Spicing up the evolution of the mathematical sciences

When we talk about the history of mathematics one thing that often gets forgotten is that from its beginnings right up to the latter part of the Early Modern Period almost all mathematics was developed to serve a particular practical function. For example, according to Greek legend geometry was first developed by the ancient Egyptians to measure (…metry) plots of land (geo…) following the annual Nile floods. Trade has always played a very central role in the development of mathematics, the weights and measures used to quantify the goods traded, the conversion rates of different currencies used by long distance traders, the calculation of final prices, taxes, surcharges etc. etc. A good historical example of this is the Islamic adoption of the Hindu place value decimal number system together with the associated arithmetic and algebra for use in trade, mirrored by the same adoption some time later by the Europeans through the trader Leonardo Pisano. In what follows I want to sketch the indirect impact that the spice trade had on the evolution of the mathematical sciences in Europe during the Renaissance.

The spice trade does not begin in the Renaissance and in fact had a long prehistory going back into antiquity. Both the ancient Egyptians and the Romans had extensive trade in spices from India and the Spice Islands, as indeed the ancient Chinese also did coming from the other direction.


The spice trade from India attracted the attention of the Ptolemaic dynasty, and subsequently the Roman empire. Source: Wikimedia Commons

Throughout history spice meant a much wider range of edible, medicinal, ritual and cosmetic products than our current usage and this trade was high volume and financially very rewarding. The Romans brought spices from India across the Indian Ocean themselves but by the Middle Ages that trade was dominated by the Arabs who brought the spices to the east coast of Africa and to the lands at the eastern end of the Mediterranean, known as the Levant; a second trade route existed overland from China to the Levant, the much fabled Silk Road. The Republic of Venice dominated the transfer of spices from the Levant into Europe, shipping them along the Mediterranean.


The economically important Silk Road (red) and spice trade routes (blue) blocked by the Ottoman Empire c. 1453 with the fall of the Byzantine Empire, spurring exploration motivated initially by the finding of a sea route around Africa and triggering the Age of Discovery. Source: Wikimedia Commons

Here I go local because it was Nürnberg, almost literally at the centre of Europe, whose traders collected the spices in Venice and distributed them throughout Europe. As Europe’s premier spice traders the Nürnberger Patrizier (from the Latin patrician), as they called themselves, grew very rich and looking for other investment possibilities bought up the metal ore mines in central Europe. In a short period of time they went from selling metal ore, to smelting the ore themselves and selling the metal, to working the metal and selling the finished products; each step producing more profit. They quite literally produced anything that could be made of metal from sewing needles to suits of armour. Scientific and mathematical instruments are also largely made of metal and so Nürnberg became Europe’s main centre for the manufacture of mathematical instruments in the Renaissance. The line from spice to mathematical instruments in Nürnberg is a straight one.


Torquetum designed by Johannes Praetorius and made in Nürnberg

By the middle of the fifteenth century the Levant had become a part of the Ottoman Empire, which now effectively controlled the flow of spices into Europe and put the screws on the prices. The Europeans needed to find an alternative way to acquire the much-desired products of India and the Spice Islands, cutting out the middlemen. This need led to the so-called age of discovery, which might more appropriately be called the age of international sea trade. The most desirable and profitable trade goods being those spices.

The Portuguese set out navigating their way down the west coast of Africa and in 1488 Bartolomeu Dias succeeded in rounding the southern most tip of Africa and entering the Indian Ocean.


Statue of Bartolomeu Dias at the High Commission of South Africa in London. Source: Wikimedia Commons

This showed that contrary to the Ptolemaic world maps the Indian Ocean was not an inland sea but that it could be entered from the south opening up a direct sea route to India and the Spice Islands.


A printed map from the 15th century depicting Ptolemy’s description of the Ecumene, (1482, Johannes Schnitzer, engraver). Showing the Indian Ocean bordered by land from the south Source: Wikimedia Commons

In 1497 Vasco da Gama took that advantage of this new knowledge and sailed around the Cape, up the east coast of Africa and then crossing the Indian Ocean to Goa; the final part of the journey only being made possible with the assistance of an Arab navigator.


The route followed in Vasco da Gama’s first voyage (1497–1499) Source: Wikimedia Commons

Famously, Christopher Columbus mistakenly believed that it would be simpler to sail west across, what he thought was, an open ocean to Japan and from there to the Spice Islands. So, as we all learn in school, he set out to do just that in 1492.

In fourteen hundred and ninety two

Columbus sailed the ocean blue.

The distance was of course much greater than he had calculated and when, what is now called, America had not been in the way he and his crews would almost certainly have all died of hunger somewhere out on the open seas.


Columbus’ voyage. Modern place names in black, Columbus’s place names in blue Source: Wikimedia Commons

The Portuguese would go on over the next two decades to conquer the Spice Islands setting up a period of extreme wealth for themselves. Meanwhile, the Spanish after the initial disappointment of realising that they had after all not reached Asia and the source of the spices began to exploit the gold and silver of South America, as well as the new, previously unknown spices, most famously chilli, that they found there. In the following centuries, eager also to cash in on the spice wealth, the English and French pushed out the Portuguese in India and the Dutch did the same in the Spice Islands themselves. The efforts to establish sea borne trading routes to Asia did not stop there. Much time, effort and money was expended by the Europeans in attempts to find the North West and North East Passages around the north of Canada and the north of Russia respectively; these efforts often failed spectacularly.

So, you might by now be asking, what does all this have to do with the evolution of the mathematical science as announced in the title? When those first Portuguese and Spanish expedition set out their knowledge of navigation and cartography was to say the least very rudimentary. These various attempts to reach Asia and the subsequent exploration of the Americas led to an increased effort to improve just those two areas of knowledge both of which are heavily based on mathematics. This had the knock on effect of attempts to improve astronomy on which both navigation and cartography depend. It is not chance or coincidence that the so-called age of discovery is also the period in which modern astronomy, navigation and cartography came of age. Long distance sea trading drove the developments in those mathematically based disciplines.

This is not something that happened overnight but there is a steady curve of improvement in this disciplines that can be observed over the two plus centuries that followed Dias’ first rounding of the Cape. New instruments to help determine latitude and later longitude such as mariners’ astrolabe (which is not really an astrolabe, around 1500) the backstaff (John Davis, 1594) and the Hadley quadrant (later sextant, 1731) were developed. The Gunter Scale or Gunter Rule, a straight edge with various logarithmic and trigonometrical scales, which together with a pair of compasses was used for cartographical calculations (Edmund Gunter, early seventeenth century). William Oughtred would go on to lay two Gunter Scales on each other and invent the slide rule, also used by navigators and cartographers to make calculations.

New surveying instruments such as the surveyor’s chain (also Edmund Gunter), the theodolite (Gregorius Reisch and Martin Waldseemüller independently of each other but both in 1512) and the plane table (various possible inventors, middle of the sixteenth century). Perhaps the most important development in both surveying and cartography being triangulation, first described in print by Gemma Frisius in 1533.

Cartography developed steadily throughout the sixteenth century with cartographers adding the new discoveries and new knowledge to their world maps (for example the legendary Waldseemüller world map naming America) and searching for new ways to project the three-dimensional earth globe onto two-dimensional maps. An early example being the Stabius-Werner cordiform projection used by Peter Apian, Oronce Fine and Mercator.


Cordiform projection in a map of the world by Apianus 1524 which is one of the earliest maps that shows America Source: Wikimedia Commons

This development eventually leading to the Mercator-Wright projection, a projection specifically designed for marine navigators based on Pedro Nunes discovery that a path of constant bearing is not a great circle but a spiral, known as a loxodrome or rhumb line. Nunes is just one example of a mathematical practitioner, who was appointed to an official position to develop and teach new methods of navigation and cartography to mariners, others were John Dee and Thomas Harriot.


Pedro Nunes was professor of mathematics at the University of Coimbra and Royal Cosmographer to the Portuguese Crown. Source: Wikimedia Commons

To outline all of the developments in astronomy, navigation and cartography that were driven by the demands the so-called age of discovery, itself triggered by the European demand for Asian spices would turn this blog post into a book but I will just mention one last thing. In his one volume history of mathematics, Ivor Grattan-Guinness calls this period the age of trigonometry. The period saw a strong development in the use of trigonometry because this is the mathematical discipline most necessary for astronomy, navigation and cartography. One could say a demand for spices led to a demand for geometrical angles.




Filed under History of Astronomy, History of Cartography, History of Navigation, Renaissance Science, Uncategorized

9 responses to “Spicing up the evolution of the mathematical sciences

  1. Alan

    I think you’ll find the Ottomans did not establish naval dominance in the eastern Mediterranean until the conquest of Mamluk Syria and Egypt in 1516-1517. The Ottomans did recognise the threat of Portuguese dominance in the Indian Ocean but were unsuccessful in naval operations to prevent it.

    • thonyc

      It’s is not a question of when the Ottoman’s achieved naval dominance, it’s a question of when they controlled the ends of both of the spice routes into Europe enabling them to control the price that the Venetian traders had to pay

      • Alan

        Constantinople in 1453 was a desperately poor place with a tiny population compared with former times. Its fall was culturally significant but neither the Silk Road nor the Spice Route terminated in the city at the time of its fall. Western Europe traded with the Mamluks. The fall of Constantinople did nothing to impede or even much effect that trade.

      • thonyc

        I have no objections to readers criticising what I write, particularly if I have said something wrong and they corrected; if that is the case, I learn something and I like learning. However when somebody is apparently to lazy to read what I have written properly and to claim that I have said things that I haven’t, I tend to get very pissed off!

        Did I mention Constantinople anywhere in my blog post?

        No, I very definitely did not!

        Did I say that the two spice routes end in Constantinople?

        Given that I never mentioned Constantinople that would have been literally impossible! In fact I said that they ended in the Levant and included a map showing this.

        Did I even mention the Mamluks?

        No I didn’t

      • Alan

        I’m sorry if have offended you. That was not my intention. The caption to the map reads: ‘The economically important Silk Road (red) and spice trade routes (blue) blocked by the Ottoman Empire c. 1453 with the fall of the Byzantine Empire, spurring exploration motivated initially by the finding of a sea route around Africa and triggering the Age of Discovery. Source: Wikimedia Commons’. That is all I wanted to draw to your attention.

      • Ray

        I think Alan’s initial concern may have been correct. The ends of the spice routes in Alexandria and Beiruit were controlled by the Mamluks (not the Ottomans) until 1517. See https://www.reddit.com/r/badhistory/comments/7nv7ts/spice_must_flow_aka_ottomans_stopped_the_spice/

  2. Hi, it’s nice to mention the metal ore mines of central Europe. But you could have added that a very nice and original kind of practical geometry developed there: subterranean geometry or Markscheidekunst. It developed all over the early modern period and is up to now vastly underrated … Best, T.

  3. Reblogged this on Karavansara and commented:
    Spices, mathematics, and trade routes.
    Great article.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s