Category Archives: Renaissance Science

The emergence of modern astronomy – a complex mosaic: Part XII

Although highly anticipated the expectation placed upon De revolutionibus and the reactions to it were highly diverse and covered a very wide spectrum from complete acceptance to total rejection with many variation in between. It would be impossible in a blog post series such as this one to deal with the multitude of single reactions that would require a fairly substantial book; in fact I have two such books sitting next to my computer at the moment–Pietro Daniel Omodeo, Copernicus in the Cultural Debates of the Renaissance: Reception, Legacy, Transformation (Brill, 2014) & Jerzy Dobrzycki ed., The Reception of Copernicus’ Heliocentric Theory (D Reidel, 1972)–which I recommend to anybody who wants an in depth, blow by blow account. What I intend to do here is sketch the basic trends of that reception.

Famously Robert Westman once claimed that only ten people in the whole world accepted Copernicus’ heliocentric hypothesis, including his cosmology, completely between its publication in 1553 and the year 1600. His list actually misses a couple of total accepters such as Gemma Frisius, who acknowledged his acceptance in his foreword to Johannes Stadius’ ephemerides, and the Englishman John Feild who made the same acknowledgement in his ephemerides. However, it does include three others who either dropped or appeared to drop their acceptance. Christoph Rothmann (born between 1550 & 1560 died probably after 1600) one of Wilhelm IV’s astronomers (of which more later), who had an extensive dispute with Tycho Brahe, who of course didn’t accept Copernicus’ cosmology, on the subject and in the end, and according to Tycho was converted to his point of view.  Diego de Zúñiga (1536–1597), a Spanish Augustinian hermit and academic, who wrote a defence of the heliocentric hypothesis in his In Job commentaria (1584) but later in life rejected Copernicus’ hypothesis as incompatible with Aristotelian philosophy, probably under religious pressure from his superiors. The most peculiar renegade was Copernicus’ first and initially strongest supporter, Rheticus. Having gone quiet on Copernicus and his hypothesis for some time after he moved to Kraków, in a correspondence with Pierre de la Ramée (1515-1572) he announced that he had erected a large gnomon in Kraków and was now practicing the true astronomy of the Egyptians, whatever that might be. Summa summarum, one can say without much contradiction that there were never more than about fifteen, and probably less, true Copernican in the world before 1600 or even before 1609/10 when the publications of Kepler and the invention of the telescope became game changers.

There were a few astronomers, who simply rejected Copernicus’ hypothesis without comment and some, who simply ignored it but they won’t interest us here because the evidence shows that the vast majority did react to it in some way or another. As already mentioned earlier Owen Gingerich carried out a survey of all known surviving copies of the 1st(Nürnberg 1543) and 2nd(Basel 1566) editions of De revolutionibus[1]and his analysis of the annotation and marginalia of the readers clearly shows that the majority took very little notice of the first cosmological part of the book but concentrated their reading instead on the technical parts of the book, the mathematical models and the data.

This rejection of the heliocentric aspect of Copernicus’ work was a simple and direct consequence of the fact that he could not provide any empirical evidence to support his claims that the Earth revolved on its own axis and that it orbited a stationary Sun. Both claims very clearly contradicted the evidence of one’s own senses, we still say the Sun rises and sets, and suggested consequences that Copernicus was unable to answer. If the Earth is rotating at approximately 1600 kilometres an hour at the equator, why doesn’t everything on the surface get blown off by the headwind? And if the Earth is orbiting the Sun, why can’t we detect stellar parallax? These are just two of the possible objections to which Copernicus could not provide scientific answers.

The answers, based on assumptions, which he did propose would prove with time and new developments in science to be fundamentally correct but at the time there were merely unsubstantiated assumptions. In answer to the first he suggested that everything on the Earth’s surface would be carried along with it in some sort of envelope. This turned out to be correct but Copernicus lacked the physics necessary to explain how this would function. In fact the history of physics of the seventeenth century, as we shall see, consisted to a large extent of developing the knowledge to provide this explanation. As far as stellar parallax was concerned, or rather the lack of it, Copernicus simply and correctly assumed that the stars were simply too far away for the parallax to be detected with the naked-eye. However, Copernicus and almost all of his contemporaries still believed in the sphere of the fixed stars and if this sphere was so far away that stellar parallax was undetectable then the distance between the orbit of Saturn and the sphere of the fixed stars would have to be inconceivably vast and thus not very acceptable. Simply put, why all of that empty space out there?

The ambivalence towards Copernicus magnum opus is nicely illustrated by the Welsh mathematicus Robert Recorde (c. 1512–1558) in his The Castle of Knowledge (1556) the first English text to refer to the Copernican hypothesis. On the subject of the possible motion of the Earth he wrote:

             But as for the quietness of the earth, I need not to spend any time in proving of it, since that opinion is so firmly fixed in most men’s heads, that they accompt it mere madness to bring the question in doubt. And therefore it is as much folly to travail to prove that which no man denieth, as it were with great study to dissuade that thing which no man doth covet, neither any man allow: or to blame that which no man praiseth, neither any man liketh.

Scholar: Yet sometimes it chanceth, that the opinion most generally received, is not most true

Master: And so do some man judge of this matter, for not only Eraclides [Heraclides] Ponticus, a great Philosopher, and two great clerks of Pythagoas school, Philolaus and Ecphantus, were of the contrary opinion, but also Nicias [Hicetas] Syracusius, and Aristarchus Samius, seem with strong arguments to approve it: but the reasons are too difficult for this first Introduction, and therefore I will omit them till another time. And so I will do the reasons that Ptolemy, Theon and others do allege, to prove the earth to be without motion: and the rather, because those reasons do not proceed so demonstrably, but they may be answered fully, of him that holds the contrary. I mean, concerning circular motion: marry, direct motion out of the centre of the world seemeth more easy to be confuted, and that by the same reasons, which were before alleged for proving the earth to be in the middle and centre of the world.

Scholar: I perceive it well: for as if the earth were always out of the centre of the world, those former absurdities would at all times appear: so if at any time the earth should move out of his place, those inconveniences would then appear.

Master: That is truly to be gathered: how be it, Copernicus, a man of great learning, of much experience, and of wonderful diligence in observation, hath renewed the opinion of Aristarchus Samius, and affirmeth that the earth not only moveth circularly about its centre, but also may be, yea and is, continually out of the precise centre of the world 38 hundred thousand miles: but because the understanding of that controversy dependeth of profounder knowledge than in this Introduction may be uttered conveniently, I will let it pass till some other time.

Scholar: Nay sir in good faith, I desire not to hear such vain fantasies, so far against common reason, and repugnant to the consent of all the multitude of Writers, and therefore let it pass for ever, and a day longer.

Master: You are too young to be a good judge in so great a matter: it passeth for your learning, and theirs also that are much better learned than you to improve [i.e. disprove] his supposition by good arguments, and therefore you were best to condemn nothing that you do not well understand but another time, as I said, I will so declare his supposition, that you shall not only wonder to hear it, but also peradventure be as earnest then to credit it, as you are now to condemn it.

 

In this exchange Recorde appears to both reject and praise Copernicus’ hypothesis. Unfortunately we will never know his true opinion as he died before he could write the advanced text that he promises his readers here. What, however, is very clear is that Recorde is very well informed about the history of both diurnal rotation and the heliocentric hypothesis.

Some of the readers, who only considered the mathematical parts of the book, simply took Copernicus’ models for the various planets and applied them to a geocentric system, hoping thereby to produce a better predictive model for the position of the planets. Other took this remodelling a step further and using Copernicus’ mathematical models revived the Capellan model, well-known and much loved in the Middle Ages; a geocentric system in which Mercury and Venus orbit the Sun, which in turn orbits the Earth.

Naboth_Capella

Naboth’s representation of Martianus Capella’s geo-heliocentric astronomical model (1573) Source: Wikimedia Commons

Others took this thought one step further and developed, what is now known the Tychonic system, named after Tycho Brahe (1546–1601), although he was by no means the first or the only astronomer to publish this system in the second half of the sixteenth century, all claiming to have developed it independently. In this helio-geocentric system all of the planets except the Moon, orbit the Sun, which together with the Moon orbits the stationary Earth. Heliocentric, geocentric and helio-centric model based on Copernicus’ parameters and mathematical model can and have been shown to be mathematically equivalent with nothing to recommend one over the other, without further information.

1280px-Tychonian_system.svg

The Tychonic System Source: Wikimedia Commons

One interesting but slightly confusing development was that some geocentric and helio-geocentric astronomers accepted the arguments for the Earth spinning on its own axis, diurnal rotation, whilst still rejecting the Earth orbiting the Sun. As I wrote here in an earlier blog post, this idea goes back at least to Heraclides Ponticus (c.390 BCE–c.310 BCE) and was adopted or discussed and rejected many times over the centuries down to Copernicus’ times. The argument in its favour is a purely physical one. It is much simpler for the comparatively small Earth to rotate than for the vastly larger and heavier sphere of the fixed stars. This acceptance of diurnal rotation would prove to be an important steeping stone to the complete acceptance of the heliocentric model in the seventeenth century.

On major group, who showed great interest in Copernicus’ mathematics and above all in the planetary tables and ephemerides that they delivered were the astrologers. This basically means all professional and half professional astronomers, as they were almost all practicing astrologers. As stated above Robert Westman once claimed that there were only ten Copernicans in the whole world between 1543 and 1600, a historian of astrology correctly pointed out that all ten were practicing astrologers. Like Regiomontanus in the previous century (see Part II of this series) they all thought that more accurate astronomical data would improve the quality of their astronomical prognoses. Not only did they avidly consult the ephemerides of Stadius and Feild but several of them such as the Italian mathematicus Giovanni Antonio Magini (1555–1617) unsatisfied with Stadius’ and Feild’s accuracy also calculated their own new ephemerides. In the end, however, the astrologers recognised that although the errors in Copernican tables were different to those in Ptolemaic ones they were not much more accurate as we will see in the next instalment.

[1]Owen Gingerich, An Annotated Census of Copernicus’ De Revolutionibus(Nuremberg, 1543 and Basel, 1566), Brill, Leiden, Boston, Köln, 2002

7 Comments

Filed under History of Astronomy, Renaissance Science, Uncategorized

The emergence of modern astronomy – a complex mosaic: Part XI

Despite the high level of anticipation De revolutionibus cannot be in anyway described as hitting the streets running; it was more a case of dribbling out very slowly into the public awareness. There are several reasons for this. Today there is a well-oiled machine, which goes into operations when an important new book is published. Book reviews and adverts in the relevant journals and newspapers, books delivered in advance to bookshops all over the country, radio and television interviews with the author and so on.

Absolutely none of this apparatus existed in anyway in the fifteenth century. There were no journals or newspapers, where reviews and adverts could be published. Information about a new publication was distributed over the academic grapevine by mail; the grapevine was quite efficient with scholars communicating with each other throughout Europe but the mail system wasn’t. Letters often took months and quite often never arrived at all. There were no bookstores, as we know them today and no book distribution network. Petreius had a stall on the local market place but he probably would not have sold many copies of De revolutionibus in Nürnberg itself.

DnHIZRmW0AAm9kT.jpg-large

A 19th century painting of the Nürnberg market place

In this context it is interesting that the town library doesn’t own a copy of the 1st edition. For other sales, other than by mail, Petreius would have transported copies of the book packed into barrels to the annual fairs in Leipzig and Frankfurt, where, as well as private customers, other printer publishers would buy copies of the book to take back to their home towns to supplement their own production for their local customers. The Leipzig fair took place at Easter and in autumn, the Frankfurt fair only in autumn. Easter 1543 was in April so the distribution of De revolutionibus only really began in the autumn of that year.

RömerbergMesselo-res1-350x268

Frankfurt Book Fair 1500

The next factors that slowed the reception of De revolutionibus were the price and the content. As a large book with a complex mathematical content with lots of tables and diagrams, De revolutionibus was a very expensive book putting it outside of the financial range of students or anybody without a substantial income or private fortune. A first edition bought by the astrologer Valentin Engelhart (1516-1562) in 1545 cost 1 florin = 12 groschen. A students university matriculation fees at this time cost between 6 and 10 groschens. It is indicative that Kepler could only afford to acquire a second hand copy. Owen Gingerich speculates that the high cost of the book is the reason for the comparatively high survival of copies, Gingerich estimates about fifty per cent. It was very expensive so people took good care of it. The high price and the complex contents very much limited potential sales.

Nicolai_Copernici_torinensis_De_revolutionibus_orbium_coelestium.djvu

De Revolutionibus woodcut of the heliocentric cosmos Source: Latin Wikisource

In terms of content this was a major, heavy duty, large-scale mathematical text and not in anyway something for the casual reader, no mater how well read. Copernicus’ Mathemata mathematicis scribuntur was meant very seriously. This suggests that the potential circle of purchasers was fairly strictly limited to the comparatively small group of mathematical astronomers, who would be capable of reading and understanding Copernicus’ masterpiece. Given his record in the field of mathematical and astronomical/astrological publishing Petreius naturally already had a group of customers to whom he could offer his latest coup in this genre, otherwise he probably would not have published De revolutionibus. However, even if he could get this very specialist book to its specialist group of readers, they would require a comparatively long time to read, work through and digest its complex contents. The earliest known published reaction to De revolutionibus was Gemma FrisiusDe radio astronomico et geometrico a booklet of a multipurpose astronomical and geometrical instrument published in 1545 two years after Copernicus’ volume.

Here at this comparatively early point Frisius, who knew of Copernicus’ hypothesis through the Narratio Prima and and had been invited by Dantiscus, Prince-Bishop of Frombork, one of his patrons, to come to Frombork and work with Copernicus, displays a very cautious attitude towards the new heliocentric astronomy although he is very critical towards Ptolemaeus’ work.

Dantyszek

Johannes Dantiscus Source: Wikimedia Commons

Given that the main purpose of astronomy was, at this time, still to provide astronomical data for astrology, navigation and cartography many of those potentially interested in the new astronomy were waiting for new planetary tables and ephemerides before passing judgement. The earliest planetary tables, the Tabulae prutenicae (Prutenic Tables) based on De revolutionibus, but not exclusively, were produced by the professor for the higher mathematics (music and astronomy) at Wittenberg Erasmus Reinhold (1511–1553) and first published in 1551.

Prutenic_Tables

Source: Wikimedia Commons

These tables were financed by Albrecht I, Duke of Prussia hence the name Prutenic i.e. Prussia.

Lucas_Cranach_d.Ä._-_Bildnis_des_Markgrafen_Albrecht_von_Brandenburg-Ansbach_(Herzog_Anton_Ulrich-Museum)

Albrecht, Duke of Prussia portrait by Lucas Cranach the elder Source: Wikimedia Commons

Interestingly Reinhold was not a supporter of heliocentricity. Ephemerides based on the Prutenic Tables were produced in the Netherlands by Johannes Stadius (1527–1579) a pupil of Gemma Frisius in 1554 with an introductory letter by his old teacher.

Joannes_Stadius

Johannes Stadius Source: Wikimedia Commons

A second set of ephemerides, also based on the Prutenic Tables, were produced in England by John Feild (c. 1525–1587), a pupil of John Dee (1527–1608) in 1557. Dee was another pupil of Gemma Frisius, so this might be a case of the academic grapevine in operation. These tables and ephemerides played an important roll in spreading awareness of the new heliocentric hypothesis.

Whereas with a modern publication reception will probably be judged in terms of months or even weeks for a popular book and a few years for a serious academic title; looking at De revolutionibus to judge its reception we really need to cover the sixty plus years following its publication up to the invention of the telescope, the next major game changer in astronomy.

There is a popular misconception that that reception can be quantified in terms of those for and those against the heliocentric hypothesis. This is very much not the case. As I tried to make clear at the beginning of this series the sixteenth century was very much characterised by very lively debates on various aspects of astronomy–the nature, status and significance of comet, a lively revival of the Aristotelian homocentric spheres model of the cosmos and a growing dissatisfaction with the quality of the available astronomical data. There were small smouldering fires of debate everywhere within the European astronomical community, Copernicus’ De revolutionibus turned them into a raging bush fire; the reactions to its publication were multifaceted and the suggested changes it provoked were wide-ranging and highly diverse. It would be more than a hundred years before the smoke cleared and a general consensus could be found within the astronomical community.

 

 

 

 

 

 

Leave a comment

Filed under Early Scientific Publishing, History of Astrology, History of Astronomy, Renaissance Science

The emergence of modern astronomy – a complex mosaic: Part X

The publication in the spring of 1543 Copernicus’ De revolutionibus orbium coelestium (On the Revolutions of the Heavenly Spheres) had been widely advertised in advance by his own Commentariolus, distributed in manuscript from about 1510 and Rheticus’ De libris revolutionum Copernici narratio prima (1stedition Danzig 1540 and 2ndedition Basel 1541), so there was a certain level of anticipation to finally be able to view the mathematical models on which Copernicus had based his heliocentric hypothesis. The interest was particularly great as this was the first major, extensive work of mathematical astronomy since Ptolemaeus’ Syntaxis Mathematiké was published in the middle of the second century CE. The inaccuracy of the tables and ephemerides based on Ptolemaeus’ work had been grounds for concern amongst astronomers and astrologers for several centuries by the time Copernicus’ magnum opus appeared. So what did the eager reader get for his money when he finally got De revolutionibus in his hands?

De revolutionibus is closely modelled on Ptolemaeus’ Syntaxis Mathematiké or more accurately, as is clear from internal textual evidence, Peuerbach’s and Regiomontanus’ Epytoma in almagesti Ptolemei, which together with Peuerbach’s Theoricarum novarum planetarum had been the book from which Copernicus had learnt his astronomy. However unlike the Syntaxis Mathematiké and the Epytoma, which both have thirteen books, De revolutionibus only has six books.

These six books are preceded by a title page and three separate documents. As well as the title, the title page contains the following message, which almost certainly stems from the publisher, Johannes Petreius, rather than from Copernicus:

De_revolutionibus_1543

Source: Wikimedia Commons

Diligent reader, in this work, which has just been created and published, you have the motion of the fixed stars and planets, as these motions have been reconstituted on the basis of ancient as well as recent observations, and have been moreover been embellished by new and marvellous hypotheses. You also have most convenient tables, from which you will be able to compute those motions with the utmost ease for any time whatever. Therefor buy, read, enjoy.[1]

 

This is followed by the motto, in Greek, that supposedly graced the gates of Plato’s Academy:

Let no one untrained in geometry enter here

The first opening document is the Ad lectorum added by Andreas Osiander that I dealt with in Part IX. The second is a letter that Copernicus received from Nicolas Schönberg, Cardinal of Capua, in 1536 urging him to make his new cosmology public. Publishing this display of support by a leading Church official, Schönberg was secretary to the pope, was obviously intended to deflect any potential theological objections to his work. This is very obviously also the intention of the third document, the book’s preface, a dedication to His Holiness, Pope Paul III. In this preface Copernicus defends and justifies his heterodox cosmological hypothesis. The strongest statement coming shortly before the conclusion:

Perhaps there will be babblers who claim to be judges of astronomy although completely ignorant of the subject and, badly distorting some passages of Scripture to their purpose, will dare to find fault with my undertaking and censure it. I disregard them even to the extent of despising their criticism as unfounded. For it is not unknown that Lactantius, otherwise an illustrious writer but hardly an astronomer, speaks quite childishly about the earth’s shape, when he mocks those who declared that the earth has the form of a globe. Hence scholars need not be surprised if any such person will likewise ridicule me. Astronomy is written for astronomers.

(The Latin text of the final phrase is Mathemata mathematicis scribuntur, which is often translated as mathematics is written for mathematicians, but I think Rosen is right to translate it as astronomy and astronomers because in the Renaissance the terms mathematicus, astronomicus and astrologus are actually synonyms.)

With his “astronomy is written for astronomers” Copernicus a stridently telling potential readers I will only accept criticism from people who know what they are talking about. Copernicus citing Lactantius, as an ignorant critic has a certain historical irony. Lactantius a notorious flatearther had been almost entirely forgotten and committed to the trashcan of history but was brought back into circulation by Copernicus’ citation.

The first eleven chapters of Book I give a general overview of Copernicus’ heliocentric hypothesis and present his cosmology. Here Copernicus makes very clear his strict adherence to the ancient Greek axiom that the motion of celestial bodies is uniform circular motion, which would prove to be the biggest drawback of his entire system and eventually lead to its downfall. Chapter twelve deals with the maths of cords of circles, chapter thirteen the trigonometry of plain triangles and chapter fourteen spherical trigonometry. These chapters constitute the section of the book that Rheticus had published in advance in Copernicus’ name De lateribus et angulis triangulorum (On the Sides and Angles of Triangles), which appeared in 1542.

2018_NYR_16392_0004_000(copernicus_nicolaus_de_lateribus_et_angulis_triangulorum_tum_planorum)

Book II of De revolutionibus deals with the principles of spherical astronomy and closes with a catalogue of the fixed stars, which is largely Ptolemaeus’ star catalogue. Book III is devoted to the Sun, Book IV to the moon and Books V & VI deal with the motion of the planets in a heliocentric system.

De revolutionibus is a weighty, mathematical tome running to 330 large format pages in Edward Rosen’s English translation and definitely not for the casual reader or the faint of heart. Some historians have claimed that it was a bad seller and compare its publication figures with Christoph Clavius’ commentary on the Sphere of Sacrobosco, In Sphaeram Ioannis de Sacro Bosco commentaries, which went through numerous editions in the late sixteenth and early seventeenth centuries. This is an unfair comparison. Clavius’ volume is a university textbook on the basics of geocentric astronomy written for undergraduates. De revolutionibus is an advanced mathematical text written, as Copernicus said, for working astronomers. There were only a fairly small number of scholars in Europe in the second half of the sixteenth century, who possessed the necessary knowledge and level of mathematical skill to read and understand it. In the sixteenth century there were only two editions, the first in Nürnberg in 1543 and the second unchanged edition in Basel in 1566 published by Petreius’ cousin Heinric Petri. Each edition has been estimated to have been around five hundred copies.

De_revolutionibus_orbium_coelestium

Title page, 2nd edition, Basel, Officina Henricpetrina, 1566 Source: Wikimedia Commons

Owen Gingerich carried out a detailed survey over many years of all the known surviving copies of both the first and second editions and it is clear that every notable mathematician/astronomer in Europe in the second half of the sixteenth century possessed a copy of De revolutionibus. Gingerich also surveyed the marginalia in all the surviving copies and one general result was that nearly all the readers ignored the first, heliocentric cosmological Book, confining themselves to the mathematical models in the other five books. We will be looking somewhat more closely at the reception history of Copernicus’ magnum opus in the next part of this series.

 

[1]All English quotes from De revolutionibus are taken from On the Revolutions, translated and commentary by Edward Rosen, Johns Hopkins University Press, Baltimore and London, ppb. 1992

2 Comments

Filed under History of Astronomy, Renaissance Science

Hagiography without context – how not to celebrate a historical figure

This is not so much a blog post as a brief comment. Today marks the five hundredth anniversary of the death of the Renaissance artist-engineer Leonardo da Vinci. This of course has led to a massive bun fight in the form celebrations not just today but throughout the entire year–exhibitions, articles, blog posts, etc., etc. The one thing that has been missing in almost all of the articles, posts, broadcasts and so on that I have come across up till now has been context. We get told that Leonardo was unique, a genius, one of a kind, a visionary, an amazing polymath, a man of the future and all of the verbal hyperbole that you can think of but in almost all cases there is absolutely no context presented for his life and work.

Francesco_Melzi_-_Portrait_of_Leonardo_-_WGA14795

Francesco Melzi – Portrait of Leonardo Source: Wikimedia Commons

As I said above, and also in an earlier blog post, Leonardo was a Renaissance artist-engineer and his whole life and the wide spread of activities are actually characteristic for the carrier profile of a typical artist-engineer. He was not as unique in that sense as these hagiographic portraits without context present him. He is one of a crowd, a man of his times not some sort of freak or anomaly beamed back from the future into the fifteenth century. There are plenty of other polymath Renaissance artist-engineers, who were his predecessors and role models, as well as his contemporaries. To quote Leonardo da Vinci: The Man Behind the Myth on Google Arts & Culture, one of the better articles:

The way that Renaissance knowledge brought together many different disciplines and studies cannot be applied to modern times. In the Renaissance, Leonardo was one of many polymaths – perhaps the best, together with humanists like Filippo Brunelleschi, Leon Battista Alberti and Francesco di Giorgio Martini. 

Saying this does not diminish his stature. Whilst one of many Leonardo was primus inter pars, a man whose undeniably immense talents let him delve deeper, develop further and express better than any other of the Renaissance artist-engineers. However, if you really wish to understand and appreciate Leonard you can only really do so if you view him embedded in the historical context in which he lived and worked.

A good example of this is the notorious Vitruvian Man drawing by Leonardo, which at least two sources that I have read in the last few days claimed originated with Leonardo.

004038e9e01e91012b00292ca58d75af

In fact, as I demonstrated in an earlier post, Vitruvian Man was an iconic image of the Renaissance artist-engineer milieu well before Leonardo produced his version of it. However, his version is superior to all the others.

An exception to the hagiographic posturing being presented on Leonardo is today’s essay on Thinking 3D about Leonardo’s anatomical drawings by Monica Azzolini, Leonardo Inside Out, which embeds his efforts in the medical history of the time. Do yourself a favour and read how to do it properly. Also readable is the Max Planck Institute for the History of Science essay Leonardo da Vinci’s Intellectual Cosmos: Exhibitions with Museo Galileo and Staatsbibliothek zu Berlin, which features a reconstruction of Leonardo’s library and so his rich and diverse sources.

 

1 Comment

Filed under Myths of Science, Renaissance Science

The emergence of modern astronomy – a complex mosaic: Part IX

In 1542 the manuscript of De revolutionibusarrived at Petreius’ printing office in Nürnberg followed by Rheticus who intended to see it through the press. I argued in Part VII that Johannes Petreius had in fact commissioned Rheticus to see if Copernicus had written anything substantial on his astronomical theories and if so to persuade him to allow Petreius to publish it. Petreius’ printing office was certainly the right address for the publication of a major new work on astronomy, as he was certainly the leading scientific publisher–astrology, astronomy, mathematics–in the Holy Roman Empire of German States and probably the whole of Europe but who was Johannes Petreius?

DSC00584

The Petreius printing office in Nürnberg Photo by the author

He was born Hans Peter, whereby Peter is the family name, into a family of wealthy farmers in the Lower Franconia village of Langendorf near Hammelburg in 1496 or 1497. He matriculated at the university of Basel in 1512, graduating BA in 1515 and MA in 1517. He next appears as a witness in a court case in Basel in 1519, where he is described, as working as a proofreader for the Basler printer publisher Adam Petri. This explains why he had chosen to study in Basel, as Adam Petri was his uncle. Petri is the Swizz German version of the name Peter. Presumably, having learnt the black art, as printing was known, from his uncle he moved to Nürnberg in 1523 and set up his own printing office. The was almost certainly an attempt by the Peter family to cash in on the gradual collapse of the Koberger printing office following the death of Aton Koberger in 1513. The Petri-Froben-Amerbach printing cooperative had been Koberger’s licensees in Basel, printing his titles on commission.

johannes_petreius

Source: Wikimedia Commons

Hans Peter now sporting the Latinised name, Johannes Petreius, succeeded in establishing himself against the local competition and by 1535 was the leading printer publisher in Nürnberg. Like most other printer publishers Petreius’ main stock in trade was printing religious volumes but in the 1530s he began to specialise in printing scientific texts. Exactly why he chose to follow this business path is not known but it was probably the ready availability of the large number of mathematical, astrological and astronomical manuscripts brought to Nürnberg by Regiomontanus when he set up his own printing office in 1471. This hypothesis is supported by the fact that several of Petreius’ earliest scientific publications were all of manuscripts from this collection, all of which were edited for publication by Johannes Schöner, who would later be the addressee of Rheticus’ Narratio  Prima.

This series of publications started with Schöner’s edition of Regiomontanus’ own De Triangulis in 1533, a very important work in the history of trigonometry. This was also one of the volumes that Rheticus took with him to Frombork, as a present for Copernicus.

Schöner followed this with Regiomontanus’ Tabulae astronomicaein 1536. Petreius’ activities in the area were not however restricted to Schöner’s output. Earlier he published the first Greek edition of Ptolemaeus’ Tetrabiblos, under the title Astrologica, edited by Joachim Camerarius (1500–1574), which included Camerarius’ translation into Latin of Books I & II and partial translations of Books III & IV together with his notes on Books I & II and the Greek text of the Centiloquium, a collection of one hundred astrological aphorism falsely attributed to Ptolemaeus, with a Latin translation by Giovanni Pontano (1426–1503).

1024px-Ptolemy_tetrabiblos_1

Opening chapter of the first printed edition of Ptolemy’s Tetrabiblos, transcribed into Greek and Latin by Joachim Camerarius (Nuremberg, 1535). Source: Wikimedia Commons

A year earlier Petreius had published Johann Carion’s Practica new – auffs 1532 mit einer auslegung des gesehen cometen. Through these publications it is clear that the principle interest is in astrology and it is here that money was to be made. Over the next twenty plus years Petreius published more texts from Regiomontanus edited by Schöner, some of Schöner’s own works on astronomy and cartography, reckoning and algebra books from Christoph Rudolff  (c. 1500–before 1543) and Michael Stifel (1487–1567). Various scientific texts edited by Peter Apian including his and Georg Tannstetter’s edition of Witelo’s Perspectiva (1535), another of the volumes that Rheticus took with him to Frombork for Copernicus. Various Arabic astrological texts, the Tractatus astrologicae (1540) of Lucas Gauricus (1575–1558), who along with Schöner and Cardano was one of the most important astrologers of the first half of the sixteenth century. Petreius became the publisher of Gerolamo Cardano (1501–1576) north of the Alps, publishing his works on mathematics, astronomy, medicine, astrology and philosophy, all of which were highly successful.

Jerôme_Cardan

Source: Wikimedia Commons

He also published alchemical works from Abū Muḥammad Jābir ibn Aflaḥ better known in the West as Geber. As well as all this, Petreius commissioned and published the first German translation of Vitruvius’ De architectura, a bible for Renaissance artist-engineers.

Petreius’ scientific catalogue was very wide but also had depth, including as it did various classics by Regiomontanus, Schöner, Stifel, Cardano and Witelo. If anybody could adequately present Copernicus’ masterpiece to the world then it was Johannes Petreius.

Rheticus had originally intended seeing Copernicus’ manuscript through the press but Philipp Melanchthon had other plans for his errant protégée. In the meantime Rheticus had, at the request of Joachim Camerarius, who was now rector of the University of Leipzig and had obviously been impressed by Rheticus during their meeting in Tübingen, been offered a chair in mathematics at Leipzig.

Joachim_Camerarius

Joachim Camerarius, 18th-century engraving by Johann Jacob Haid. Source: Wikimedia Commons

In the autumn of 1542 Rheticus, under pressure from Melanchthon, left Nürnberg and preceded to Leipzig, where he was appointed professor of higher mathematics i.e. astronomy and music and his direct involvement in De revolutionibus came to an end. Petreius still needed an editor to see Copernicus’ weighty tome through the press and this duty was taken over, with serious consequences by Nürnberg’s Lutheran Protestant preacher, Andreas Osiander (1496 or 1498–1552).

andreas-osiander

Andreas Osiander portrait by Georg Pencz Source: Wikimedia Commons

Osiander was born in the small town of Gunzenhausen to the south of Nürnberg, the son of Endres Osiander a smith and Anna Herzog. His father was also a local councillor who later became mayor. He matriculated at the University of Ingolstadt in 1515 where he, amongst other things, studied Hebrew under the great humanist scholar and great uncle of Melanchthon, Johannes Reuchlin. In 1520 he was ordained a priest and called to Nürnberg to teach Hebrew at the Augustinian Cloister, a hot bed of reformatory debate, where he also became a reformer. In 1522 he as appointed preacher at the St Lorenz church and became a leading voice for religious reform. Osiander achieved much influence and power in Nürnberg when the city-state became the very first Lutheran Protestant state.

Osiander first became involved with Petreius when the latter started publishing his religious polemics. Petreius also published numerous religious works by both Luther and Melanchthon. Where or how Osiander developed his interest and facility in the mathematical sciences is simply not know but they are attested to by Cardano in the preface to one of his books published by Petreius. In fact it was Osiander, who was responsible for the correspondence between Cardano and the Petreius printing office and he edited Cardano’s books there. When or how Osiander became an editor for Petreius is also not known. In his capacity as editor of De revolutionibus Osiander committed what many have as one of the greatest intellectual crimes in the history of science, he added the infamous ad lectorum, an address to the reader with which the book opens.

Nicolai_Copernici_torinensis_De_revolutionibus_orbium_coelestium.djvu

Latin Wikisource

The ad lectorum is an essay that it pays to read in full but here we will just consider the salient points, Osiander writes:

There have already been widespread reports about the new novel hypothesis of this work, which declares that the earth moves whereas the sun is at rest in the centre of the universe.

Here Osiander lets us know that knowledge of Copernicus’ heliocentric hypothesis was already widespread–spread by the Commentariolus, the Narratio Prima and by rumour–indicating that there was going to be a high level of expectancy to learn the mathematical details of the system. He goes on:

Hence certain scholars, I have no doubt, are deeply offended and believe that the liberal arts, which were established long ago on a sound basis, should not be thrown in confusion.

Anticipating criticism from conservative circles Osiander goes into defensive mode:

But if these men are willing to examine the matter closely, they will find that the author has done nothing that is blameworthy. For it is the duty of an astronomer to compose the history of the celestial motions through careful and expert study. Then he must conceive and devise the causes of these motions or hypotheses about them. Since he cannot in any way attain to the true causes, he will adopt whatever suppositions enable the motions to be computed correctly from the principles of geometry for the future as well as the past.

Here we have the crux of Osiander’s defence. Astronomers are here to produce geometrical models in order to provide accurate predictions of celestial motions and not to determine the unobtainable true causes of those motions. This argument has been dubbed instrumentalist and some hail Osiander as the first instrumentalist philosopher of science. Instrumentalism is a metaphysical attitude to scientific theories that enjoyed a lot of popularity in modern physics in the twentieth century; it doesn’t matter if the models we use describe reality, all that matters in that they predict the correct numerical results. Osiander expands on this viewpoint:

For these hypotheses need not be true or even probable. On the contrary, if they provide a calculus consistent with the observations, that alone is enough.

Here we have the core of why the ad lectorum caused so much outrage over the centuries. Osiander is stating very clearly that the mathematical models of astronomers are useful for predictive purposes but not for describing reality. A view that was fairly commonplace over the centuries amongst those concerned with the subject. Copernicus, however, very clearly deviates from the norm in De revolutionibus in that he presents his heliocentric system as a real model of the cosmos. Osiander’s ad lectorum stands in clear contradiction to Copernicus’ intentions. Osiander then goes into more detail illustrating his standpoint before closing his argument as follows:

…the astronomer will take as his first choice that hypothesis which is easiest to grasp. The philosopher will perhaps rather seek the semblance of the truth. But neither of them will understand or state anything certain, unless it has been divinely revealed to him.

Here we have Osiander restating the standard scholastic division of responsibilities, astronomers provide mathematical models to deliver accurate predictions of celestial motions for use by others, philosophers attempt to provide explanatory models of those motions but truth can only be delivered by divine revelation. The modern astronomy, whose gradual emergence we are tracing had to break down this division of responsibilities in order to become accepted as we shall see in later episodes. Osiander closes with a friendly appeal to the reader to permit the new hypotheses but not to take them too seriously, and thereby make a fool of himself.

Therefore alongside the ancient hypotheses, which are no more probable, let us permit these new hypotheses also the become known, especially since they are admirable as well as simple and bring with them a huge treasure of very skilful observations. So far as hypotheses are concerned, let no one expect anything certain from astronomy, which cannot furnish it, lest he accept as the truth ideas conceived for another purpose, and depart from this study a greater fool than he entered it. Farewell.

There is a widespread belief that Osiander somehow smuggled his ad lectorum into De revolutionibus without the knowledge of either Copernicus or Petreius but the historical evidence speaks against this. There are surviving fragments of a correspondence between Osiander and Copernicus that make it clear that Osiander discussed the stratagem of presenting De revolutionibus as a hypothesis rather that fact with him; although we don’t know how or even if Copernicus reacted to this suggestion. More telling is the situation between Petreius and Osiander.

There is absolutely no way that Osiander could have added the ad lectorum without Petreius’ knowledge. This is supported by subsequent events. When the book appeared Tiedemann Giese was outraged by the presence of the ad lectorum and wrote a letter to the city council of Nürnberg demanding that it be removed and the book reissued without this blemish. The council consulted Petreius on the subject and he let them know in no uncertain terms that it was his book and what he put in it was his business and nobody else’s.

Petreius’ reaction illustrates an important point that modern commentators often overlook. Our concept of copyright didn’t exist in the sixteenth century, the rights to a publish work in general lay with the publisher and not the author. This is clearly demonstrated by the fact that when a publication provoked the ire of the authorities, civil or clerical, it was the printer publisher, who first landed before the court and then in goal rather than the author.

The ad lectorum was anonym but any reader, who was paying attention should have realised through the phrasing that Copernicus was not the author. The Nürnberger astronomer and instrument maker Johannes Pratorius (1537–1615), another Wittenberg graduate, wrote in his copy of De revolutionibus that Rheticus, when Pratorius visited him in 1569, had revealed to him that Osiander was the author of the ad lectorum.

800px-JohannesPraetorius

Source: Wikimedia Commons

Michael Maestlin’s copy contains the same information also from Rheticus via Peter Apian. Kepler’s second hand copy had this information added by its original owner Hieronymus Schreiber (birth date unknown–1547), yet another Wittenberg graduate, who had received a gift copy signed by Petreius, because he had substituted for Rheticus in Wittenberg during the latter’s time in Frombork. All of this indicates that Osiander’s authorship of the ad lectorem was circulating on the astronomers’ grapevine by 1570 at the latest. It was first put into print, and thus made general public, by Kepler in his Astronomia Nova in 1609.

As with most books in the Early Modern Period there was no publication date for De revolutionibus but it seems to have been finished by 20thApril 1543, as Rheticus signed a finished copy on this date. According to a legend, put in the world by Tiedemann Giese, Copernicus received his copy, which was placed into his hands, on his dying day the 24thMay 1543. Owen Gingerich, who is the expert on the subject, estimates that the 1stedition probably had a print run of about 400 copies, which carried the mathematical details of Copernicus’ hypothesis out into the wide world.

 

 

 

 

 

12 Comments

Filed under Early Scientific Publishing, History of Astrology, History of Astronomy, Renaissance Science

Renaissance Heavy Metal

One of the most fascinating and spectacularly illustrated Renaissance books on science and technology is De re metallica by Georgius Agricola (1494–1555). Translated into English the author’s name sounds like a figure from a game of happy families, George the farmer. In fact, this is his name in German, Georg Pawer, in modern German Bauer, which means farmer or peasant or the pawn in chess. Agricola was, however, anything but a peasant; he was an extraordinary Renaissance polymath, who is regarded as one of the founders of modern mineralogy and geology.

agricola034

Georg Bauer was born in Glauchau on 24 March 1494, the second of seven children, to Gregor Bauer (born between 1518 and 1532) a wealthy cloth merchant and dyer. He was initially educated at the Latin school in Zwickau and attended the University of Leipzig, where he studied theology, philosophy and philology from 1514 to 1517. From 1518 to 1522 he worked as deputy director and then as director of schools in Zwickau. In 1520 he published his first book, a Latin grammar. The academic year 1522-23 he worked as a lecturer at the University of Leipzig. From 1523 to 1526 he studied medicine, philosophy and the sciences at various Northern Italian university graduating with a doctorate in medicine. In Venice he worked for a time for the Manutius publishing house on their edition of the works of Galen.

From 1527 to 1533 Agricola worked as town physician in St. Joachimsthal*, today Jáchymov in the Czech Republic. In those days Joachimsthal was a major silver mining area and it is here that Agricola’s interest in mining was ignited.

Fotothek_df_tg_0007851_Bergbau_^_Bergwerk_^_Silberbergbau

Silver mining in Joachimsthal (1548) Source: Wikimedia Commons

In 1530 he issued his first book on mining, Bermannus sive de re metallica, published by the Froben publishing house in Basel. It covered the search for metal ores, the mining methods, the legal framework for mining claims, the transport and processing of the ores. Bermannus refers to Lorenz Bermann, an educated miner, who was the principle source of his information. The book contains an introductory letter from Erasmus, who worked as a copyeditor for Froben during his years in Basel.

In 1533 he published a book on Greek and Roman weights and measures, De mensuris et ponderibus libri V, also published Froben in Basel.

5c69783fe3f6c9fbc7fa8869c40b0aed

From 1533 to his death in 1555 he was town physician in Chemnitz. He was also district historian for the Saxon aristocratic dynasty. From 1546 onwards he was a member of the town council and served as mayor in 1546, 1547, 1551 and 1553. In Chemnitz he also wrote a book on the plague, De peste libri tres, his only medical book,  as ever published by Froben in 1554.

bub_gb_SwvxKAm0GicC

Source: Internet Archive

Having established himself as an expert on mining with the Bermannus, Agricola devoted more than twenty years to studying and writing about all aspects of mining and the production of metals. He wrote and published a series of six books on the subject between 1546 and 1550, all of them published by Froben.

De ortu et causis subterraneorum libri V, Basel 1546

The origin of material within the earth

De natura eorum, quae effluunt ex terra, Basel 1546

The nature of the material extruded out of the earth

De veteribus et novis metallis libri II, Basel 1546

Ore mining in antiquity and in modern times

De natura fossilium libri X, Basel 1546

The nature of fossils whereby fossils means anything found in the earth and is as much a textbook of mineralogy

De animantibus subterraneis liber, Basel 1549

The living underground

De precio metallorum et monetis liber III, 1550

On precious metals and coins

At the same time he devoted twenty years to composing and writing his magnum opus De re metallica, which was published posthumously in 1556 by Froben in Basel, who took six years to print the book due to the large number of very detailed woodcut prints with which the book is illustrated. These illustrations form an incredible visual record of Renaissance industrial activity. They are also an impressive record of late medieval technology. Agricola’s pictures say much more than a thousand words.

De re metallicahas twelve books or as we would say chapters. What distinguishes Agricola’s work from all previous writings on mineralogy and geology is the extent to which they are based on empirical observation rather than philosophical speculation. Naturally this cannot go very far as it would be several hundred years before the chemistry was developed necessary to really analyse mineralogical and geological specimens but Agricola’s work was a major leap forward towards a modern scientific analysis of metal production.

 

Book I: Discusses the industry of mining and ore smelting

Book II: Discusses ancient mines, finding minerals and metals and the divining rod

metallica 2,1002

Book III: Discusses mineral veins and seams and plotting with the compass

Book IV: Discusses the determination of mine boundaries and mine organisation

Book V: Discusses the principles of mining, the metals, ancient mining and mine surveying

metallica 5,1003

metallica 5,2004

metallica 5,3005

Book VI: Discusses mining tools and equipment, hoists and pumps, ventilation and miners’ diseases

metallica 6,1006

metallica 6,2007

metallica 6,3008

metallica 6,4009

metallica 6,5010

metallica 6,6011

metallica 6,7012

metallica 6,8013

metallica 6,9014

metallica 6,X015

Book VII: Discusses assaying ores and metals and the touchstone

metallica 7,1016

metallica 7,2017

Book VIII: Discusses preparing ores for roasting, crushing and washing and recovering gold by mercury

metallica 8,1018

metallica 8,2019

metallica 8,3020

metallica 8,4021

metallica 8,5022

metallica 8,6023

Book IX: Discusses ores and furnaces for smelting copper, iron and mercury and the use of bellows

metallica 9,1024

metallica 9,2025

metallica 9,3026

metallica 9,4027

metallica 9,5028

Book X: Discusses the recovery of precious metals from base metals as well as separating gold and silver by acid

metallica X,1029

metallica X,2030

Book XI: Discusses the recovery of silver from copper by liquidation as well as refining copper

metallica XI,1031

metallica XI,2032

Book XII: Discusses salts, solvents, precipitates, bitumen and glass

metallica XII033

Agricola’s wonderfully illustrated volume became the standard reference work on metal mining and production for about the next two hundred years. The original Latin edition appeared in Basel in 1556 and was followed by a German translation in 1557, which was in many aspects defective but remained unchanged in two further editions. There were further Latin editions published in 1561, 1621, and 1657 and German ones in 1580, and 1621, with an improved German translation in 1928 and 1953. There was an Italian translation published in 1563.

metallica tp001

 

Of peculiar interest is the English translation. This was first published in 1912 in London, the work of American mining engineer Herbert Hoover (1874–1964) and his wife the geologist Lou Henry (1874–1944). A second edition was published in 1950. Hoover is, of course, better know as the 31stPresident of the USA, who was elected in 1928 and served from 1929–1933.

HHoover_(retouched)

Herbert Hoover in his 30s while a mining engineer Source: Wikimedia Commons

Louhenryhoover

Lou Henry, circa 1930 Source: Wikimedia Commons

Agricola’s tome also represents an important development in the history of trades and professions. Before De re metallicaknowledge of trades and crafts was past from master to apprentice verbally and kept secret from those outside of guild, often on pain of punishment. Agricola’s book is one of the first to present the methods and secrets of a profession in codified written form for everyone to read, a major change in the tradition of knowledge transfer.

*A trivial but interesting link exists between St. Joachimsthal and the green back. A silver coin was produced in St. Joachimsthal, which was known as the Joachimsthaler. This got shortened in German to thaler, which mutated in Dutch to daalder or daler and from there in English to dollar.

All illustrations from De re metallica are taken from Bern Dibner, Agricola on Metals, Burndy Library, 1958

 

 

 

 

6 Comments

Filed under Early Scientific Publishing, History of Technology, Mediaeval Science, Renaissance Science

The emergence of modern astronomy – a complex mosaic: Part VIII

We left Georg Joachim Rheticus[1](1514–1574) just setting out on his journey from Feldkirch to Frombork for what would turn out to be one of the most fateful meetings in the history of science. Our wealthy professor of mathematics travelled in style accompanied by a famulus Heinrich Zell (?–1564), a Wittenberg student, who would later have a career as cartographer, astronomer and librarian. What is rarely mentioned in detail is that Rheticus travelled from Feldkirch to Wittenberg, which is where he collected Zell, and then having acquired permission to extend his sabbatical, continued on his way to Frombork. In total this is a journey of more than 1500 kilometres, hard enough even today but a major expedition in the middle of the sixteenth century.

We have no direct account of the initial meeting between the twenty-five year old mathematics professor and the sixty-six year old cathedral canon.

Kopernikus,_Nikolaus_-_Reußner_1578_Portrait1

Portrait of Copernicus holding a lily of the valley, published in Nicolaus Reusner’s Icones (1587), based on a sketch by Tobias Stimmer (c. 1570), allegedly based on a self-portrait by Copernicus. Source: Wikimedia Commons

They obviously got on well, as Rheticus ended staying in the area for two and a half years. Shortly after his arrival Rheticus fell ill and Copernicus took him to Löbau, the home of his friend Tiedemann Giese (1480–1550) Bishop of Kulm, to convalesce.

800px-Schenck_Bildnis_Tiedemann_Giese

Portrait of Tiedemann Giese by Hans Schenck, Source: Wikimedia Commons

This episode illustrates an important aspect of Rheticus’ visit. Here was a Lutheran Protestant professor of mathematics from the home of Lutheran Protestantism, Wittenberg University visiting a Catholic cathedral canon in the middle of a deeply Catholic area. Despite the fact that this visit took place in the middle of the Reformation and the beginnings of the Counter Reformation Rheticus was always treated as an honoured guest by all those, who received him whether Protestant, Albrecht, Duke of Prussia,

Lucas_Cranach_d.Ä._-_Bildnis_des_Markgrafen_Albrecht_von_Brandenburg-Ansbach_(Herzog_Anton_Ulrich-Museum)

Albrecht, Duke of Prussia portrait by Lucas Cranach the elder Source: Wikimedia Commons

or Catholic, Copernicus, Giese and above all the Prince-Bishop of Frombork, Johannes Danticus (1485–1548), who although strongly anti-Reformation was also an admirer of Philipp Melanchthon (1497–1560), whom he had met personally.

Dantyszek

Johannes Dantiscus Source: Wikimedia Commons

This courtesy across the religious divide amongst scholars during this period of European religious turmoil was actually very common and contradicts a popular image of hate, rejection and bigotry on all fronts and at all levels.

We know of Rheticus’ convalescence in Löbau, because he mentions it on the first page of his Narratio Prima (The First Account) the booklet he wrote shortly after his arrival in Frombork and the first published account of Copernicus’ heliocentric system. He explains that because of his illness he has had barely ten weeks to familiarise himself with the manuscript of Copernicus’ magnum opus in order to describe and explain it in the Narratio Prima, which is an open letter to Johannes Schöner, his Nürnberger astrology teacher and one of Johannes Petreius’ expert editors.

johannes_schoner_astronomer_01

Johannes Schöner Source: Wikimedia Commons

The introduction also makes clear that he had promised Schöner, and probably through him Petreius, this report before leaving Nürnberg. Johannes Petreius’ dedicatory letter to Rheticus in his edition of the fourteenth-century physician Antonius de Motulmo’s De iudiciis nativitatumwas a direct response to the Narratio Prima. He goes on to give a very brief outline of the work, making no mention of the fact that Copernicus’ system is heliocentric. He says that he has mastered the first three books, of six, grasped a general idea of the forth and begun to conceive the hypotheses of the rest. He says he is going to skip the first two books for which he has a special plan; he originally intended to write a Narratio Secunda, which never materialised. He then plunges into his description.

The first four sections are technical astronomical accounts of: The Motion of the Fixed Stars, General Considerations of the Tropical Year, The Change in the Obliquity of the Ecliptic, and The Eccentricity of the Sun and the Motion of the Solar Apogee. In the fifth section, The Kingdom of the World Change with the Motion of the Eccentric, Rheticus changes tack completely and presents us with an astrological theory of cyclical historical change. I shall quote the beginning of this extraordinary section:

I shall add a prediction. We see that all kingdoms have had their beginnings when the centre of the eccentric was at a special point on the small circle. Thus, when the eccentricity of the sun was at its maximum, the Roman government became a monarchy; as the eccentricity decreased, Rome too declined, as aging, and then fell. When the eccentricity reached the boundary and quadrant of mean value, the Mohammedan faith was established; another great empire came into being and increased very rapidly, like the change in the eccentricity. A hundred years hence, when the eccentricity will be at its minimum, this empire too will complete its period.

This calculation does not differ much from the saying of Elijah, who prophesied under divine inspiration that the world would endure only 6,000 years, during which time nearly two revolutions are completed[2].

There is nothing about this to be found in Copernicus’ De revolutionibus but Copernicus certainly read the Narratio Prima before it was published and didn’t object to it or ask Rheticus to remove it. Such astrological cyclical theories of history were en vogue during the Early Modern Period. The most well known one was written by Johannes Carion (1499–1537), who together with Philipp Melanchthon was a student of Johannes Stöffler (1442–1531). Carion had also received language tuition from the slightly older Melanchthon.  Carion was court astrologer to the Elector Joachim I of Brandenburg (1484–1535).

Johann-Carion

Johann Carion, portrait by Lucas Cranach the Elder Source: Wikimedia Commons

Carion wrote a chronicle based on Biblical prophecies, which divided world history into three 2000-year periods. The chronicle was published shortly after Carion’s death. Following Carion’s death this chronicle passed into Melanchthon’s hands, who reworked it and published it again. Rheticus a student of Melanchthon obviously joined the Carion tradition in his astrological excurse in the Narratio Prima, which goes into long technical detail on the following pages.

In the next section Rheticus returns to Copernicus’ astronomy, Special Consideration of the Length of the Tropical Year. Up till now we have no indication at all from Rheticus that the system he is describing is a heliocentric one. We are now about one third of the way through and Rheticus’ next section is General Considerations Regarding the Motions of the Moon,Together with the New Lunar Hypothesis. At the end of this section we can read:

These phenomena, besides being ascribed to the planets, can be explained, as my teacher shows, by a regular motion of the spherical earth; that is, by having the sun occupy the centre of the universe, while the earth revolves instead of the sun on the eccentric, which it has pleased him to name the great circle. Indeed, there is something divine in the circumstance that a sure understanding of celestial phenomena must depend on the regular and uniform motions of the terrestrial globe alone.

He casual drops the information that we are indeed in a heliocentric world system in passing, as if were the most natural thing in the world. Having in the previous sections demonstrated Copernicus’ abilities as a theoretical astronomer he finally lets the cat out of the bag. There now follow eight sections in which he explains how the new hypothesis functions with the whole of astronomy.

The book closes with a non-astronomical section, In Praise of Prussia. This is a general polemic about how wonderful Prussia and the Prussian are and how well Rheticus has been received and treated by his Prussian hosts. It does, however, contain a section describing Giese’s attempts to persuade Copernicus to publish De revolutionibus and that Copernicus’ response to these enticements is to suggest that he will publish his tables of astronomical data without revealing the methods used to obtain them.

The Narratio Prima is dated 23 September 1539 by Rheticus, who took the manuscript to Danzig where it was printed and published by Franz Rhode in 1540 with the help of a donation towards the printing costs from Johann von Werden (c. 1495–1554) the mayor of Danzig. The title page is interesting as it begins with an honourable address to Johannes Schöner followed by The Books of Revolutions then an equally honourable naming of Copernicus but Rheticus, the author, is simply described as a young student of mathematics[3].

Narratio_prima

Title page of the 1st edition of the Narratio Prima Source: Wikimedia Commons

The Narratio Prima was fairly obviously conceived as a test balloon for Copernicus’ heliocentric hypothesis. It seems to have been well received and one recipient took his enthusiasm for the text much further. Rheticus had sent a copy to his mentor Achilles Pirmin Gasser (1505-1577),

Achilles_Pirminius_Gasser

Achilles Permin Gasser Source: Wikimedia Commons

who published a second edition of the book with a new dedicatory letter and Rheticus named on the title page in Basel in 1541.

The-front-page-of-the-Narratio-prima-as-printed-in-Rhodes-office-Danzig-1540-The-2

First page of a later edition of the Narratio Prima with Rheticus named as author

The positive reception of the Narratio Prima and the lack of negative reactions seem to have finally convinced Copernicus to allow De revolutionibus to be published.

The Narratio Prima is rather long winded, strong on rhetoric and polemic but rather weak on its scientific content. There are no diagrams and Rheticus tends to rely on philosophical arguments rather than mathematical ones. He does, however, display a high degree or erudition, his text is full of classical quotes and allusions, which doesn’t actually make it easier for those who don’t have a classical eduction to plow through his, at times, rather turgid prose.

A third edition of the Narratio Prima was included in the second edition of De revolutionibus published by Heinric Petri in Basel in 1566. The forth and a fifth editions were included in the first and second editions of Johannes Kepler’s Mysterium Cosmographicum in 1597 and 1621. As such, more people probably learnt of Copernicus’ heliocentric system from the Narratio Prima than any other source.

Rheticus stayed in Frombork helping Copernicus to prepare his manuscript for publication by Petreius in Nürnberg. In October 1541 Rheticus left for Wittenberg, where he published an edited and improved version of the trigonometrical section of Derevolutionibusunder Copernicus’s name, De lateribus et angulis triangulorum (On the Sides and Angles of Triangles), which appeared in 1542.

2018_NYR_16392_0004_000(copernicus_nicolaus_de_lateribus_et_angulis_triangulorum_tum_planorum)

This very useful publication also helped to increase Copernicus’ reputation in astronomical and mathematical circles. Rheticus would dedicate much of his future life to the publication of improved trigonometrical table.

In 1542 the manuscript of De revolutionibus arrived at Petreius’ printing office in Nürnberg followed by Rheticus who intended to see it through the press.

[1]There are no known portraits of Rheticus

[2]The Elijah prophecy is from the Talmud not the Bible.

[3]AD CLARISSMUM VIRUM D. IOANNEM SCHONERUM, DE LIBRIS REVOLUTIONUM eruditissimi viri & Mathematici excellentissimi, Reverendi D. Doctoris Nicolai Copernici Torunnaei, Canonici Varmiensis, per quendam Iuvenem, Mathematicae studiosum NARRATIO PRIMA (To that Famous Man Johann Schöner Concerning the Books of Revolutions of That Most Learned Man and Excellent Mathematician, the Venerable Doctor Nicolaus Copernicus of Toruń, Canon of Warmia, by a certain young student of mathematics)

 

 

2 Comments

Filed under Early Scientific Publishing, History of Astrology, History of Astronomy, Renaissance Science