Category Archives: Renaissance Science

Not an expert

BBC Radio 4 has a series called Great Lives, which is presented by former Conservative MP and now journalist, writer and broadcaster Matthew Parris. On the programme a ‘lay person’ talks about a figure, usually from history, who is their hero or role model, their comments being filled out by an ‘expert’ on the life of the figure in question. The format is in the form of a light-hearted three-way chat. Three years ago the BBC DJ Bobby Friction chose Galileo Galilei as his Great Life. At the time I listened and not surprisingly found the programme cringe worthy, dismissed it and forgot about it. However over the weekend people, who should know better, were promoting the programme on social media. Against my better judgement I listened to the whole thing again and decided to write this brief post on just one aspect, the greatest historical blunder, of the programme.

Before turning to the main topic of this post there is an aspect of the programme that needs to be addressed first. As explained above the discussion always includes an ‘expert’ to fill out with facts the account given of the subject of the programme. A programme about Galileo, so we can expect a historian of science as expert, yes? No! Instead of a historian of science what we get is Dr David Berman a reader in theoretical physic from Queen Mary College London. This is unfortunately a very common habit amongst journalists and broadcasters. They want someone to comment on, or explicate some aspect of, or episode out of the history of science, they ask a scientist and not a historian of science. Whilst I’m quite happy to acknowledge that there are some scientists who are also competent historians of science, they are unfortunately a small minority. The majority of scientists when asked to talk about the history of their subject usually deliver something highly inaccurate, factually false and toe curlingly cringe worthy. David Berman is no exception. As I wrote above, I’m not going to waste my time, and yours, doing a blow by blow analysis of this sorry mess but just address the one truly glaring clangour that our so-called expert drops towards the end of the discussion.

In an exchange beginning at about 22.20mins we hear the following:

MP: But he was friends with the Pope, why didn’t the Pope stick up for him?

DB: Oh, so he was friends with Urban VII who was the Pope, who was around the time when he started the book and the original censor but by then he died and we had Urban VIII…

He we have the classic example of a so-called expert who has literally no idea what he’s talking about and just makes something up that he thinks sounds plausible. For those that don’t know their papal history and/or the story of Galileo’s interaction with the papacy I will explain.

Paul V (1552–1621) was the Pope (1605–1621) who set up the commission of theologians in 1616 to consider the status of heliocentricity, which ruled it “foolish and absurd in philosophy, and formally heretical since it explicitly contradicts in many places the sense of Holy Scripture”. He then instructed Cardinal Bellarmine to meet with Galileo and to inform him that he was no longer allowed to teach the truth of heliocentricity.

Pope Paul V by Caravaggio. Source: Wikimedia Commons

Pope Paul V by Caravaggio.
Source: Wikimedia Commons

Both Bellarmine and Paul, however, assured Galileo that he was, at this time, in no personal danger. Paul died in 1621 and was succeeded by Gregory XV (1554–1623) who as Pope (1621–1623) played no significant role in the life of Galileo.

Pope Gregory XV Source: Wikimedia Commons

Pope Gregory XV
Source: Wikimedia Commons

Gregory was succeeded in 1623 by Cardinal Maffeo Barberini (1568–1644) who became Urban VIII.

Circa 1598 painting of Maffeo Barberini at age 30 by Caravaggio. Source: Wikimedia Commons

Circa 1598 painting of Maffeo Barberini at age 30 by Caravaggio.
Source: Wikimedia Commons

Those of you wondering where Urban VII fits into this, he doesn’t. Giovanni Battista Castagna (1521–1590) ruled as Pope Urban VII for just twelve days between 15 and 27 September 1590, when Galileo was just beginning his career as professor for mathematics in Pisa. Urban VII’s twelve-day papacy was the shortest in history.

Pope Urban VII – Pope for Twelve Days Source: Wikimedia Commons

Pope Urban VII – Pope for Twelve Days
Source: Wikimedia Commons

As an additional comment no Pope was ever the censor, as claimed by Berman, but naturally employed others to do this work for the Church.

As Matthew Parris rightly claims Cardinal Maffeo Barberini had been a friend and supporter of Galileo’s since the publication of the Sidereus nuncius in 1610 as well as being a patron of the Accademia dei Lincei, the small elite scientific society that had elected Galileo a member in 1611 on the strength of his telescopic discoveries. It was also the Lincei who gave the telescope its name. When Barberini was elected Pope in 1623 the Lincei published a broadsheet celebrating his election, which contained the first every illustrations made with a microscope.

Accademia dei Lincei Flyer celebrating the elevation of Maffeo Barberini to Pope 1623 Stelutii Melissographia

Accademia dei Lincei Flyer celebrating the elevation of Maffeo Barberini to Pope 1623
Stelutii Melissographia

The Lincei also published Galileo’s Il Saggiatore (The Assayer), which was dedicated to the new Pope in 1623.

Title page Il Saggiatore !623 Source: Wikimedia Commons

Title page Il Saggiatore !623
Source: Wikimedia Commons

Barberini much enjoyed Il Saggiatore and showed Galileo much favour. Galileo grasped the opportunity and persuaded the Pope to let him write a book describing the geocentric and heliocentric systems to prove that the Catholics did not favour the former out of ignorance of the latter, as he claimed the Protestants were alleging. Urban agreed to his request but under the condition that the two systems were presented equally without bias and without favouring either.

A portrait of Pope Urban VIII by Pietro da Cortona (1627) Source: Wikimedia Commons

A portrait of Pope Urban VIII
by Pietro da Cortona (1627)
Source: Wikimedia Commons

The book that Galileo wrote, his Dialogo, a polemic masterpiece, was of course anything but unbiased, tilting the arguments so far that any reader would be led to the conclusion that the heliocentric system was vastly superior to the geocentric one; a claim for which he had no empirical proof. He topped the whole thing off by putting the Pope’s own thoughts on the subject, a direct quote, into the mouth of a figure who was close to being a simpleton at the climax of the book.

Frontispiece and title page of the Dialogo, 1632 Source: Wikimedia Commons

Frontispiece and title page of the Dialogo, 1632
Source: Wikimedia Commons

That Urban was pissed off by the results should not have come as a surprise to Galileo and things took their inevitable course. The motto of the story is don’t play your friend for a fool when he happens to be an all powerful absolutist ruler.


Filed under History of Astronomy, Renaissance Science

Galileo Super Star – Galileo Galilei to get Hollywood biopic

My attention was drawn recently to a Hollywood gossip website that announced that a movie is to be made of a play by Richard Goodwin about Galileo, The Hinge of the World. I must admit that my curiosity was piqued, not least because I had never heard of either Mr Goodwin or his play and I naturally wondered what his line on the Tuscan mathematicus would be. It turns out that Richard Goodwin is a former high power Washington political advisor and speechwriter who served Presidents Kennedy and Johnson as well as JFK’s brother Robert, not exactly the best qualifications for the author of a play about the history of science. My doubts about this particular production were only heightened upon reading the full original title of the play, The Hinge of the World: In Which Professor Galileo Galilei, Chief Mathematician and Philosopher to His Serene Highness the Grand Duke of Tuscany, and His Holiness Urban VIII, Bishop of Rome, Battle for the Soul of the World. This title does not bode well for a historically accurate account of Galileo’s clash with the Catholic Church. However I will reserve judgement, because as I say, I do not know the play. I have however ordered a second hand copy that is at this very moment wending its way from some distant land to my humble abode and when it arrives and I have perused it with due diligence, I will report back with a critical assessment.

A scene from the stage production of The Hinge of the World

A scene from the stage production of The Hinge of the World

The website report does however offer a précis of the contents of the soon to be film and this is possibly the most confused and inaccurate presentation of the affair and the events leading up to it that I have read in a very long time:

The film will stay true to the spirit of the play in that it will revolve around the one-time friends whose vehement disagreements led to the Church calling Galileo out for heresy when science started to challenge long-held beliefs.

Science had been challenging long held beliefs long before Galileo came along. Apart from anything else Galileo was tried for defending the truth of Copernicus’ heliocentric hypothesis and Copernicus had died twenty-one years before Galileo was born. Just for the record Copernicus was also by no means the first person to present science that challenged the Church’s long-held beliefs.

Just to be a little bit pedantic, the one-time friends, Galileo and Maffeo Barberini (Pope Urban VIII) only had one vehement disagreement.

During that time, around 1610, the Church was never questioned,…

Somebody really ought to have consulted a historian of the Catholic Church. People both inside and outside of the Church questioned it continuous, some with impunity, for example Galileo’s friend Paolo Sarpi, and some with dire consequences, such as Giordano Bruno.

…yet Galileo who had a passion, curiosity and a telescope started to question everything after logging what he was learning through his scientific research. He published much of his findings in a book that were disavowed by Pope Urban VIII and the Catholic Church. Despite delving into dangerous territory, Galileo continued his research into comets, tide movements until he was ultimately ordered by the Church to stop teaching his ideas.

 The above is just a historical train wreck. The book of Galileo’s disavowed by Urban VII and the Church was the Dialogue Concerning the Two Chief World Systems, published in 1632, which led directly to his trail and imprisonment in 1633. However, he was told to stop teaching the truth of the heliocentric hypothesis and only that, the rest of his ideas were not the subject of Church condemnation, in 1616 following the semi-public distribution of the so-called Letter to Castelli, much later published in expanded form, as the Letter to the Grand Duchess Christina. Also in 1616 Paul V was Pope and Maffeo Barberini was a mere Cardinal and still a good friend of Galileo’s.

 The brilliant scientist, engineer, physicist and mathematician who helped discover the law of the pendulum (which became the basis for modern-day clocks), who pushed scientists to conduct experiments to prove theorems, who continued the work of Nicolaus Copernicus to help understand our own universe and laid the groundwork for modern astronomy eventually lost his battle with the powerful Roman Catholic Church.

Again being somewhat pedantic, Galileo got the law of the pendulum wrong and modern day clocks stopped being pendulum driven some time ago. Also, and this is not so pedantic, it was Kepler, and not Galileo, who laid the groundwork for modern astronomy.

 He was tried for heresy and sentenced to imprisonment at the age of 68 where he would remain until his death nine years later at age 77.

A final point, that people love to forget because it rather spoils the image of Galileo the martyr, his sentence of imprisonment imposed for vehement suspicion of heresy, not heresy, was instantly commuted to house arrest, which whilst somewhat restrictive was by no means harsh.


All of this ties in rather nicely with an exchange that I took part in yesterday evening on twitter. Tim Skellet (@Gurdur) asked me and others, “what’s the very best, most comprehensive bio of Galileo, please?” My answer was, “I don’t think it exists. Read several: Wootton, Heilbron, Biagioli, Shea/Artigas.” I was not trying to be clever or awkward. I genuinely believe that if you wish to study any major figure out of the history of science then you should consult multiple sources, as all sources have their advantages and disadvantages. History is, to a large extent, a game of interpretation. There are facts but they only give a partial picture and it is the role or responsibility of the historian to complete that picture to the best of their ability. All historians have agendas and biases and to obtain a rounded picture it is always advisable to view the facts through the eyes of more than one historian.

Turning to the special case of Galileo, the two most recent complete biographies are J. L. Heilbron’s Galileo (OUP, 2010) and David Wootton’s Galileo: Watcher of the Skies (Yale University Press, 2010). Both are very good but differ in their interpretations and emphases. I wouldn’t recommend one over the other, so if you only want to read one then toss a coin or something. If you really want to get to grips with Galileo then read both. One important aspect of Wootton’s book is that he systematically dismantles the myth that Galileo was a good devout Catholic. This myth is trotted out regularly to make the Church look even worse for having persecuted him. Wootton demonstrates, I think convincingly, that Galileo was at best an indifferent Catholic and in no way the devout son of the Church that historical myth has made him out to be.

Although not a complete biography in the traditional sense I would also strongly recommend Mario Biagioli’s Galileo Courtier: The Practice of Science in the Culture of Absolutism (University of Chicago Press, 1993) Biagioli examines Galileo the social climber who uses his scientific discoveries to further his social status rather than for any idealistic belief in truth. Biagioli’s work is a useful complement to the more conventional scientific style of biography; what did Galileo discover and when. In what is effectively a second volume to his first book, Galileo’s Instruments of Credit: Telescopes, Images, Secrecy (University of Chicago Press, 2006), Biagioli explains how Galileo used the telescopes that he manufactured and the images that he produced to broker social advantages.

William R. Shea’s and Mariano Artigas’ Galileo in Rome: The Rise and Fall of a Troublesome Genius (OUP; 2003) just deals with the six extended visits that Galileo made to Rome, the home-base of the Church and the centre of political and social power in the period, during his lifetime. These include, his triumphal visit in 1611, as the author of his sensational Sidereus Nuncius, his visit in 1615-1616 and his failed attempt to prevent the Church condemning heliocentricity and finally his summons to his trial in 1633. By concentrating only on Galileo’s interactions with the Roman culture of the period the authors succeed in shedding light from a different angle on Galileo’s fateful path to his condemnation and fall.

At some point David Wootton joined the Twitter discussion and he recommended Pietro Redondi’s Galileo Heretic (Princeton University Press, 1992), a recommendation that I would one hundred pro cent endorse. Although Redondi’s central thesis, that Galileo was actually attacked by the Church for his atomism has, in the meantime, been largely refuted this is a superb book and still very much worth reading by anyone who wishes to learn about Galileo and the culture in which he lived and worked.

If you read all of the books that I have recommended above you should, by the time you have finished, have a fairly good all round picture of the life and work of Galileo Galilei and the footnotes and bibliographies will have given you lots of information for further reading. I will however close with a warning, do not read Michael White’s Galileo Antichrist: a Biography (Weidenfeld & Nicolson, 2007). I can deliver a comprehensive and profound review of White’s book in three words, “It is crap!”



Filed under History of Astronomy, History of science, Myths of Science, Renaissance Science

Tracking the Messenger of the Gods

On 9 May the astronomers of Europe, and other regions, having screwed their sun filters onto their telescopes, will settle down to observe a transit of Mercury. For any not familiar with astronomical jargon that is when the planet Mercury crosses the face of the sun.

Astronomy Picture of the Day: A Mercury Transit Sequence: Image Credit & Copyright Dominique Dierick

Astronomy Picture of the Day: A Mercury Transit Sequence: Image Credit & Copyright Dominique Dierick

Neither as rare nor as spectacular as the similar transits of Venus, it will still be regarded as a major event in the astronomical calendar. Transits of Venus occur in pairs separated by eight years approximately once every one hundred and twenty years. The last pair was in 2004 and 2012. The cycle of occurrences of transits of Mercury is much more complex but there will be a total of fourteen in the twenty-first century with next Monday’s being the third. Because Mercury is much smaller than Venus and much further from the Earth, unlike a transit of Venus which can be observed with the naked-eye (taking the necessary precautions against the sunlight of course), a transit of Mercury can only be observed with a telescope. The French astronomer, Pierre Gassendi, was the first person to observe a transit of Mercury in 1631 but this historic event was preceded by a couple of thousand years of speculation about the orbital path of the Messenger of the Gods.

Pierre Gassendi after Louis-Édouard Rioult. Source: Wikimedia Common

Pierre Gassendi
after Louis-Édouard Rioult.
Source: Wikimedia Common

Both Mercury and Venus when viewed from the Earth never appear to move very far away from the sun leading some astronomers in antiquity to suggest the so-called Heracleidian of Egyptian system in which the two planets orbited the sun whilst the sun orbited the earth in a geocentric system. Thanks to the De nuptiis of Martianus Cappella (fl. 410-420 CE) this partial helio-geocentric model was well known and moderately popular in the Middle Ages, so the idea that Mercury and Venus orbit the sun was not new when Tycho Brahe suggested it in his full helio-geocentric system, in which all the planets, except the moon, orbit the sun which in turn orbits the earth.

Naboth's representation of Martianus Capella's geo-heliocentric astronomical model (1573) Source: Wikimedia Commons

Naboth’s representation of Martianus Capella’s geo-heliocentric astronomical model (1573)
Source: Wikimedia Commons

In 1608 Hans Lipperhey invented the telescope and within a very short time various astronomers began to use it to observe the heavens. In November 1610 Benedetto Castelli (1578–1643) wrote to Galileo reminding him that Copernicus had predicted that Venus would have phases like the moon in a heliocentric system[1].

Benedetto Castelli

Benedetto Castelli Source: Wikimedia Commons

On 11 December Galileo wrote to Kepler informing him that he had discovered those phases, famously putting the information into an anagram, which Kepler failed to decode properly. Galileo was not alone in making these observations, Thomas Harriot in England, Simon Marius in Germany and Giovanni Paolo Lembo in Rome all independently discovered the phases proving that Venus did indeed orbit the sun and by analogy Mercury probably did as well. The telescopes in the early seventeenth century were not powerful enough to resolve the phases of Mercury.

That Venus and Mercury had been shown to orbit the sun was not a proof of heliocentricity, as this was also the case in the Heracleidian as well as various Tychonic and semi-Tychonic systems but it did mean that theoretically it should be possible to observe a transit of one or the other of them. Due to the fact that the orbits of the earth, Venus and Mercury do not all lie in the same plane but are all slightly tilted with respect to each other a visible transit does not occur by every orbit but as mentioned above at semi regular irregular intervals and in order to observe such a transit someone first had to calculate when they would take place. This task was carried out by Johannes Kepler in his Rudolphine Tables based on Tycho Brahe’s observations and published in 1627.

Frontispiece Rudolphine Table 1627 Source: Wikimedia Commons

Frontispiece Rudolphine Table 1627
Source: Wikimedia Commons

Using the information supplied by Kepler’s tables Gassendi tried to observe a transit of Venus in 1631 unaware that it would take place at nighttime for an observer in Europe. Kepler’s table lacked this level of accuracy. However earlier in the same year, on 7 November, Gassendi had become the first person to observe a transit of Mercury. The first observation of a transit of Venus was made by Jeremiah Horrocks in 1639. Gassendi was very initially cautious in going public with his discovery because his measurements of the size of the planet showed it to be much smaller than previous estimates. However three further transit observations in the seventeenth century, Jeremy Shakerly 1651, Christiaan Huygens 1661 and Edmund Halley 1677, confirmed Gassendi’s first observations and measurements.

Observation of transits of Mercury have long since become routine but that won’t stop the amateur and professional astronomers on next Monday putting up their telescopes to follow the tracks of the Messenger of the Gods as he plods his way across the sun.

[1] For a fuller description of the discovery of the phases of Venus and its significance for the history of heliocentricity see my post The Phases of Venus and Heliocentricity: A Rough Guide.




Filed under History of Astronomy, Renaissance Science

The Astrolabe – an object of desire

Without doubt the astrolabes is one of the most fascinating of all historical astronomical instruments.

Astrolabe Renners Arsenius 1569 Source: Wikimedia Commons

Astrolabe Renners Arsenius 1569
Source: Wikimedia Commons

To begin with it is not simply one object, it is many objects in one:


  • An astronomical measuring device
  • A timepiece
  • An analogue computer
  • A two dimensional representation of the three dimensional celestial sphere
  • A work of art and a status symbol


This Medieval-Renaissance Swiss Army penknife of an astronomical instrument had according to one medieval Islamic commentator, al-Sufi writing in the tenth century, more than one thousand different functions. Even Chaucer in what is considered to be the first English language description of the astrolabe and its function, a pamphlet written for a child, describes at least forty different functions.

The astrolabe was according to legend invented by Hipparchus of Nicaea, the second century BCE Greek astronomer but there is no direct evidence that he did so. The oldest surviving description of the planisphere, that two-dimensional representation of the three-dimensional celestial sphere, comes from Ptolemaeus in the second century CE.

Modern Planisphere Star Chart c. 1900 Source: Wikimedia Commons

Modern Planisphere Star Chart c. 1900
Source: Wikimedia Commons

Theon of Alexandria wrote a thesis on the astrolabe, in the fourth century CE, which did not survive and there are dubious second-hand reports that Hypatia, his daughter invented the instrument. The oldest surviving account of the astrolabe was written in the sixth century CE by John Philoponus. However it was first the Islamic astronomers who created the instrument, as it is known today, it is said for religious purposes, to determine the direction of Mecca and the time of prayer. The earliest surviving dated instrument is dated 315 AH, which is 927/28 CE.

The Earliest  Dated Astrolabe Source: See Link

The Earliest Dated Astrolabe
Source: See Link

It is from the Islamic Empire that knowledge of the instrument found its way into medieval Europe. Chaucer’s account of it is based on that of the eight-century CE Persian Jewish astrologer, Masha’allah ibn Atharī, one of whom claim to fame is writing the horoscope to determine the most auspicious date to found the city of Baghdad.

So-called Chaucer Astrolabe dated 1326, similar to the one Chaucer describes, British Museum Source: Wikimedia Commons

So-called Chaucer Astrolabe dated 1326, similar to the one Chaucer describes, British Museum
Source: Wikimedia Commons

However this brief post is not about the astrolabe as a scientific instrument in itself but rather the last point in my brief list above the astrolabe as a work of art and a status symbol. One of the reasons for people’s interest in astrolabes is the fact that they are simply beautiful to look at. This is not a cold, functional scientific instrument but an object to admire, to cherish and desire. A not uncommon reaction of people being introduced to astrolabes for the first time is, oh that is beautiful; I would love to own one of those. And so you can there are people who make replica astrolabes but buying one will set you back a very pretty penny.

That astrolabes are expensive is not, however, a modern phenomenon. Hand crafted brass, aesthetically beautiful, precision instruments, they were always very expensive and the principal market would always have been the rich, often the patrons of the instrument makers. The costs of astrolabes were probably even beyond the means of most of the astronomers who would have used them professionally and it is significant that most of the well know astrolabe makers were themselves significant practicing astronomers; according to the principle, if you need it and can’t afford it then make it yourself. Other astronomers would probably have relied on their employers/patrons to supply the readies. With these thoughts in mind it is worth considering the claim made by David King, one of the world’s greatest experts on the astrolabe, that the vast majority of the surviving astrolabes, made between the tenth nineteenth centuries – about nine hundred – were almost certainly never actually used as scientific instruments but were merely owned as status symbols. This claim is based on, amongst other things, the fact that they display none of the signs of the wear and tear, which one would expect from regular usage.

Does this mean that the procession of astrolabes was restricted to a rich elite and their employees? Yes and no. When European sailors began to slowly extend their journeys away from coastal waters into the deep sea, in the High Middle Ages they also began to determine latitude as an element of their navigation. For this purpose they needed an instrument like the astrolabe to measure the elevation of the sun or of chosen stars. The astrolabe was too complex and too expensive for this task and so the so-called mariners astrolabe was developed, a stripped down, simplified, cheaper and more robust version of the astrolabe. When and where the first mariner’s astrolabe was used in not known but probably not earlier than the thirteenth century CE. Although certainly not cheap, the mariner’s astrolabe was without doubt to be had for considerably less money than its nobler cousin.


Mariner’s Astrolabe Francisco de Goes 1608 Source: Istituto e Museo di Storia della Scienza, Firenze

Another development came with the advent of printing in the fifteenth century, the paper astrolabe. At first glance this statement might seem absurd, how could one possibly make a high precision scientific measuring instrument out of something, as flexible, unstable and weak as paper? The various parts of the astrolabe, the planisphere, the scales, the rete star-map, etc. are printed onto sheets of paper. These are then sold to the customer who cuts them out and pastes them onto wooden forms out of which he then constructs his astrolabe, a cheap but serviceable instrument. One well-known instrument maker who made and sold printed-paper astrolabes and other paper instruments was the Nürnberger mathematician and astronomer Georg Hartmann. The survival rate of such cheap instruments is naturally very low but we do actually have one of Hartmann’s wood and paper astrolabes.

Hartmann Paper Astrolabe Source: Oxford Museum of History of Science

Hartmann Paper Astrolabe
Source: Oxford Museum of History of Science

In this context it is interesting to note that, as far as can be determined, Hartmann was the first instrument maker to develop the serial production of astrolabes. Before Hartmann each astrolabe was an unicum, i.e. a one off instrument. Hartmann standardised the parts of his brass astrolabes and produced them, or had them produced, in batches, assembling the finished product out of these standardised parts. To what extent this might have reduced the cost of the finished article is not known but Hartmann was obviously a very successful astrolabe maker as nine of those nine hundred surviving astrolabes are from his workshop, probably more than from any other single manufacturer.

Hartmann Serial Production Astrolabe Source: Museum Boerhaave

Hartmann Serial Production Astrolabe
Source: Museum Boerhaave


If this post has awoken your own desire to admire the beauty of the astrolabe then the biggest online collection of Medieval and Renaissance scientific instruments in general and astrolabes in particular is the Epact website, a collaboration between the Museum of the History of Science in Oxford, the British Museum, the Museum of the History of Science in Florence and the Museum Boerhaave in Leiden.

This blog post was partially inspired by science writer Philip Ball with whom I had a brief exchange on Twitter a few days ago, which he initiated, on our mutual desire to possess a brass astrolabe.






Filed under History of Astrology, History of Astronomy, History of science, History of Technology, Mediaeval Science, Renaissance Science

The Reformation, Astrology, and Mathematics in Schools and Universities.

It is one of the ironies of the medieval universities that mathematics played almost no role in undergraduate education. It is ironical because the curriculum was nominally based on the seven liberal arts of which the mathematical sciences – arithmetic, geometry, music and astronomy – formed one half, the quadrivium. Although the quadrivium was officially a large part of the curriculum in reality the four mathematical disciplines were paid little attention and hardly taught at all. This only began to change in the fifteenth century with the rise of astro-medicine or iatromathematics, to give it its formal name. With the rise of this astrology-based medicine the humanist universities of Northern Italy and Kraków introduced chairs of mathematics to teach astrology to their students of medicine. This of course entailed first teaching mathematics and then astronomy in order to be able to do astrology and thus mathematics gained a first foothold in the European universities. Ingolstadt became the first German university to introduce a chair for mathematics, also for teaching astrology to medical students, in the 1470s. It became an important centre for seeding new chairs at other universities with its graduates. Stabius and Stiborius going from there to Vienna with Celtis, for example. However there was no systematic introduction of mathematics into the university curriculum as of yet, this would first come as a result of the Reformation and the educational reforms of Philip Melanchthon.

Melanchthon in 1526: engraving by Albrecht Dürer Translation of Latin caption: «Dürer was able to draw Philip’s face, but the learned hand could not paint his spirit». Source: Wikimedia Commons

Melanchthon in 1526: engraving by Albrecht Dürer Translation of Latin caption: «Dürer was able to draw Philip’s face, but the learned hand could not paint his spirit».
Source: Wikimedia Commons

Melanchthon was born Philip Schwartzerdt in Bretten near Karlsruhe on 16 February 1497. A great nephew of Johann Reuchlin a leading humanist scholar Philip changed his name to Melanchthon, a literal Greek translation of his German name, which means black earth, at Reuchlin’s suggestion. Melanchthon was a child prodigy who would grow up to be Germany’s greatest humanist scholar. He studied at Heidelberg University where he was denied his master degree in 1512 on account of his youth. He transferred to Tübingen where he came under the influence of Johannes Stöffler, one of those Ingolstadt graduates, a leading and highly influential mathematician/astrologer.

Johannes Stöffler Source Wikimedia Commons

Johannes Stöffler
Source Wikimedia Commons

The cosmograph Sebastian Münster was another of Stöffler’s famous pupils. Stöffler also has a great influence on several of the Nürnberger mathematician-astronomers, especial Johannes Schöner and Georg Hartmann. Under Stöffler’s influence Melanchthon became a passionate supporter of astrology.

On Reuchlin’s recommendation Melanchthon became professor of Greek at Luther’s University of Wittenberg at the age of twenty-one and thus a central figure in the Reformation. One of the major problems faced by the reformers was the fact that the education system was totally in the hands of the Catholic Church, which meant that they had to start from scratch and create their own school and university system; this task was taken on by Melanchthon, who became Luther’s Preceptor Germania, Germany’s Schoolmaster.

Because of his own personal passion for astrology Melanchthon introduced mathematics into the curriculum of all the Lutheran schools and universities. He invented a new type of school on a level between the old Church Latin schools and the universities that were devised to prepare their pupils for a university education. The very first of these was the Eigidien Oberschule in Nürnberg, which opened in 1526 with Johannes Schöner, as its first professor for mathematics.


These type of school created by Melanchthon would become the Gymnasium, still today the highest level secondary schools in the German education system.

In Wittenberg he appointed Johannes Volmar (1480-1536) professor for the higher mathematic, music and astronomy, and Jakob Milich (1501- 1559) professor for the lower mathematic, arithmetic and geometry, in 1525. Their most famous students were Erasmus Reinhold, who followed Volmar on the chair for higher mathematics when he died in 1536, and Georg Joachim Rheticus, who followed Milich on the chair for lower mathematics, in the same year when Milich became professor for medicine. Schöner, Reinhold and Rheticus were not the only mathematicians supported by Melanchthon, who played an important role in the dissemination of the heliocentric astronomy. Although following Melanchthon’s lead these Protestant mathematicians treated the heliocentric hypothesis in a purely instrumentalist manner, i.e. it is not true but is mathematically useful, they taught it in their university courses alongside the geocentric astronomy.

As a result of Melanchthon’s passion for astrology the Lutheran Protestant schools and universities of Europe all had departments for the study of mathematics headed by qualified professors. The Catholic schools and universities would have to wait until the end of the sixteenth century before Christoph Clavius did the same for them, although his motivation was not astrology. Sadly Anglican England lagged well behind the continent with Oxford first appointing professors for geometry and astronomy in the 1620s at the bequest of Henry Savile, who had had to go abroad to receive his own mathematical education. Cambridge only followed suit with the establishment of the Lucasian Chair in 1663, whose first occupant was Isaac Barrow followed by that other Isaac, Newton. In 1705 John Arbuthnot could still complain in an essay that there was not one single school in England that taught mathematics.





Filed under History of Astrology, History of Astronomy, History of Mathematics, History of science, Renaissance Science, University History

Christoph and the Calendar

The first substantive history of science post that I wrote on this blog was about the Jesuit mathematician and astronomer Christoph Clavius. I wrote this because at the time I was preparing a lecture on the life and work of Clavius to be held in his hometown Bamberg. Clavius is one of my local history of science celebrities and over the years I have become the local default Clavius expert and because of his involvement in the Gregorian calendar reform of 1572 I have also become the local default expert on that topic too.

Christoph Clavius

Christoph Clavius

All of this means that I have become very sensitive to incorrect statements about either Clavius or the Gregorian calendar reform and particularly sensitive to false statements about Clavius’ involvement in the latter. Some time back the Atlas Obscura website had a ‘time week’ featuring a series of blog post on the subject of time one of which, When The Pope Made 10 Days Disappear, was about the Gregorian calendar reform and contained the following claim:

The new lead astronomer on the project, Jesuit prodigy Christopher Clavius, considered this and other proposals for five years.

The brief statement contains three major inaccuracies, the most important of which, is that Clavius as not the lead astronomer, or lead anything else for that matter, on the project. This is a very widespread misconception and one to which I devote a far amount of time when I lecture on the subject, so I thought I would clear up the matter in a post. Before doing so I would point out that I have never come across any other reference to Clavius as a prodigy and there is absolutely nothing in his biography to suggest that he was one. That was the second major inaccuracy for those who are counting.

Before telling the correct story we need to look at the wider context as presented in the article before the quote I brought above we have the following:

A hundred years later, Pope Gregory XIII rolled up his sleeves and went for it in earnest. After a call for suggestions, he was brought a gigantic manuscript. This was the life’s work of physician Luigi Lilio, who argued for a “slow 10-day correction” to bring things back into alignment, and a new leap year system to keep them that way. This would have meant that years divisible by 100 but not by 400 (e.g. 1800, 1900, and 2100) didn’t get the extra day, thereby shrinking the difference between the solar calendar and the Earthly calendar down to a mere .00031 days, or 26 seconds.

Luigi LIlio Source: Wikimedia Commons

Luigi LIlio
Source: Wikimedia Commons

This is correct as far as it goes, although there were two Europe wide appeals for suggestions and we don’t actually know how many different suggestions were made as the relevant documents are missing from the Vatican archives. It should also be pointed out the Lilio was a physician/astronomer/astrologer and not just simply a physician. Whether or not his manuscript was gigantic is not known because it no longer exists. Having decided to consider Lilio’s proposal this was not simply passed on to Christoph Clavius, who was a largely unknown mathematicus at the time, which should be obvious to anybody who gives more than five minutes thought to the subject.

The problem with the calendar, as far as the Church was concerned, was that they were celebrating Easter the most important doctrinal festival in the Church calendar on the wrong date. This was not a problem that could be decided by a mere mathematicus, at a time when the social status of a mathematicus was about the level of a bricklayer, it was far too important for that. This problem required a high-ranking Church commission and one was duly set up. This commission did not consider the proposal for five years but for at least ten and possibly more, again we are not sure due to missing documents. It is more than likely that the membership of the commission changed over the period of its existence but because we don’t have the minutes of its meetings we can only speculate. What we do have is the signatures of the nine members of the commission who signed the final proposal that was presented to the Pope at the end of their deliberations. It is to these names that we will now turn our attention.

The names fall into three distinct groups of three of which the first consists of the high-ranking clerics who actually lead this very important enquiry into a fundamental change in Church doctrinal practice. The chairman of the committee was of course a cardinal,Guglielmo Sirleto (1514–1584) a distinguished linguist and from 1570 Vatican librarian.

Cardinal Guglielmo Sirleto Source: Wikimedia Commons

Cardinal Guglielmo Sirleto
Source: Wikimedia Commons

The vice chairman was Bishop Vincenzo Lauro (1523–1592) a Papal diplomat who was created cardinal in 1583. Next up was Ignatius Nemet Aloho Patriarch of Antioch and head of the Syriac Orthodox Church till his forced resignation in 1576. Ignatius was like his two Catholic colleagues highly knowledgeable of astronomy and was brought into the commission because of his knowledge of Arabic astronomy and also to try to make the reform acceptable to the Orthodox Churches. The last did not function as the Orthodox Churches initially rejected the reform only adopting it one after the other over the centuries with the exception of the Russian Eastern Orthodox Churches, whose church calendar is still the Julian one, which is why they celebrate Christmas on 6 7 January.

Our second triplet is a mixed bag. First up we have Leonardo Abela from Malta who functioned as Ignatius’ translator, he couldn’t speak Latin, and witnessed his signature on the commissions final report. He is followed by Seraphinus Olivarius an expert lawyer, whose role was to check that the reform did not conflict with any aspects of cannon law. The third member of this group was Pedro Chacón a Spanish mathematician and historian, whose role was to check that the reform was in line with the doctrines of the Church Fathers.

Our final triplet consists of what might be termed the scientific advisors. Heading this group is Antonio Lilio the brother of Luigi and like his brother a physician and astronomer. He was here to elucidate Luigi’s plan, as Luigi was already dead. The lead astronomer, to use the Atlas Obscura phase, was the Dominican monk Ignazio Danti (1536–1582) mathematician, astronomer, cosmographer, architect and instrument maker.

Ignazio Danti Source: Wikimedia Commons

Ignazio Danti
Source: Wikimedia Commons

In a distinguished career Danti was cosmographer to Cosimo I, Duke of Tuscany whilst professor of mathematics at the university of Pissa, professor of mathematics at the University of Bologna and finally pontifical mathematicus in Rome. For the Pope Danti painted the Gallery of Maps in the Cortile del Belvedere in the Vatican Palace and deigned and constructed the instruments in the Sundial Rome of the Gregorian Tower of Tower of Winds above the Gallery of Maps.

Map of Italy, Corsica and Sardinia - Gallery of Maps - Vatican Museums. Source: Wikimedia Commons

Map of Italy, Corsica and Sardinia – Gallery of Maps – Vatican Museums.
Source: Wikimedia Commons

After the calendar reform the Pope appointed him Bishop of Altari. Danti was one of the leading mathematical practitioners of the age, who was more than capable of supplying all the scientific expertise necessary for the reform, so what was the role of Christoph Clavius the last signer of the commission’s recommendation.

The simple answer to this question is that we don’t know; all we can do is speculate. When Clavius (1538–1612) first joined the commission he was, in comparison to Danti, a relative nobody so his appointment to this high level commission with its all-star cast is somewhat puzzling. Apart from his acknowledged mathematical skills it seems that his membership of the Jesuit Order and his status as a Rome insider are the most obvious reasons. Although relative young the Jesuit Order was already a powerful group within the Church and would have wanted one of theirs in such a an important commission. The same thought concerns Clavius’ status as a Rome insider. The Church was highly fractional and all of the other members of the commission came from power bases outside of Rome, whereas Clavius, although a German, as professor at the Collegio Romano counted as part of the Roman establishment, thus representing that establishment in the commission. It was probably a bit of all three reasons that led to Clavius’ appointment.

Having established that Clavius only had a fairly lowly status within the commission how did the very widespread myth come into being that he was somehow the calendar reform man? Quite simply after the event he did in fact become just that.

When Pope Gregory accepted the recommendations of the commission and issued the papal bull Inter gravissimas on 24 February 1582, ordering the introduction of the new calendar on 4 October of the same year,


he granted Antonio Lilio an exclusive licence to write a book describing the details of the calendar reform and the modifications made to the process of calculating the date of Easter. The sales of the book, which were expected to be high, would then be the Lilio family’s reward for Luigi Lilio having created the mathematical basis of the reform. Unfortunately Antonio Lilio failed to deliver and after a few years the public demand for a written explanation of the reform had become such that the Pope commissioned Clavius, who had by now become a leading European astronomer and mathematician, to write the book instead. Clavius complied with the Pope’s wishes and wrote and published his Novi calendarii romani apologia, Rome 1588, which would become the first of a series of texts explaining and defending the calendar reform. The later was necessary because the reform was not only attacked on religious grounds by numerous Protestants, but also on mathematical and astronomical grounds by such leading mathematicians as François Viète and Michael Maestlin. Over the years Clavius wrote and published several thousand pages defending and explicating the Gregorian calendar reform and it is this work that has linked him inseparably with the calendar reform and not his activities in the commission.


Filed under History of Astronomy, History of Mathematics, History of science, Local Heroes, Renaissance Science

The Arch-Humanist

The name Conrad Celtis is not one that you’ll find in most standard books on the history of mathematics, which is not surprising as he was a Renaissance humanist scholar best known in his lifetime as a poet. However, Celtis played an important role in the history of mathematics and is a good example of the fact that if you really wish to study the evolution of the mathematical sciences it is necessary to leave the narrow confines of the mathematics books.

Conrad Celtis: Gedächtnisbild von Hans Burgkmair dem Älteren, 1507 Source: Wikimedia Commons

Conrad Celtis: Gedächtnisbild von Hans Burgkmair dem Älteren, 1507
Source: Wikimedia Commons

Born Konrad Bickel or Pyckell, (Conrad Celtis was his humanist pseudonym) the son of a winemaker, in Franconian Wipfield am Main near Schweinfurt on 1 February 1459, he obtained his BA at the University of Cologne in 1497. Unsatisfied with the quality of tuition in Cologne he undertook the first of many study journeys, which typified his life, to Buda in 1482, where he came into contact with the humanist circle on the court of Matthias Corvinus, the earlier patron of Regiomontanus. 1484 he continued his studies at the University of Heidelberg specialising in poetics and rhetoric, learning Greek and Hebrew and humanism as a student of Rudolf Agricola, a leading Dutch early humanist scholar. Celtis obtained his MA in 1485. 1486 found him underway in Italy, where he continued his humanist studies at the leading Italian universities and in conversation with many leading humanist scholars. Returning to Germany he taught poetics at the universities of Erfurt, Rostock and Leipzig and on 18 April 1487 he was crowned Poet Laureate by Emperor Friedrich III in Nürnberg during the Reichstag. In Nürnberg he became part of the circle of humanists that produced the Nürnberger Chronicle to which he contributed the section on the history and geography of Nürnberg. It is here that we see the central occupation of Celtis’ life that brought him into contact with the Renaissance mathematical sciences.

During his time in Italy he suffered under the jibes of his Italian colleges who said that whilst Italy had perfect humanist credentials being the inheritors of the ancient Roman culture, Germany was historically a land of uncultured barbarians. This spurred Celtis on to prove them wrong. He set himself the task of researching and writing a history of Germany to show that its culture was the equal of Italy’s. Celtis’ concept of history, like that of his Renaissance contemporaries, was more a mixture of our history and geography the two disciplines being regarded as two sides of the same coin. Geography being based on Ptolemaeus’ Geographia (Geographike Hyphegesis), which of course meant cartography, a branch of the mathematical sciences.

Continuing his travels in 1489 Celtis matriculated at the University of Kraków specifically to study the mathematical sciences for which Kraków had an excellent reputation. A couple of years later Nicolaus Copernicus would learn the fundamentals of mathematics and astronomy there. Wandering back to Germany via Prague and Nürnberg Celtis was appointed professor of poetics and rhetoric at the University of Ingolstadt in 1491/92. Ingolstadt was the first German university to have a dedicated chair for mathematics, established around 1470 to teach medical students astrology and the necessary mathematics and astronomy to cast a horoscope. When Celtis came to Ingolstadt there were the professor of mathematics was Andreas Stiborius (born Stöberl 1464–1515) who was followed by his best student Johannes Stabius (born Stöberer before 1468­–1522) both of whom Celtis convinced to support him in his cartographic endeavours.

In 1497 Celtis received a call to the University of Vienna where he established a Collegium poetarum et mathematicorum, that is a college for poetry and mathematics, with Stiborius, whom he had brought with him from Ingolstadt, as the professor for mathematics. In 1502 he also brought Stabius, who had succeeded Stiborius as professor in Ingolstadt, and his star student Georg Tanstetter to Vienna. Stiborius, Stabius and Tanstetter became what is known, to historians of mathematics, as the Second Viennese School of Mathematics, the First Viennese School being Johannes von Gmunden, Peuerbach and Regiomontanus, in the middle of the fifteenth century. Under these three Vienna became a major European centre for the mathematical sciences producing many important mathematicians the most notable being Peter Apian.

Although not a mathematician himself Conrad Celtis, the humanist poet, was the driving force behind one of the most important German language centres for Renaissance mathematics and as such earns a place in the history of mathematics. A dedicated humanist, wherever he went on his travels Celtis would establish humanist societies to propagate humanist studies and it was this activity that earned him the German title of Der Erzhumanist, in English the Arch Humanist. Celtis died in 1508 but his Collegium poetarum et mathematicorum survived him by twenty-two years, closing first in 1530



Filed under History of Astrology, History of Astronomy, History of Cartography, History of Mathematics, Renaissance Science