art of casting in general and particular.

pirotechnia012

pirotechnia013.jpg

pirotechnia014

pirotechnia015

pirotechnia016

pirotechnia017

Book VII the various methods of melting metals.

pirotechnia018

pirotechnia019

pirotechnia020

pirotechnia021

pirotechnia022

pirotechnia023

Having dealt with the casting of bells and cannons in Book VII, Book VIII deals the small art of casting.

pirotechnia024

Book IX is a bit of a mixed bag titled, Concerning the Procedure of Various Operations of Fire. The book opens with a very short chapter on alchemy. Biringuccio has already dealt with alchemical transmutation fairy extensively in Book I when discussing the production of gold. He doesn’t believe in it: These men [alchemists] in order to arrive at such a port have equipped their vessels with sails and hard-working oarsmen and have sailed with guiding stars, trying every possible course, and, finally submerged in the impossible (according to my belief) not one of them to my knowledge has yet come to port. In Book XI he acknowledges that although transmutation doesn’t work, alchemists have developed many positive things: …it is surely a fine occupation, since in addition to being very useful to human need and convenience, it gives birth every day to new and splendid effects such as the extraction of medicinal substances, colours and perfumes, and an infinite number of compositions of things. It is known that many arts have issued solely from it; indeed, without it or its means it would have been impossible for them ever to have been discovered by man except through divine revelation.The next chapter deal briefly with sublimation and very extensively with distillation both of which he acknowledges are products of the alchemists.

pirotechnia025

pirotechnia026

pirotechnia027

He now takes a sharp turn left with a chapter on Discourse and Advice on How to Operate a Mint Honestly and with Profit. This is followed with chapters on goldsmith, coppersmith, ironsmith and pewterer work, leading on to chapters on wire drawing, preparing gold for spinning, removing gold from silver and other gilded objects, and the extraction of every particle of gold and silver from slags of ore.

pirotechnia028

pirotechnia029

The book closes with making mirrors from bell metal and three chapters on working with clay.

pirotechnia030.jpg

Book X closes out Biringuccio’s deliberations with essays on making saltpetre and gunpowder, then moving on to the uses of gunpowder in gunnery, military mining, and fireworks, the later in both military and civil circumstances.

pirotechnia031.jpg

pirotechnia032

Biringuccio’s efforts proved successful with Italian editions of the book appearing in 1540 (Sienna), 1550 (Venetia), 1558/9 (Venegia), 1559 (Venetia), 1678 (Bologna), and 1914 (Barese). French editions appeard in 1556 (Paris), 1572 (Paris), 1627 (Rouen), and 1856 (Paris). A German edition appeared in 1925 (Braunschweig). There were only partial translation into English in 1555 (London) and 1560 (London). The first full English translation was made by Martha Teach Gnudi & Cyril Stanley Smith with notes and an introduction in 1941 (New Haven), which was republished by Dover Books in New York in 1990. It is the Dover edition that forms the basis of this blog post.

Biringuccio’s Pirotechnia is an important publication in the histories of technology, metallurgy, inorganic chemistry and the crafts and trades in general and deserves to be much better known.

**I have only chosen a selection of the drawings. On some subjects such as the use of bellows Biringuccio brings wholes rows of illustrations to demonstrate the diverse methods used.

 

 

 

 

 

 

3 Comments

Filed under History of Chemistry, History of Technology, Renaissance Science

3 responses to “Revealing the secrets of the fire-using arts

  1. Todd Timberlake

    I have heard much about the secrecy of the alchemists, but this post may be the first time I’ve really heard about the secrecy of craftsmen/tradesmen such as metallurgists. That seems like an extremely important point, because much of modern science since Galileo has derived from a union between natural philosophy and the hands-on knowledge of craftsmen (as well as mathematics). In reading about Galileo I always got the sense that he took the time to talk with craftsmen in a way that his Peripatetic academic rivals did not, but this post highlights for me the idea that it may have been impossible (or at least difficult) for earlier natural philosophers or mathematicians to learn much from craftsmen because their secrets were carefully guarded. I guess by Galileo’s time enough of that knowledge had found its way into print through authors like Biringuccio and Agricola that there wasn’t much point in the craftsmen being secretive any more, so they were more willing to talk to someone like Galileo in the late 16th century.

    • There is quite a lot of literature on the role that the meeting between artisanal knowledge and scientific thought played in the emergence of modern science, which began well before Galileo. Spontaneously the first books that occur to me on the subject are Pamela H Smith’s The Body of the Artisan: Art and Experience in the Scientific Revolution, Deborah E Harkness’ The Jewel House: Elizabethan London and the Scientific Revolution, Pamela O Long’s Artisan/Pactitioners and the Rise of the New Sciences 1400–1600 and her Openness, Secrecy, Authorship: Technical Arts and the Culture ofKnowledge from Antiquity to the Renaissance.

    • Do you know, have you read Matteo Valleriani’s Galileo Engineer? He sees Galileo, I think correctly, in the tradition of the 15th & 16th century Renaissance artist-engineers such as Brunellischi, Taccola, Francesco di Giorgio Martini and of course Leonardo. These men are of course artisans but ones, who apply a lot of scientific method in their work

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s