Category Archives: History of medicine

The problem with Jonathan Jones and #histSTM

It cannot be said that I am a fan of Jonathan Jones The Guardian’s wanna be art critic but although I find most of his attempts at art criticism questionable at best, as a historian of science I am normal content to simply ignore him. However when he strays into the area of #histSTM I occasionally feel the desire to give him a good kicking if only a metaphorical one. In recent times he has twice committed the sin of publicly displaying his ignorance of #histSTM thereby provoking this post. In both cases Leonard da Vinci plays a central role in his transgressions, so I feel the need to make a general comment first. Many people are fascinated by Leonardo and some of them feel the need to express that fascination in public. These can be roughly divided into two categories, the first are experts who have seriously studied Leonardo and whose utterances are based on knowledge and informed analysis, examples of this first group are Matin Kemp the art historian and Monica Azzolini the Renaissance historian. The second category could be grouped together under the title Leonardo groupies and their utterances are mostly distinguished by lack of knowledge and often mind boggling stupidity. Jonathan Jones is definitely a Leonardo groupie.

Jones’ first foray into the world of #histSTM on 28 January with a piece entitled, The charisma droids: today’s robots and the artists who foresaw them, which is a review of the new major robot exhibition at the Science Museum. What he has to say about the exhibition doesn’t really interest me here but in the middle of his article we stumble across the following paragraph:

So it is oddly inevitable that one of the first recorded inventors of robots was Leonardo da Vinci, consummate artist and pioneering engineer [my emphasis]. Leonardo apparently made, or at least designed, a robot knight to amuse the court of Milan. It worked with pulleys and was capable of simple movements. Documents of this invention are frustratingly sparse, but there is a reliable eyewitness account of another of Leonardo’s automata. In 1515 he delighted Francois I, king of France, with a robot lion that walked forward towards the monarch, then released a bunch of lilies, the royal flower, from a panel that opened in its back.

Now I have no doubts that amongst his many other accomplishments Leonardo turned his amazingly fertile thoughts to the subject of automata, after all he, like his fellow Renaissance engineers, was a fan of Hero of Alexandria who wrote extensively about automata and also constructed them. Here we have the crux of the problem. Leonardo was not “one of the first recorded inventors of robots”. In fact by the time Leonardo came on the scene automata as a topic of discussion, speculation, legend and myth had already enjoyed a couple of thousand years of history. If Jones had taken the trouble to read Ellie Truitt’s (@MedievalRobots) excellent Medieval Robots: Mechanism, Magic, Nature and Art (University of Pennsylvania Press, 2015) he would have known just how wrong his claim was. However Jones is one of those who wish to perpetuate the myth that Leonardo is the source of everything. Actually one doesn’t even need to read Ms. Truitt’s wonderful tome, you can listen to her sketching the early history of automata on the first episode of Adam Rutherford’s documentary The Rise of the Robots on BBC Radio 4, also inspired by the Science Museums exhibition. The whole series is well worth a listen.

On 6 February Jones took his Leonardo fantasies to new heights in a piece, entitled Did the Mona Lisa have syphilis? Yes, seriously that is the title of his article. Retro-diagnosis in historical studies is a best a dodgy business and should, I think, be avoided. We have whole libraries of literature diagnosing Joan of Arc’s voices, Van Gough’s mental disorders and the causes of death of numerous historical figures. There are whole lists of figures from the history of science, including such notables as Newton and Einstein, who are considered by some, usually self declared, experts to have suffered from Asperger’s syndrome. All of these theories are at best half way founded speculations and all too oft wild ones. So why does Jonathan Jones think that the Mona Lisa had syphilis? He reveals his evidence already in the sub-title to his piece:

Lisa del Giocondo, the model for Leonardo’s painting, was recorded buying snail water – then considered a cur for the STD: It could be the secret to a painting haunted by the spectre of death.

That’s it folks don’t buy any snail water or Jonathan Jones will think that you have syphilis.

Let’s look at the detail of Jones’ amazingly revelatory discovery:

Yet, as it happens, a handful of documents have survived that give glimpses of Del Giocondo’s life. For instance, she is recorded in the ledger of a Florentine convent as buying snail water (acqua di chiocciole) from its apothecary.

Snail water? I remember finding it comical when I first read this. Beyond that, I accepted a bland suggestion that it was used as a cosmetic or for indigestion. In fact, this is nonsense. The main use of snail water in pre-modern medicine was, I have recently discovered, to combat sexually transmitted diseases, including syphilis.

So she bought some snail water from an apothecary, she was the female head of the household and there is absolutely no evidence that she acquired the snail water for herself. This is something that Jones admits but then casually brushes aside. Can’t let ugly doubts get in the way of such a wonderful theory. More importantly is the claim that “the main use of snail water snail water in pre-modern medicine was […] to combat sexually transmitted diseases, including syphilis” actually correct? Those in the know disagree. I reproduce for your entertainment the following exchange concerning the subject from Twitter.

Greg Jenner (@greg_jenner)

Hello, you may have read that the Mona Lisa had syphilis. This thread points out that is probably bollocks

 Dubious theory – the key evidence is her buying “snail water”, but this was used as a remedy for rashes, earaches, wounds, bad eyes, etc…

Greg Jenner added,

Seen this ‪@DrAlun ‪@DrJaninaRamirez ? What say you? I’ve seen snail water used in so many different Early Modern remedies

Alun Withey (@DrAlun)

I think it’s an ENORMOUS leap to that conclusion. Most commonly I’ve seen it for eye complaints.

Greg Jenner

‪@DrAlun @DrJaninaRamirez yeah, as I thought – and syphilis expert @monaob1 agrees

 Alun Withey

‪@greg_jenner @DrJaninaRamirez @monaob1 So, the burning question then, did the real Mona Lisa have sore eyes? It’s a game-changer!

Mona O’Brian (@monaob1)

‪@DrAlun @greg_jenner @DrJaninaRamirez interested to hear the art historical interpretation on the ‘unhealthy’ eyes comment!

Alun Withey

‪@monaob1 @greg_jenner @DrJaninaRamirez doesn’t JJ say in the article there’s a shadow around her eyes? Mystery solved. *mic drop*

Greg Jenner

‪@DrAlun @monaob1 @DrJaninaRamirez speaking as a man who recently had to buy eye moisturiser, eyes get tired with age? No disease needed

 Mona O’Brian

@greg_jenner Agreed! Also against the pinning of the disease on the New World, considering debates about the disease’s origin are ongoing

Jen Roberts (@jshermanroberts)

‪@greg_jenner I just wrote a blog post about snail water for @historecipes –common household cure for phlegmy complaints like consumption.

Tim Kimber (@Tim_Kimber)

‪@greg_jenner Doesn’t the definite article imply the painting, rather than the person? So they’re saying the painting had syphilis… right?

Minister for Moths (@GrahamMoonieD)

‪@greg_jenner but useless against enigmatic smiles

Interestingly around the same time an advert was doing the rounds on the Internet concerning the use of snail slime as a skin beauty treatment. You can read Jen Roberts highly informative blog post on the history of snail water on The Recipes Project, which includes a closing paragraph on modern snail facials!




Filed under History of medicine, History of Technology, Renaissance Science, Uncategorized

A breath of fresh air

I’m supposed to be preparing a lecture on the eighteenth-century pneumatic chemists and I noticed this morning that today is the birthday of Stephen Hales who was responsible for a small invention that made pneumatic chemistry possible, so I decided to write a post about him.

Stephen Hales, aged 82, by J.McArdell after T. Hudson Source: Wikimedia Commons

Stephen Hales, aged 82, by J.McArdell after T. Hudson
Source: Wikimedia Commons

Hales, who is largely unknown today, except by experts, was regarded in the eighteenth century as one of the most important English natural historians with an international reputation amongst both natural historians and chemists. Born on the 17th September 1677 the tenth child and sixth son of Thomas Hales, heir to the Baronetcy of Beakesbourne and Brymore. As a younger son he was destined for the clergy and duly ordained in 1703 after graduating BA in 1700 at Corpus Christi College Cambridge. He obtained a fellowship in the same year and qualified MA in 1704. He remained in Cambridge until 1708 devoting his time to the study of the sciences mostly in tandem with William Stukeley, who would later become Newton’s physician. The two of them, being Cambridge men, studied Newton’s physics and astronomy as well as John Ray’s natural history.

Family connections found a curacy for Hales, which was the start of his long and successful church career, the high point of which was being appointed private chaplain to Princess Augusta, Dowager Princess of Wales and mother of George III in 1751. He was awarded a Doctor of Divinity by the University of Oxford in 1733 and is said to have turned down the offer of a canonry at Windsor from George II. Princess Augusta held him in such esteem that she had a monument erected to his memory in Westminster Abbey after his death in 1761, at the ripe old age of 83.

Stephen Hales monument Westminster Abbey Copyright: Westminster Abby

Stephen Hales monument Westminster Abbey
Copyright: Westminster Abby

However as stated above Hales was not only a successful pastor but also a very successful and important amateur natural historian making him an excellent example of the eighteenth- and nineteenth-century Anglican clergymen who devoted themselves to the study of the sciences making substantial advances to many fields. This historical phenomenon, of course, makes a mockery of the claims of the Gnu Atheists that religion and science are incompatible and that belief in God somehow hinders scientific thought.

Hales who became a member of the Royal Society in 1718 devoted his scientific studies to the circulatory systems of plants and animals. The results of his experimental studies on plants where published in his Vegetable Staticks. Hales determined the direction and force of sap flow in plants by inserting glass tubes into the stump of a vine with the branches cut off. He also inserted glass tubes containing water into the root systems of plants to determine the water absorption rate. Hales’ greatest achievement in his plant studies was to measure the transpiration rate. Through a series of complex and ingenious experiments he was able to determine how much water a plant perspired during its growing season and to demonstrate that this transpiration helped to draw water up through the roots.

Hales carries out similar experiments over many years on the circulatory systems of animals, which he published in his Haemastaticks in 1733. He later published both books together as his Statical Essays. Using the same method of inserting glass tubes into arteries and veins of various animals, Hales made the first ever blood pressure measurements. He then went on to measure cardiac output and compare pulse rates and blood pressure. These experiments were conducted on live animals without the benefits of sedation, which led his friend and neighbour, Alexander Pope, a dog lover, to condemn him for his cruelty to animals.

During his plant experiments Hales noted that air was expelled by his plants along with the water and he set out to devise methods to collect and measure the quantities of air thus produced. This is where Hales becomes interesting for the pneumatic chemists, who succeeded him in the eighteenth century and thus for my planned lecture. Hales devised a series of apparatuses to collect the air, which culminated in his invention of the pneumatic trough. A device that could be set to the general purpose of collecting gases separated from the generating apparatus.

Pneumatic Tr From Vegetable Staticks, opposite page 262 Source: Wikimedia Commons

Pneumatic Tr From Vegetable Staticks, opposite page 262
Source: Wikimedia Commons

The pneumatic trough would go on to be further developed by Henry Cavendish, William Brownrigg, Joseph Priestly and Antoine Lavoisier all of whom would use it in the discovery of various gasses, most notably hydrogen and oxygen; discoveries that would lead to the discovery of the composition of water and the beginnings of modern molecular chemistry. All of these researchers acknowledged their debt to Hales and his invention.

Throughout the late eighteenth century and the nineteenth century all of the great natural historians who laid the foundations of modern biology also acknowledge their debt to Hales for his pioneering work in both animal and plant physiology. It is only in the late nineteenth century that he began to be forgotten and to slide into obscurity; to become only the subject of study of specialist historians of science and no longer to be counted amongst the great natural historians.

As we have seen Hales was not just a brilliant theorist but also a very practical investigator designing and building complex experimental apparatus with which to conduct his researches. He applied this practical bent to the solution of an important social problem. His researches into air were a continuation of work begun in the seventeenth century by people such as Boyle and Hooke into air and its properties. One of the central concerns of these researches was the investigation of bad or foul airs, like those found in swamps, mines and enclosed spaces, such as prisons or ships. In fact Brownrigg’s development of Hales’ pneumatic trough was dedicated to this research. Hales was one of several researchers to invent a ventilator driven by bellows worked by hand and in larger versions by windmills to provide fresh air to enclosed spaces. Hales’ ventilators were a success and were widely employed in ships, prisons and mines.

Image of a Ventilation Bellows devised by Stephen Hales Source: Wellcome Library via Wikimedia Commons

Image of a Ventilation Bellows devised by Stephen Hales
Source: Wellcome Library via Wikimedia Commons

Hales is a classic example of those small scientific researchers, who upon investigation turn out not to be so small after all, who get lost and forgotten in our hagiographical presentation of the so-called giants of science. Next time you are at your doctors having your blood pressure checked spare a thought for the Reverend Stephen Hales the very first person to measure blood pressure.


Filed under History of Chemistry, History of medicine

Having lots of letters after your name doesn’t protect you from spouting rubbish

The eloquently excellent Elegant Fowl (aka Pete Langman @elegantfowl) just drew my attention to a piece of high-grade seventeenth-century history of science rubbish on the website of my favourite newspaper The Guardian. In the books section a certain Ian Mortimer has an article entitled The 10 greatest changes of the past 1,000 years. I must to my shame admit that I’d never heard of Ian Mortimer and had no idea who he is. However I quick trip to Wikipedia informed that I have to do with Dr Ian James Forrester Mortimer (BA, PhD, DLitt, Exeter MA, UCL) and author of an impressive list of books and that the article on the Guardian website is a promotion exercise for his latest tome Centuries of Change. Apparent collecting lots of letter after your name and being a hyper prolific scribbler doesn’t prevent you from spouting rubbish when it comes writing about the history of science. Shall we take a peek at what the highly eminent Mr Mortimer has to say about the seventeenth-century that attracted the attention of the Elegant Fowl and have now provoked the ire of the Renaissance Mathematicus.

17th century: The scientific revolution

One thing that few people fully appreciate about the witchcraft craze that swept Europe in the late 16th and early 17th centuries is that it was not just a superstition. If someone you did not like died, and you were accused of their murder by witchcraft, it would have been of no use claiming that witchcraft does not exist, or that you did not believe in it. Witchcraft was recognised as existing in law – and to a greater or lesser extent, so were many superstitions. The 17th century saw many of these replaced by scientific theories. The old idea that the sun revolved around the Earth was finally disproved by Galileo. People facing life-threatening illnesses, who in 1600 had simply prayed to God for health, now chose to see a doctor. But the most important thing is that there was a widespread confidence in science. Only a handful of people could possibly have understood books such as Isaac Newton’s Philosophiae Naturalis Principia Mathematica, when it was published in 1687. But by 1700 people had a confidence that the foremost scientists did understand the world, even if they themselves did not, and that it was unnecessary to resort to superstitions to explain seemingly mysterious things.

Regular readers of this blog will be aware that I’m a gradualist and don’t actually believe in the scientific revolution but for the purposes of this post we will just assume that there was a scientific revolution and that it did take place in the seventeenth century, although most of those who do believe in it think it started in the middle of the sixteenth-century.

I find it mildly bizarre to devote nearly half of this paragraph to a rather primitive description of the witchcraft craze and to suggest that the scientific revolution did away with belief in witchcraft, given that several prominent propagators of the new science wrote extensively defending the existence of witches. I recommend Joseph Glanvill’s Saducismus triumphatus (1681) and Philosophical Considerations Touching the Being of Witches and Witchcraft (1666). Apart from witchcraft I can’t think of any superstition that was replaced by a scientific theory in the seventeenth-century. However it is the next brief sentence that cries out for my attention.

The old idea that the sun revolved around the Earth was finally disproved by Galileo.

By a strange coincidence I spent yesterday evening listening to a lecture by one of Germany’s leading historians of astronomy, Dr Jürgen Hamel (who has written almost as many books as Ian Mortimer) on why it was perfectly reasonable to reject the heliocentric theory of Copernicus in the first hundred years or more after it was published. He of course also explained that Galileo did not succeed in either disproving geocentricity or proving heliocentricity. Now anybody who has regularly visited this blog will know that I have already written quite a lot on this topic and I don’t intend to repeat myself here but I recommend my on going series on the transition to heliocentricity (the next instalment is in the pipeline) in particular the post on the Sidereus Nuncius and the one on the Phases of Venus. Put very, very simply for those who have not been listening: GALILEO DID NOT DISPROVE THE OLD IDEA THAT THE SUN REVOLVED AROUND THE EARTH. I apologise for shouting but sometimes I just can’t help myself.

Quite frankly I find the next sentence totally mindboggling:

People facing life-threatening illnesses, who in 1600 had simply prayed to God for health, now chose to see a doctor.

Even more baffling, it appears that Ian Mortimer has written prize-winning essay defending this thesis, “The Triumph of the Doctors” was awarded the 2004 Alexander Prize by the Royal Historical Society. In this essay he demonstrated that ill and injured people close to death shifted their hopes of physical salvation from an exclusively religious source of healing power (God, or Christ) to a predominantly human one (physicians and surgeons) over the period 1615–70, and argued that this shift of outlook was among the most profound changes western society has ever experienced. (Wikipedia) I haven’t read this masterpiece but colour me extremely sceptical.

We close out with a generalisation that simply doesn’t hold water:

[…] by 1700 people had a confidence that the foremost scientists did understand the world, even if they themselves did not, and that it was unnecessary to resort to superstitions to explain seemingly mysterious things.

They did? I really don’t think so. By 1700 hundred the number of people who had “confidence that the foremost scientists did understand the world” was with certainty so minimal that one would have a great deal of difficulty expressing it as a percentage.

Mortimer’s handful of sentences on the 17th century and the scientific revolution has to be amongst the worst paragraphs on the evolution of science in this period that I have ever read.


Filed under History of Astronomy, History of medicine, History of science, Myths of Science

The horror, the horror!

For those readers who might have wondered what The Renaissance Mathematicus looks and sounds like, you need wonder no more. There is now a video on Youtube in which I stumble and stutter my way through a very impromptu, not quite fifteen minute, lecture on the relationship between astronomy, astrology and medicine in the Early Modern Period. During which I indulge in a lot of arm waving and from time to time scratch my fleas. This video was filmed in the kitchen of the Remeis Observatory in Bamberg during a coffee break at the Astronomy in Franconia Conference last Monday, complete with the sounds of somebody loading the dishwasher.

The cameraman, who also puts some questions during this solo performance, was Chris Graney who requested my golden words for his students back in Louisville, the poor sods.

1 Comment

Filed under Autobiographical, History of Astrology, History of Astronomy, History of medicine

Giants’ Shoulders #70 celebrates a birthday.

Hans Sloane is one of those figures in the history of science, who deserves to be much better known than he is. Although Sloane Square in London is named after him, giving name to one of the horrors of modern English culture, the Sloane Ranger, most people would be hard put to it to say who he was.

Sir Hans Sloane Gottfried Kneller

Sir Hans Sloane
Gottfried Kneller

An Irish physician who lived through the second half of the seventeenth century and the first half of the eighteenth, he was a central figure in the English scientific community that included Hooke, Wren, Halley, Flamsteed and Newton as well as many other less well known personages. He was secretary of the Royal Society when Newton became its president in 1704 and very much shared the power with the great Sir Isaac in that august body until he resigned in 1713, after a series of power struggles with other council members over the preceding years. He got his revenge however when he was elected president following Newton’s death in 1727, a post he retained until 1741.

He served three English monarchs, Anne, George I and George II, as royal physician and was appointed baronet for his services in 1716. He was also elected president of the Royal College of Physicians in 1719 a post he would hold for sixteen years. In 1722 he also became physician-general to the army.

From the modern point of view Sloan’s most important activity was that of collector. Scientific curiosity cabinets were very much en vogue in the Early Modern Period and Sloane collected scientific curiosities on an almost unbelievable scale. When he died, in 1753, he donated his monster collection to the nation on the condition that the government build a museum to house it. The government agreed and so the venerable British Museum was born. Later Sloane’s natural history collection was given a home of its own leading to the establishment of the Natural History Museum.

Like many of his contemporaries, and in particular the collectors, Sloane was a prolific letter writer and, as is befitting in this digital age, his correspondence has its own blog. To celebrate Sir Hans’ 354th birthday, on 16 April, Giants’ Shoulders #70, the history of science, medicine and technology blog carnival  will take place at The Sloane Letters Blog hosted by our favourite blogging beagle, Lisa Smith (@historybeagle). Submission for this special birthday edition of Giants’ Shoulders should be made either direct to the host or to me here at RM or to either of us on Twitter at the latest by 15 April.


Filed under Giants' Shoulders, History of medicine, History of science