Category Archives: History of Cartography

Renaissance Science – XVII

As we saw in the last episode, Ptolemaeus’ Geographia enjoyed a strong popularity following its rediscovery and translation into Latin from Greek at the beginning of fifteenth century, going through at least five printed editions before the end of the century. The following century saw several important new translation and revised editions both in Latin and in the vernacular. This initial popularity can at least be partially explained by the fact that Ptolemaeus’ Mathēmatikē Syntaxis and his Tetrabiblos, whilst not without rivals, were the dominant books in medieval astronomy and astrology respectively. But the Geographia, although, as explained in the previous episode, in some senses related to the other two books, was a book about mapmaking. So how did affect European mapmaking in the centuries after its re-emergence? To answer this question, we first need to look at medieval European, terrestrial mapmaking.

Mapmaking was relatively low level during the medieval period before the fifteenth century and although there were certainly more, only a very small number of maps have survived. These can be divided into three largely distinct categories, regional and local maps, Mappa Mundi, and portolan charts. There are very few surviving regional or local maps from the medieval period and of those the majority are from 1350 or later, mapmaking was obviously not very widespread in the early part of the Middle Ages. There are almost no maps of entire countries, the exceptions being maps of Palestine,

Map of Palestine according to Burchard of Mount Sion Manuscript c. 1300 entitled: “De more vivendi diversarum gentium, secundum Hieronymum in libro II contra Iovinianum, quae illis cibariis vesci solent, quibus abundant” Source: Wikimedia Commons

the Matthew Paris and Gough maps of Britain,

The most developed of Matthew Paris’s four maps of Britain 13th century (Cotton MS Claudius D VI, fol. 12v). The work is organised around a central north-south itinerary from Dover to Newcastle. The crenellations of both the Antonine Wall and Hadrian’s Wall can be seen in the upper half of the drawing. British Library, London. via Wikimedia Commons

and Nicolas of Cusa’s maps of Germany and central Europe. 

Nicolas of Cusa map of central Europe printed edition 1491 Germanisches Nationalmuseum Nürnberg via Wikimedia Commons

The Mappa Mundi are the medieval maps of the known world. These range from very simple schematic diagrams to the full-blown presentations of the oikoumenikos, the entire world as known to European antiquity, consisting of the three continents of Asia, Europe, and Africa. The sketch maps are mostly of two different types, the zonal maps, and the T-O maps. 

The zonal maps show just the eastern hemisphere divided by lines into the five climata or climate zones, as defined by Aristotle. These are the northern frigid zone, the northern temperate zone, the equatorial tropical zone, the southern temperate zone, and the southern frigid zone, of which the Greek believed only the two temperate zones were habitable. In the medieval period, zonal maps are mostly found in copies of Macrobius’ Commentarii in Somnium Scipionis (Commentary on Cicero’s Dream of Scipio).

Macrobius zonal world map c. 1050 Source: British Library

T-O sketch maps show a diagrammatic presentation of the three know continents, Asia, Europe, and Africa enclosed within a double circle representing the ocean surrounding oikoumenikos. The oikoumenikos is orientated, that is with east at the top and is divided into three parts by a T consisting of the Mediterranean, the Nile, and the Danube, with the top half consisting of Asia and the bottom half with Europe on the left and Africa on the right. T-O maps have their origin in the works of Isidore, his De Natura Rerum and Etymologiae. He writes in De Natura Rerum

So the earth may be divided into three sides (trifarie), of which one part is Europe, another Asia, and the third is called Africa. Europe is divided from Africa by a sea from the end of the ocean and the Pillars of Hercules. And Asia is divided from Libya with Egypt by the Nile… Moreover, Asia – as the most blessed Augustine said – runs from the southeast to the north … Thus we see the earth is divided into two to comprise, on the one hand, Europe and Africa, and on the other only Asia

This T and O map, from the first printed version of Isidore’s Etymologiae, identifies the three known continents as populated by descendants of Sem, Iafeth and Cham. Source: Wikimedia Commons

For most people the term Mappa Mundi evokes the large circular, highly coloured maps of the oikoumenikos, packed with symbols and text such as the Hereford and Ebstorf maps, rather that the small schematic ones.

The Hereford Mappa Mundi, about 1300, Hereford Cathedral, England Source: Wikimedia Commons

These are basically T-O maps but appear to be geographically very inaccurate. This is because although they give an approximate map of the oikoumenikos, they are not intended to be geographical maps, as we understand them today. So, what are they? The clue can be found in the comparatively large number of regional maps of Palestine, the High Middle Ages is a period where the Catholic Church and Christianity dominated Europe and the Mappa Mundi are philosophical maps depicting the world of Christianity. 

Recreation of the Ebstorf Map of about 1235; the original was destroyed by wartime bombing Source: Wikimedia Commons

These maps are literally orientated, that is East at the top and have Jerusalem, the hub of the Christian world, at their centre. The Hereford map has the Garden of Eden at the top in the east, whereas the Ebstrof map, has Christ’s head at the top in the east, his hands on the sides north and south and his feet at the bottom in the south, so that he is literally holding the world. The much smaller Psalter map has Christ above the map in the east blessing the world.

Psalter world map, ca. 1260 British Library via Wikimedia Commons

These are not maps of the world but maps of the Christian world. The illustrations and cartouches scattered all over the maps elucidate a motley collection of history, legends and myths that were common in medieval Europe. These Mappa Mundi are repositories of an extensive collection of information, but not the type of geographical knowledge we expect when we hear the word map.

The third area of medieval mapping is the portolan charts, which pose some problems. These are nautical charts that first appeared in the late thirteenth century in the Mediterranean and then over the centuries were extended to other sea areas. They display a detailed and surprising accurate stretch of coastline and are covered with networks of rhumb lines showing compass bearings.

The oldest original cartographic artifact in the Library of Congress: a portolan nautical chart of the Mediterranean. Second quarter of the 14th century. Source: Wikimedia Commons

Portolan charts have no coordinates. The major problem with portolan charts is their origin. They display an accuracy, at the time, unknown in other forms of mapping but the oldest known charts are fully developed. There is no known development leading to this type of mapping i.e., there are no known antecedent charts. The second problem is the question, are they based on a projection? There is some discussion on this topic, but the generally accepted view is that they are plate carrée or plane chart projection, which means that the mapmakers assumes that the area to be map is flat. This false assumption is OK if the area being mapped is comparatively small but leads to serios problems of distortion, when applied to larger areas.

Maps, mapping, and map making began to change radically during the Renaissance and one of the principle driving factors of that change was the rediscovery of Ptolemaeus’ Geographia. It is important to note that the Geographia was only one factor and there were several others, also this process of change was gradual and drawn out. 

What did the Geographia bring to medieval mapmaking that was new? It reintroduced the concept of coordinates, longitude and latitude, as well as map projection. As Ptolemaeus points out the Earth is a sphere, and it is mathematically impossible to flatten out the surface of a sphere onto a flat sheet without producing some sort of distortion. Map projections are literally what they say they are, they are ways of projecting the surface of the sphere onto a flat surface. There are thousands of different projections, and the mapmaker has to choose, which one is best suited to the map that he is drawing. As Ptolemaeus points out for a map of the world, it is actually better not the draw it on a flat sheet but instead to draw it on a globe. 

The Geographia contains instructions for drawing a map of the Earth i.e., the oikoumenikos, and for regional maps. For his regional maps Ptolemaeus uses the plate carrée or plane chart projection, the invention of which he attributes to his contemporary Marinus of Tyre. In this projection, the lines of longitude (meridians) and latitude (parallels) are parallel sets of equally spaced lines. For maps of the world, he describes three other projections. The first of these was a simple conic projection in which the surface of the globe is projected onto a cone, tangent to the Earth at the 36th parallel. Here the meridians are straight lines that tend to close towards the poles, while the parallels are concentric arcs. The second was a modified cone projection where the parallels are concentric arcs and the meridians curve inward towards the poles.

Ptolemaeus’ projection I above and II below Source: Marjo T Nurminen, “The Mapmakers’ World”, Pool of London Press, 2014

His third projection, a perspective projection, needn’t interest us here as it was hardly used, however the art historian Samuel Y Edgerton, who died this year, argued that the rediscovery of Ptolemaeus’ third projection at the beginning of the fifteenth century was the impulse that led to Brunelleschi’s invention of linear perspective.

A mid-15th century Florentine Ptolemaic map of the world Ptolemy’s 1st projection.
A printed Ptolemaic world map using his 2nd projection Johannes Schnitzer (1482). Source: Wikimedia Commons

From very early on Renaissance cosmographers began to devise and introduce new map projections, at the beginning based on Ptolemaeus’ projections. For example, in his In Hoc Opere Haec Continentur Nova Translatio Primi Libri Geographicae Cl Ptolomaei, from 1514, Johannes Werner (1468–1522) introduced the heart shaped or cordiform projection devised by his friend and colleague Johannes Stabius (1540–1522), now know as the Werner-Stabius projection. This was used by several mapmakers in the sixteenth century, perhaps most famously by Oronce Fine (1494–1555) in 1536.

Oronce Fine World Map 1536 Source: Wikimedia Commons

Francesco Rosselli (1455–died before 1513) introduced an oval projection with his world map of 1508

World Map oval by Francesco Rosselli, copper plate engraving on vellum 1508, National Maritime Museum via Wikimedia Commons

It should be noted that prior to the rediscovery of the Geographia, map projection was not unknown in medieval Europe, as the celestial sphere engraved on the tympans or climata of astrolabes are created using a stereographic projection.

Animation showing how celestial and geographic coordinates are mapped on an astrolabe’s tympan through a stereographic projection. Hypothetical tympan (40° north latitude) of a 16th-century European planispheric astrolabe. Source: Wikimedia Commons

The first wave of Renaissance mapmaking concerned the Geographia itself. As already noted, in the previous episode, the first printed edition with maps appeared in Bologna in 1477. This was closely followed by one produced with copper plate engravings, which appeared in Rome in 1478. An edition with maps printed with woodblocks in Ulm in 1482. Another edition, using the same plates as the 1478 edition appeared in Rome in 1490. Whereas the other fifteenth century edition only contained the twenty-seven maps described by Ptolemaeus in his text, the Ulm edition started a trend, that would continue in later editions, of adding new contemporary maps to the Geographia. These editions of the Geographia represent the advent of the modern atlas, to use an anachronistic term, an, at least nominally, uniform collection of maps with text bound together in book. It would be approximately a century before the first real modern atlas, that of Abraham Ortelius, would be published, but as Elizabeth Eisenstein observed, the European mapmakers first had to catch up with Ptolemaeus. 

These printed edition of the Geographia also illustrate another driving force behind the radical increase in mapmaking during the Renaissance, the invention of the printing press. The invention of the printing press and the development of cooper plate engraving, as well as woodblock printing meant that the multiple reproduction of maps and plans became much easier and also much cheaper. 

Another factor behind the increase in mapmaking was the so-called age of discovery. The Portuguese had been working their way down the coast of Africa throughout the fifteenth century and Bartolomeu Dias (c. 1450–1500) rounded the southern tip of Africa, for the first time in 1488, paving the way for the first trip by a European by an ocean route to India by Vasco da Gama (c. 1460s–1524) in 1497–99. Of course, as every school kid knows “In fourteen hundred and ninety-two, Columbus sailed the ocean blue” or put for formally the Genoese seaman Christopher Columbus (1451–1506) undertook his first voyage to Asia in service of the Spanish Crown in 1492 and accidentally discovered the so-called forth continent, which Martin Waldseemüller (c. 1475–1520) and Matthias Ringmann (c. 1482–1511) incorrectly christened America in 1507, in honour of Amerigo Vespucci (1451–1512), whom they falsely believed to be the discoverer of the new, to Europeans, continent. 

The initial maps produced by the European discovery expedition carried the portolan chart tradition out from the Mediterranean into the Atlantic Ocean, down the coast of Africa and eventually across the Atlantic to the coasts of the newly discovered Americas.

Kunstmann II or Four Finger Map. Dating from the period circa 1502‒6 Source: World Digital Library

Although not really suitable for maps of large areas the tradition of the portolan charts survived well into the seventeenth century. In 1500, Juan de la Cosa (c. 1450–1510) produced a world portolan chart. This is the earliest known map to include a representation of the New World.

Juan de la Cosa world map 1500

The 1508 edition of the Geographia published in Rome was the first edition to include the European voyages of exploration to the New World. The world map drawn by the Flemish mapmaker Johan Ruysch (c. 1460–1533), who had himself sailed to America, includes the north coast of South America and some of the West Indian islands. On the other side it also includes eastern Asia with China indicated by a city marked as Cathaya, however, Japan (Zinpangu) is not included.

Ruysch’s 1507 map of the world. Source: Wikimedia Commons

Ruysch’s map bears a strong resemblance to the Cantarini-Rosselli world map published in Venice or Florence in 1506. Drawn by Giovanni Matteo Conarini (died 1507) and engraved by Francesco Rosselli (1455–died before 1513), which was the earliest known printed map containing the New World. The Ruysch map and the Cantarini-Rosselli probably shared a common source. 

The most famous map showing the newly discovered fourth continent is, of course, the Waldseemüller world map of 1507, which gave America its name.

Universalis Cosmographia, the Waldseemüller wall map dated 1507, depicts America, Africa, Europe, Asia, and the Oceanus Orientalis Indicus separating Asia from the Americas. Source: Wikimedia Commons

Of interest here is the fact that Waldseemüller apparently also published a small, printed globe of his wall map, which is the earliest known printed globe.

Waldseemüller globe gores of 1507 Source: Wikimedia Commons

The age of the modern terrestrial globe was ushered in by the earliest known, surviving manuscript globe produced by Martin Behaim (1549-1507) in 1493. Because he had supposedly taken part on Portuguese expedition along the African coast, he was commissioned, by the city council of Nürnberg, during a visit to the city of his birth,  to produce a globe and a large wall map of the world for the council chamber. The map no longer exists. Behaim’s main source for his maps was Ptolemaeus’ Geographia.

Behaim Globe Germanisches Nationalmuseum Nürnberg

Waldseemüller’s globe had apparently little impact and only four sets of globe gores still exist but none of the finished globes. The person who really set the production of printed globes in motion was the Nürnberger mathematicus Johannes Schöner (1477–1547), who produced his first printed terrestrial globe in 1515, which did much to cement the name America given to the fourth continent by Waldseemüller and Ringmann. Schöner was the owner of the only surviving copy of the Waldseemüller map.

Schöner Terrestrial Globe 1515, Historisches Museum Frankfurt

Like Behaim and Waldseemüller, Schöner’s main source of information was Ptolemaeus’ Geographia, of which he owned a heavily annotated copy, and which like them he supplemented with information from various other sources. In 1517, he also produced a matching, printed celestial globe, establishing the tradition of matching globe pairs that persisted down to the nineteenth century.

Schöner was not the only Nürnberger mathematicus, who produced globes. We know that Georg Hartmann (1489–1564), who acted as Schöner’s globe salesman in Nürnberg, when Schöner was still living in Kirchehrenbach, also manufactured globes, but none of his have survived. Although they weren’t cheap, it seems that Schöner’s globes sold very well, well enough to motivate others to copy them. Both Waldseemüller, with his map, and Schöner, with his globes, published an accompanying cosmographia, a booklet, consisting of instructions for use as well as further geographical and historical information. An innovative printer/publisher in Louvain reprinted Schöner’s cosmographia, Lucullentissima quaedam terrae totius descriptio, and commissioned Gemma Frisius (1508–1555) to make a copy of Schöner’s globe to accompany it. Frisius became a globe maker, as did his one-time student and assistant Gerard Mercator (1512-1594), who went on to become the most successful globe maker in Europe.

Gemma Frisius globe 1536

Both Willem Janszoon Blaeu (1571–1638) and Jodocus Hondius (1563–1612) emulated Mercator’s work establishing the Netherlands as the major European map and globe making centre in the seventeenth century.

Another factor that contributed to the spread of map making in the sixteenth century was the Renaissance development of realism in painting. This was a combination of the invention of linear perspective during the fifteenth century on the one hand and on the other, the development of Naturalism beginning in the late fourteenth century in the Netherlands. During the sixteenth century many notable artists were also map makers and several map makers were also artists. 

Dürer-Stabius world map a rare example of Ptolemaeus’ 3rd projection

It became fashionable during the Renaissance for those in power to sponsor and employ those working in the sciences. This patronage also included map makers. On the one hand this meant employing map makes to make maps as status symbols for potentates to display their magnificence. A good example is the map galleries that Egnatio Danti (1536–1586) was commissioned to create in the Palazzo Vecchio in Florence for Cosimo I de’ Medici and in the Vatican for Pope Gregory XIII.

Source: Fiorani The Marvel of Maps p. 110 Note that the map is up side down!

Similarly, Peter Apian ((1495–1552) was commissioned to produce maps for the Holy Roman Emperor, Charles V

Peter Apian cordiform world map 1530 Source: British Library

His son Philipp (1531–1589) did the same for Duke Albrecht V of Bavaria.

Overview of the 24 woodblock prints of Apian’s map of Bavaria

Another example is Oronce Fine (1494–1555), who made maps for Francis I. The first English atlas created by Christopher Saxton (c. 1540–c. 1610) was commissioned by Thomas Seckford, Master of Ordinary on the instructions of William Cecil, 1stBaron Burghley (1520–1598), Queen Elizabeth’s chief advisor.

Saxton England and Wales proof map Source: British Library

These maps came more and more to serve as aids to administration. The latter usage also led to European rulers commissioning maps of their new overseas possessions. 

Another area that required map making was the changes in this period in the pursuit of warfare. Larger armies, the increased use of artillery, and a quasi-professionalisation of the infantry led to demand for maps for manoeuvres during military campaigns. 

Starting around 1500 mapping took off in Renaissance Europe driven by the various factors that I’ve sketched above, a full account would be much more complex and require a book rather than a blog post. The amount of mapmaking increased steadily over the decades and with it the skill of the mapmakers reaching a first high point towards the end of the century in the atlases of Ortelius, De Jode, and Mercator. The seventeenth century saw the establishment of a major European commercial map and globe making industry dominated by the Dutch map makers, particularly the Houses of Blaeu and Hondius.

23 Comments

Filed under Early Scientific Publishing, History of Cartography, History of science, Renaissance Science

Renaissance Science – XVI

In terms of the books rediscovered from antiquity during the Renaissance one of those that had the biggest impact was Ptolemaeus’ Geōgraphikḕ Hyphḗgēsis, which became known in Latin as either the Geographia or Cosmographia. Claudius Ptolemaeus or (Klaúdios Ptolemaîos in Greek) is a scholar, who had a major impart on the development of the mathematical sciences in the second century CE and then again when his writings were rediscovered in the High Middle Ages during the twelfth century translation movement. He wrote important texts on astronomy, astrology, cosmology, harmony (music), and optics, amongst others. However, we know next to nothing about the man himself, neither his date of birth nor his date of death, nor very much else. He lived and worked in the city of Alexandria and people in the Middle Ages made the mistake of thinking he was a member of the Ptolemaic dynasty that ruled Egypt from 323–30 BCE. There is a possibility that he acquired the name because he came from the town of Ptolemaîos Hermaiou in Upper Egypt.

Three of his books the Mathēmatikē Syntaxis (better known in English as the Almagest) on astronomy, the Tetrabiblos or Apotelesmatiká on astrology and the Geōgraphikḕ Hyphḗgēsis on geography form a sort of trilogy. He says in the introduction of the Tetrabiblos that the study of the science of the stars is divided into two parts. The first, his Mathēmatikē Syntaxis, describes where to find the celestial objects and the second, his Tetrabiblos, explains their influence. The Geōgraphikḕ Hyphḗgēsis is in different ways directly related to both books. It is related to the Mathēmatikē Syntaxis in that both works use a latitude/longitude coordinate system to map their respective realms, the sphere of the earth and the sphere of the heavens. This interconnectedness in reflected in the fact that in Early Modern Europe a cosmographer was somebody, who mapped both the celestial and terrestrial spheres. The Geōgraphikḕ Hyphḗgēsis is in three parts, a theoretical introduction on mapping, a gazetteer of the coordinates of a long list of places and, geographical features, and a collection of maps. Like the Mathēmatikē Syntaxis, the Geōgraphikḕ Hyphḗgēsis built on earlier works in the disciple, most notably that of Marinus of Tyre (c. 70–130 CE). To cast a horoscope in Greek astrology, one needs the coordinates of the place for which the horoscope in being cast, the Geōgraphikḕ Hyphḗgēsisdelivered those coordinates. In antiquity the last known reference to the Geōgraphikḕ Hyphḗgēsis was in the work of Cassiodorus (c. 485–c. 585). 

All three of these books by Ptolemaeus were translated into Arabic by the ninth century. Both the Mathēmatikē Syntaxisand the Tetrabiblos had a major impact in Islamic culture, although both were criticised, changed, improved on in wide ranging commentaries by Islamic scholars. It was here that the Mathēmatikē Syntaxis acquired the name Almagestmeaning the greatest to distinguish it from a shorter, less important astronomical text from Ptolemaeus. Geōgraphikḕ Hyphḗgēsis, however had very little impact on Islamic map making being used almost exclusively in an astrological context.

The Mathēmatikē Syntaxis was translated into Latin three times in the twelfth century. Twice from Arabic once by Abd al-Masīḥ of Winchester and once by Gerard of Cremona (1114–1187) and once directly from Greek in Sicily by an unknown translator. These translations establish Ptolemaic astronomy as the de facto medieval European astronomy. In the twelfth century the Tetrabiblos was also translated from Arabic into Latin by Plato of Trivoli in 1138 and directly from Greek into Latin by William of Moerbeke (c. 1220–c. 1286). Integrated into Christian theology by Albertus Magnus and Thomas Aquinas it dominated European astrology right up to the end of the seventeenth century. 

Unlike the Mathēmatikē Syntaxis and the Tetrabiblos the Geōgraphikḕ Hyphḗgēsis was apparently not translated either from Arabic or Greek during the twelfth century. Giacomo or Jacopo d’Angelo of Scarperia better known in Latin as Jacobus Angelus obtained a Greek manuscript, found in Constantinople that he translated, into Latin in about 1406.

Jacobus Angelus’ Latin translation of Ptolemaeus’ Geographia Early 15th century Source via Wikimedia Commons

Here it obtained the title of Geographia or Cosmographia. There is some discussion or even doubt about how genuine the book is, as the oldest known Greek manuscript only dates back to the thirteenth century.

A Byzantine Greek world map according to Ptolemy’s first (conic) projection. From Codex Vaticanus Urbinas Graecus 82, Constantinople c. 1300. Source: Wikimedia Commons

Despite criticism of the quality of Jacobus Angelus’ translation it proved very popular, and the first printed edition appeared in Venice in 1475. However, it contained no maps. A second edition was printed in Rome in 1478, which contained maps printed from copper engravings. The engravings were begun by Konrad Sweynheym (who together with Arnold Pannartz set up the first printing press in Italy) and were completed by Arnold Buckinck after Sweynheym’s death in 1476. The first edition of Geographia with maps printed using woodcuts was published in Ulm in 1482. Three major printed editions in les than a decade indicate the popularity of the book. 

First page of the 1482 Ulm edition go Gepgraphis Source: Wikimedia Commons

The quality, or rather supposed lack of it, of Jacobus Angelus’ translation led to a series of new translations from the Greek. The Nürnberger mathematicus Johannes Werner (1468–1522)

Artist unknown Source: Wikimedia Commons

published a new translation of the theoretical first section, his In Hoc Opere Haec Continentur Nova Translatio Primi Libri Geographicae Cl Ptolomaei, in Nürnberg in 1514.

Source:

This in turn was heavily criticised by Willibald Pirckheimer (1470–1530) Nürnberger politician, soldier, humanist scholar and friend and patron of Albrecht Dürer.

Willibald Pirckheimer portrait by Dürer Souce: Wikimedia Commons

Pirckheimer, an excellent classist, published his own translation of the entire text in Nürnberg in 1525.

Claudius Ptolemaeus (Greek, Alexandria (?) A.D. 100?–?170 Alexandria (?)) In Claudii Ptolemaei Geographiacae Enarrationis Libri octo., March 30, 1525 German, Willibald Pirckheimer The Metropolitan Museum of Art, New York, Rogers Fund, 1920 (20.83-) Source
Claudius Ptolemaeus (Greek, Alexandria (?) A.D. 100?–?170 Alexandria (?)) In Claudii Ptolemaei Geographiacae Enarrationis Libri octo., March 30, 1525 German, Willibald Pirckheimer The Metropolitan Museum of Art, New York, Rogers Fund, 1920 (20.83-) Source

Earlier in the fifteenth century another Nürnberger, Regiomontanus (1436–1476), had heavily criticised the Angelus translation. In the catalogue that he published when he set up his scientific printing press in Nürnberg. he announced that he intended to produce and print a new edition of the text, but he died too early to fulfil his intention. Pirckheimer included Regiomonatanus’ criticisms in the introduction to his own new translation of the text.

Pirckheimer’s edition formed the basis for the revised and edited edition published by the cosmographer, Sebastian Münster (1488–1552), in 1540 in Basel. Münster published an updated edition with extra illustrations in 1550. Münster’s Geographia was generally regarded as the standard Latin reference text of the work.

Geographiae Claudii Ptolemaei Alexandrini, Philosophi ac Mathematici praestantissimi, Libri VIII, partim à Bilbaldo Pirckheymero . MÜNSTER, Sebastian (1488-1552), ed. Edité par Basel: Heinrich Petri, March 1552 [colophon], 1552
Geographiae Claudii Ptolemaei Alexandrini, Philosophi ac Mathematici praestantissimi, Libri VIII, partim à Bilbaldo Pirckheymero . MÜNSTER, Sebastian (1488-1552), ed. Edité par Basel: Heinrich Petri, March 1552 [colophon], 1552

The Portuguese mathematicus Pedro Nunes (1502–1578), noted for his contributions to the history of navigation, who was appointed Royal Cosmographer in 1529 and Chief Royal Cosmographer in 1547 by King Joāo III o Piedoso,

Image of Portuguese mathematician Pedro Nunes in Panorama magazine (1843); Lisbon, Portugal. Source: Wikimedia Commons

published his Tratado da sphera com a Theorica do Sol e da Lua in Lisbon in 1537. This was a based on a collection of texts and included the first, theoretical, section of Ptolemaeus’ Geographia. To make it more accessible Nunes published it in Latin, Spanish and Portuguese.

There were, naturally, also other vernacular translations of the work published in the sixteenth century, as for example this description of an Italian translation (borrowed from amateur astronomer and book collector, David Kolb, on Facebook):

Here is another one of the gems from my collection. I proudly present Claudius Ptolemy’s “La Geografia di Claudio Tolomeo Alessandrino” that was published in 1574. This volume is an expanded edition of his treatise on geography. Claudius Ptolemy lived in Alexandria during the 2nd century and is better known by astronomers for his astronomical treatise “The Almagest”. This is the third edition of the Italian translation by Girolamo Ruscelli, which was first printed by Vincenzo Valgrisi in Venice, in 1561. This edition is revised and corrected by Giovanni Malombra. The engraved maps, which are enlarged copies of Giacomo Gastaldi’s maps in his Italian edition of Venice, 1548, are generally the same in the Venice 1561, 1562 (Latin), and 1564 editions printed in Venice. Sixty-three of the maps are printed from the same plates as the 1561 edition. The exceptions are the Ptolemaic world map, “Tavola prima universale antica, di tutta la terra conosciura fin’ a’ tempi di Tolomeo,” which is on a revised conical projection, and the additional map “Territorio di Roma duodecima tavola nuova d’Europa” which is new to this edition. The atlas contains 27 Ptolemaic maps and 38 new maps.

The cosmographer Gerard Mercator (1512–1594), famous for introducing the name atlas for a collection of maps, initially intended to publish a large multi-volume work, which he never completed before he died.

Mercator the Frans Hogenberg portrait of 1574 Source: Wikimedia Commons

The first volume was intended to be his Geographia. In 1578 he published his Tabulae geographicae Cl. Ptolemaei ad mentem auctoris restitutis ac emendatis. (Geographic maps according to Claudius Ptolemy, drawn in the spirit of the author and expanded by Gerard Mercator). This was followed by a second edition in 1584 his Geographiae Libri Octo: recogniti iam et diligenter emendati, containing his revised version of Ptolemaeus’ text.

Geographiae Libri Octo :recogniti iam et diligenter emendati cum tabulis geographicis ad mentem auctoris restitutis ac emendatis ; Cum gratia & Priuilegio Sac Caes. Maiestat. Source:

 I hope I have made clear just how important the rediscovery of the Geōgraphikḕ Hyphḗgēsis was in the fifteenth and sixteenth centuries given the number of editions, of which I have only named a few, and the status of the authors, who produced those editions. In the next episode we will examine its impact on the map making in Europe during this period. 

3 Comments

Filed under Early Scientific Publishing, History of Cartography, Renaissance Science

An eighteenth-century cartographical community in Nürnberg

If you walk up Burgstraße in the city of Nürnberg in the direction of the castle, you will see in front of you the impressive Baroque Fembohaus, which from 1730 to 1852 was the seat of the cartographical publishing house Homännische Erben, that is “Homann’s Heirs” in English. But who was Homann and why was the business named after his heirs?

Fembohaus_Nürnberg_004

Fembohaus Source: Wikimedia Commons

Johann Baptist Homann (1664–1724) was born in Öberkammlach in the south of Bavaria. He was initial educated at a Jesuit school and at some point, entered the Dominican Cloister in Würzburg, where he undertook, according to his own account, his “studia humaniora et philosophica.”

Homann,_Johann_Baptist_(1664-1725)

Johann Baptists Homann (1664–1725) Portrait by Johann Wilhelm Windter (c. 1696– 1765) Source: Wikimedia Commons

In 1687 he left the cloister moved to Nürnberg and converted to Protestantism. Over the next ten years he vacillated between Catholicism and Protestantism, leaving Nürnberg during the Catholic phases, and returning during the Protestant phases. In 1691 in Nürnberg, he was registered for the first time as a notary public. Around the same time, he started his career as a map engraver. It is not known how or where he learnt this trade, although there are claims that he was entirely self-taught. A map of the district surrounding Nürnberg, produced in 1691/92, shows Homann already as a master in cartographic engraving. From 1693 to 1695 he was in Vienna, then he returned for a time to Nürnberg, leaving again for Erlangen in 1696. Around 1696 to 1697, he was engraving maps in Leipzig.

He appears to have final settled on life as a protestant and permanent residency in Nürnberg in 1698. In 1702 he established a dealership and publishing house for cartography in the city, producing and selling maps, globes, and atlases. His dealership also produced and sold scientific instruments. The field that Homann had chosen to enter was by the beginning of the eighteenth century well established and thriving, with a lot of very powerful competition, in particular from France and Holland. Homann entered the market from a mercantile standpoint rather than a scientific one. He set out to capture the market with high quality products sold more cheaply than the competition, marketing copies of maps rather than originals. In a relatively short time, he had established himself as the dominant cartographical publisher in Germany and also a European market leader.

Homann_-_Planiglobii_Terrestris_Cumutroq_Hemisphaerio_Caelesti

Planiglobii Terrestris Cum Utroq[ue] Hemisphærio Cælesti Generalis Exhibitio, Nürnberg 1707 Source: Wikimedia Commons

His dealership offered single sheet maps for sale, but he became the first German cartographer to sell atlases on a large scale and is considered the second most important German cartographer after Mercator. His first atlas with forty maps appeared in 1707. This was expanded to the Großen Atlas über die ganze Welt (The Big Atlas of the Entire World), with one hundred and twenty-six maps in 1716.

1716_Homann_Map_of_Burgundy,_France_-_Geographicus_-_Burgundiae-homan-1716-2

A fine example of Homann’s 1716 map of Burgundy, one of France’s most important wine regions. Extends to include Lake Geneva in the southwest, Lorraine in the north, Champaigne (Champagne) and Angers to the northwest and Bourgogne to the west. Depicts mountains, forests, castles, and fortifications and features an elaborate title cartouche decorated with cherub winemakers in the bottom right. A fine example of this rare map. Produced by J. H. Homann for inclusion in the Grosser Atlas published in Nuremberg, 1716. Source: Wikimedia Commons

By 1729 it had around one hundred and fifty maps. Johann Baptist’s success was richly acknowledged in his own lifetime. In 1715 he was appointed a member of the Preußischen Akademie der Wissenschaften (The Prussian Academy of Science) and in 1716 he was appointed Imperial Geographer by the Holy Roman Emperor, Karl VI.

1730_Homann_Map_of_Scandinavia,_Norway,_Sweden,_Denmark,_Finland_and_the_Baltics_-_Geographicus_-_Scandinavia-homann-1730

A detailed c. 1730 J. B. Homann map of Scandinavia. Depicts both Denmark, Norway, Sweden, Finland and the Baltic states of Livonia, Latvia and Curlandia. The map notes fortified cities, villages, roads, bridges, forests, castles and topography. The elaborate title cartouche in the upper left quadrant features angels supporting a title curtain and a medallion supporting an alternative title in French, Les Trois Covronnes du Nord . Printed in Nuremburg. This map must have been engraved before 1715 when Homann was appointed Geographer to the King. The map does not have the cum privilegio (with privilege; i.e. copyright authority given by the Emperor) as part of the title, however it was included in the c. 1750 Homann Heirs Maior Atlas Scholasticus ex Triginta Sex Generalibus et Specialibus…. as well as in Homann’s Grosser Atlas . Source: Wikimedia Commons

The publishing house continued to grow and prosper until Johann Baptist’s death in 1724, when it was inherited by his son Johann Christian Homann (1703–1730).

Johann Christian studied medicine and philosophy in Halle. He graduated doctor of medicine in 1725, following which he went on a study trip, first returning to Nürnberg in 1729. During his absence the publishing house was managed by Johann Georg Ebersberger (1695–1760) and later together with Johann Christian’s friend from university Johann Michael Franz (1700­–1761).

homann-north-africa-morocco-1728

Hand coloured copper engraving by J. Chr. Homann, showing noth west Africa with the Canary Islands and two large cityviews. Source: Wikimedia Commons

When Johann Christian died in 1730, he willed the business to Ebersberger and Franz, who would continue to run the business under the name Homännische Erben. The publishing house passed down through several generations until Georg Christoph Fembo (1781­–1848) bought both halves of the business in 1804 and 1813. Fembo’s son closed the business in 1852 and in 1876 the entire collection of books, maps, engravings, and drawing were auctioned off, thus destroying a valuable source for the history of German cartography.

Today there is a big market for fictional maps based on fantasy literature such as Lord of the Rings. This is nothing new and Early Modern fiction also featured such fictional maps, for example Thomas More’s Utopia (1516). One very popular medieval myth concerns the Land of Cockaigne, a fictional paradise of pleasure and plenty also known as The Land of Milk and Honey. The German version is Schlaraffenland (literally the Land of the Lazy Apes). The most well-known version of the myth in the seventeenth century was written by Johann Andreas Schneblins (d. 1702) and based on Schneblins’ account of his travels in the utopia of Schlaraffenland Homann produced a map his very popular Accurata Utopiae Tabula.

2880px-1694_-_Johann_Baptist_Homann_Schlarraffenlandes_(Accurata_Utopiæ_Tabula)

“Accurata Utopiæ Tabula” (also named “Schlarraffenlandes”) designed by Johann Baptist Homann and printed in 1694 Source: Wikimedia Commons

From the very beginning one distinctive feature of the publishing house was Homann’s active cooperation with other scholars and craftsmen. From the beginning Johann Baptist worked closely with the engraver, art dealer, and publisher Christoph Weigel the Older (1665–1725).

ChristophWeigelBernhardVogel1735

Christoph Weigel, engraved by Bernhard Vogel of a portrait by Johann Kupetzky Source:Wikimedia Commons

Weigel’s most significant publication was his Ständebuch (1698) (difficult to translate but Book of the Trades and Guilds).

Der Pulvermacher Kupferstich Regensburger Ständebuch 1698 Christoph Weigel der Ältere 1654 172

Gunpowder makers, engraving Regensburger Ständebuch, 1698, Christoph Weigel der Ältere (1654, 1725)

Weigel was very successful in his own right but he cooperated very closely with Homann on his map production.

Homann also cooperated closely with the scholar, author, schoolteacher, and textbook writer Johann Hübner (1668–1731).

1920px-PPN663957095_Bildnis_von_Johann_Hübner

Johann Hübner, engraving by Johann Kenckel Source: Wikimedia Commons

Together the two men produced school atlases according to Hübner’s pedagogical principles. In 1710 the Kleiner Atlas scholasticus von 18 Charten (Small School Atlas with 18 Maps) was published.

H3419-L41619877

Kleiner Atlas scholasticus von 18 Charten

This was followed in 1719 by the Johann Baptist Homann / Johann Hübner: Atlas methodicus / explorandis juvenum profectibus in studio geographico ad methodum Hubnerianam accommodatus, a Johanne Baptista Homanno, Sacrae Caesareae Majestatis Geographo. Noribergae. Anno MDCCXIX. Methodischer Atlas / das ist, Art und Weise, wie die Jugend in Erlernung der Geographie füglich examiniret werden kann / nach Hübnerischer Lehr-Art eingerichtet von Johann Baptist Homann, Nürnberg, 1719. The title, given here in both Latin and German translates as Methodical Atlas in the manner in which the youth can be reasonably examined in the study of geography according to the pedagogic principles of Hübner, presented by Johann Baptist Homann.

00432031

Charte von Europa. Charte von Asia. Charte von Africa. Charte von America. Johanne Baptista Homanno, Norimbergae, 1719 Atlas methodicus / explorandis juvenum profectibus in studio geographico ad methodum Hubnerianam accommodatus

Johann Gottfried Gregorii (1685–1770) was a central figure in the intellectual life of eighteenth-century Germany. A geographer, cartographer, historian, genealogist, and political journalist, he put out a vast number of publications, mostly under the pseudonym Melissantes.

OLYMPUS DIGITAL CAMERA

Johann Gottfried Gregorii Source: Wikimedia Commons

In his geographical, cartographical, and historical work he cooperated closely with both Johann Baptist Homann and Christoph Weigel.

 One of the Homann publishing house’s most important cooperation’s was with the Nürnberg astronomer Johann Gabriel Doppelmayr (1677–1750).

doppelmayr

Johann Gabriel Doppelmayr Source: Wikimedia Commons

Doppelmayr was professor for mathematics at the Aegidianum, Germany’s first modern high school, and is best known for two publication his Historische Nachricht Von den Nürnbergischen Mathematicis und Künstlern (1730), an invaluable source for historian of science and his celestial atlas, Atlas Novus Coelestis (1742). Doppelmayr had been supplying celestial charts for the Homann atlases but his Atlas Novus Coelestis, which was published by Homännische Erben, contained thirty spectacular colour plates and was a leading celestial atlas in the eighteenth century.

ac_06

PHÆNOMENA circa quantitatem dierum artificialium et solarium perpetuo mutabilem, ex Hypothesi copernicana deducta, cum aliis tam Veterum quam recentiorum Philosophorum, Systematibus mundi notabilioribus, exhibita – Engraved between 1735 and 1742.

Doppelmayr’s successor as professor of mathematics at the Aegidianum was Georg Moritz Lowitz (1722–1774), who went on to become professor for practical mathematics at the University of Göttingen.

Georg_Moriz_Lowiz_AGE_V06_1800

Georg Moriz Lowiz Source: Wikimedia Commons

He worked together with Johann Michael Franz and produced several astronomical publications for the Homännische Erben. Franz as well as being co-manager of the publishing house was also an active geographer, who became professor in Göttingen in 1755. He also published a series of his own books on geographical themes. He sold his share of the publishing house on his younger brother Jacob Heinrich Franz (1713–1769) in 1759.

4f500586-68e0-44cf-85aa-047caeed474b

Johann Michael Franz: Belgium, Luxemburg; Johann Michael Franz – Circulus Burgundicus – 1758

Without any doubt Homann’s most important or significant employee, at least with hindsight, was the cartographer and astronomer Tobias Mayer (1723–1762), who is these days is best known for having calculated the Moon’s orbit accurately enough to make the lunar distance method of determining longitude viable. A self-taught mathematicus he had already published a town plan of Esslingen, two books on mathematics and one on fortifications, when he was appointed to the Homännische Erben in 1746.

tobias_mayer_age_1799

Tobias Mayer Source: Wikimedia Commons

It was during his time in Nürnberg that he did his work on lunar astronomy. Like Lowitz, and Franz, Mayer also became a professor in Göttingen, in his case for economics and mathematics.

The three Göttingen professors–Lowitz, Franz, and Mayer–whilst still working for Homann in Nürnberg founded the Cosmographische Gesellschaft (Cosmographical Society), with the aim of improving the standards of cartography and astronomy. Due to lack of funding they never really got their plans of their grounds. Their only products being some propaganda publications for the society written by Franz and one publication from Mayer on his lunar research.

Abb.-58-Tobias-Mayer-Bericht-von-den-Mondskugeln-1750

Each of the scholars, briefly sketched here was a leading figure in the intellectual landscape of eighteenth-century Germany and they were all to some extent rivals on the open knowledge market. However, they cooperated rather than competed with each other and in doing so increased the quality of their output.

Leave a comment

Filed under Early Scientific Publishing, History of Astronomy, History of Cartography

The alchemist, who became a cosmographer

As an Englishman brought up on tales, myths and legends of Francis Drake, Walter Raleigh, Admiral Lord Nelson, the invincible Royal Navy and Britannia rules the waves, I tend not to think about the fact that Britain was not always a great seafaring nation. As an island there were, of course, always fisher boats going about their business in the coastal waters and archaeology has shown us that people have been crossing the strip of water between Britain and the continent, as long as the island has been populated. However, British sailors only really began to set out onto the oceans for distant lands in competition to their Iberian brethren during the Early Modern Period. Before the start of these maritime endeavours there was a political movement in England to get those in power to take up the challenge and compete with the Spanish and the Portuguese in acquiring foreign colonies, gold, silver and exotic spices. One, today virtually unknown, man, whose writings played a not insignificant role in this political movement was the alchemist Ricard Eden[1] (c. 1520–1576).

Richard Eden[2] was born into an East Anglian family of cloth merchants and clerics, the son of George Eden a cloth merchant. He studied at Christ’s College Cambridge (1534–1537) and then Queen’s College, where he graduated BA in 1538 and MA in 1544. He studied under Sir Thomas Smith (1533–1577) a leading classicist of the period, who was also politically active and a major supporter of colonialism, which possibly influenced Eden’s own later involvement in the topic.

Sir_Thomas_Smith,_ob._1577_(c._early_19th_century)

A c. 19th-century line engraving of Sir Thomas Smith. Source: Wikimedia Commons

Through Smith, Eden was introduced to John Cheke (1514–1557), Roger Ascham (c. 1515–1568) and William Cecil (1520–1598), all of whom were excellent classicists and statesmen. Cecil would go on under Elizabeth I to become the most powerful man in England. From the beginning Eden moved in the highest intellectual and political circles.

After leaving Cambridge Eden was appointed first to a position in the Treasury and then distiller of waters to the royal household, already indicating an interest in and a level of skill in alchemy. Eden probably acquired his interest in alchemy from his influential Cambridge friends, who were all eager advocates of the art. However, he lost the post, probably given to someone else by Somerset following Henry VIII’s death in 1547 and so was searching for a new employer or patron.

Through a chance meeting he became acquainted with the rich landowner Richard Whalley, who shared his interest in alchemy. Whalley provided him with a house for his family and an income, so that he could devote himself to both medicinal and transmutational alchemy. His activities as an alchemist are not of interest here but one aspect of his work for Whalley is relevant, as it marked the beginning of his career as a translator.

Whalley was obviously also interested in mining for metal ores, because he commissioned Eden to translate the whole of Biringuccio’s Pirotechnia into English. Although he denied processing any knowledge of metal ores, Eden accepted the commission and by 1552 he had completed twenty-two chapters, that is to the end of Book 2. Unfortunately, he lent the manuscript to somebody, who failed to return it and so the project was never finished. In fact, there was no English translation of the Pirotechnia before the twentieth century. Later he produced a new faithful translation of the first three chapters dealing with gold, silver and copper ores, only omitting Biringuccio’s attacks on alchemy, for inclusion, as we shall see, in one of his later works.

800px-de_la_pirotechnia_1540_title_page_aq1_1

Title page, De la pirotechnia, 1540, Source: Science History Museum via Wikipedia Commons

In 1552, Eden fell out with Whalley and became a secretary to William Cecil. It is probable the Cecil employed him, as part of his scheme to launch a British challenge to the Iberian dominance in global trade. In his new position Eden now produced a translation of part of Book 5 of Sebastian Münster’s Cosmographia under the title A Treatyse of the New India in 1553. As I explained in an earlier blog post Münster’s Cosmographia was highly influential and one of the biggest selling books of the sixteenth century.

treatyseofnewein00mnst

This first cosmographical publication was followed in 1555 by his The Decades of the newe worlde or west India, containing the nauigations and conquests of the Spanyardes… This was a compendium of various translations including those three chapters of Biringuccio, probably figuring that most explorers of the Americas were there to find precious metals. The main parts of this compendium were taken from Pietro Martire d’Anghiera’s De orbe novo decades and Gonzalo Fernández de Oviedo y Valdés’ Natural hystoria de las Indias.

edens-decades-of-the-c_13_a_8_title_page

Source: The British Library

Pietro Martire d’Anghiera (1457–1526) was an Italian historian in the service of Spain, who wrote the first accounts of the explorations of Central and South America in a series of letters and reports, which were published together in Latin. His De orbe novo (1530) describes the first contacts between Europeans and Native Americans.

Deorbonovo_(1)

Source: Wikimedia Commons

Gonzalo Fernández de Oviedo y Valdés (1478–1557) was a Spanish colonist, who arrived in the West Indies a few years after Columbus. His Natural hystoria de las Indias (1526) was the first text to introduce Europeans to the hammock, the pineapple and tobacco.

Oviedo_MS_pineapple

MS page from Oviedo’s La Natural hystoria de las Indias. Written before 1535, this MS page is the earliest known representation of a pineapple Source: Wikimedia Commons

Important as these writings were as propaganda to further an English involvement in the new exploration movement in competition to the Iberian explorers, it was probably Eden’s next translation that was the most important.

As Margaret Schotte has excellently documented in her Sailing School (Johns Hopkins University Press, 2019) this new age of deep-sea exploration and discovery led the authorities in Spain and Portugal to the realisation that an active education and training of navigators was necessary. In 1552 the Spanish Casa de la Contratación established a formal school of navigation with a cátedra de cosmografia (chair of cosmography). This move to a formal instruction in navigation, of course, needed textbooks, which had not existed before. Martín Cortés de Albacar (1510–1582), who had been teaching navigation in Cádiz since 1530, published his Breve compendio de la sphere y de la arte de navegar in Seville in 1551.

2880px-Retrato_de_Martín_Cortes._De_Bujaraloz

Retrato de Martín Cortés, ilustración del Breve compendio de la sphera y de la arte de navegar, Sevilla, 1556. Biblioteca Nacional de España via Wikimedia Commons

In 1558, an English sea captain from Dover, Stephen Borough (1525–1584), who was an early Artic explorer, visited Seville and was admitted to the Casa de la Contratación as an honoured guest, where he learnt all about the latest instruments and the instruction for on going navigators. On his return to England, he took with him a copy of Cortés’ Breve compendio, which he had translated into English by Richard Eden, as The Arte of Navigation in 1561. This was the first English manual of navigation and was immensely popular going through at least six editions in the sixteenth century.

RE84TP

In 1562, Eden became a companion to Jean de Ferrières, Vidame of Chartres, a Huguenot aristocrat, who raised a Protestant army in England to fight in the French religious wars. Eden, who was acknowledged as an excellent linguist, stayed with de Ferrières until 1573 travelling extensively throughout France and Germany. Following the St. Batholomew’s Day massacre, which began in the night of 23–24 August 1572, Eden together with de Ferrières party fled from France arriving in England on 7 September 1573. At de Ferrières request, Elizabeth I admitted Eden to the Poor Knights of Windsor, a charitable organisation for retired soldiers, where he remained until his death in 1576.

After his return to England Eden translated the Dutch musician and astrologer, Jean Taisnier’s Opusculum perpetua memoria dignissimum, de natura magnetis et ejus effectibus, Item de motu continuio, which was a plagiarism of Petrus Peregrinus de Maricourt’s (fl. 1269) Epistola de magnete and a treatise on the fall of bodies by Giambattista Benedetti (1530–1590) into English.

4307

This was published posthumously together with his Arte of Navigation in 1579. His final translation was of Ludovico de Varthema’s (c. 1470–1517) Intinerario a semi-fictional account of his travels in the east. This was published by Richard Willes in The History of Travayle an enlarged version of his Decades of the newe worlde in 1577.

Eden’s translations and publications played a significant role in the intellectual life of England in the sixteenth century and were republished by Richard Hakluyt (1553–1616) in his The Principal Navigations, Voiages, Traffiques and Discoueries of the English Nation (1589, 1598, 1600), another publication intended as propaganda to promote English colonies in America.

001-3-principal-navigations

Unlike Sebastian Münster or Richard Hakluyt, Eden has been largely forgotten but he made important and significant contributions to the history of cosmography and deserves to be better known.

[1] I want to thank Jenny Rampling, whose book The Experimental Fire, which I reviewed here, made me aware of Richard Eden, although, I have to admit, he turns up, managing to slip by unnoticed in other books that I own and have read.

[2] The biographical details on Eden are mostly taken from the ODNB article. I would like to thank the three wonderful people, who provided me with a pdf of this article literally within seconds of me asking on Twitter

1 Comment

Filed under Early Scientific Publishing, History of Cartography, History of Navigation

Renaissance Science – V

According to the title, this series is supposed to be about Renaissance science but as we saw in the last episode the Renaissance started off as anything but scientific, so what exactly is Renaissance science, does it even exist, and does it actually have anything to do with the language and linguistics movement that kicked of the period that is now known as the Renaissance? I will start with the second of these questions and return later to the other two.

The history of science in its present form is actually a very young discipline, which really only came to fruition in the twentieth century. There are of course early elements of the discipline scattered around the past but the structured academic discipline as we know it only really began in the decades between the two world wars and came to maturity following the second world war. The early discipline was of course very euro-centric, and a major element was the so-called scientific revolution, which was initially seen as a single historical block. Maria Boas Hall (1919–2009) was, as far as I know, the first to divide that block into two parts, a sort of proto scientific revolution, her The Scientific Renaissance 1450–1630 (published, 1962), followed by the full scientific revolution. She was followed in this bifurcation by Peter Dear in his book Revolutionizing the Sciences: European Knowledge in Transition 1500–1700 (originally 2001, 3rd ed. 2019), who sees two phases, 1500-1600 and 1600-1700. These two books established, I think correctly, the idea of a separate Scientific Renaissance, which preceded the Scientific Revolution.

So, what is the nature of this Renaissance science, how did it differ from the existing medieval science and what changed and when going forward into the so-called scientific revolution? There is quite a lot to unpack here and the first thing we need to do is to stop talking about science and instead talk about knowledge, the more correct translation of the Latin term, scientia used in this period. Also, within the scope of scientia, what we might regard as the areas of hard science, which Aristotle called physics, meaning the study of nature, should more appropriately be referred to as natural philosophy. However, medieval natural philosophy was a very restricted area, it included cosmology but did not for example include astronomy, which was a mathematical discipline. Aristotle rejected mathematics as scientia, because its objects were not real. The mathematical disciplines, such as astronomy and optics, were not regarded as belonging to natural philosophy but were given a sort of halfway status. Natural philosophy also didn’t include any of what we would now call the life sciences.

Knowledge in the European medieval context was divided into two completely distinct areas, which didn’t intersect in anyway. On the one side there was the knowledge propagated by the medieval universities, which, as I explained in an earlier post, was almost totally theoretical book knowledge, with almost no practical aspects to it at all. This knowledge was not static, as it is often falsely presented, but evolved over time. However, this evolution was also a theoretical process. The knowledge progressed through debate and the application of argumentation and logic, not through the acquisition of new empirical facts.

The other area of knowledge was artisanal knowledge, that is the knowledge of the maker, the craftsman. This knowledge was empirical and practical, consisting of directions or instruction on how to complete a given task, how to achieve a given aim or fulfil a given assignment. It might, for example, be how to make bricks out of clay, or how to build a stone arch that would be stable and not collapse under load. This knowledge covered a vast range of activities and had been accumulated from a very wide range of sources over virtually the whole of human existence. This knowledge was, traditional, rarely written down but was usually passed on by word of mouth and direct training from master to apprentice, often from father to son over many generations. This knowledge was in general not viewed as knowledge by scholars within the university system.

Starting around fourteen hundred a process of what we would today call crossover began between these two previously distinct and separate areas of knowledge. Scholars began to write learned works about specific areas of artisanal knowledge, a classic example being Georgius Agricola’s De re metallica, published posthumously in 1556, and craftsmen began to write books explaining and elucidating their forms of knowledge, for example the goldsmith Lorenzo Ghiberti’s I commentarii, which remained unfinished in manuscript and unpublished at the time of his death in 1455. It should be noted that before the Renaissance the people we now call artists were regarded as craftsmen. Crossover is here perhaps the wrong term, as people didn’t just cross the boundary in both directions but the boundary itself began to dissolve producing a meld between the two types of knowledge that would over the next two and a half centuries lead to the modern concept of knowledge or science.

What provoked this move towards practical, empirical knowledge during the Renaissance? There are two major areas of development driving this shift in emphasis, as to what constitutes knowledge. The first is general social, political, economical and cultural developments. The rapid increase in long distant trade produced a demand for new methods of navigation and cartography. Changes in concepts of land ownership also drove developments in cartography and the closely associated surveying. Developments in warfare again drove developments in cartography but also in gunnery, a new discipline, and military tactics in general. The invention of gunpowder and with-it military gunnery drove developments in metallurgy, as did other areas where the use of metals increased, for example in the wider use of metal coinage. The greater demand for metals in turn drove the development of mining. Greater wealth in society in general and the perceived need for rulers to display their power through ostentatious display increased the demand for architecture and fine art. The introduction of gunpowder and gunnery also drove the development of architecture because of the need for better defences. These are just some examples of the growing demand for artisanal knowledge within an increasingly urban culture financed by long distance trade.

But what of the movement that gave the Renaissance its name, which we saw was initially language and linguistic based movement, how did this play a role in this move towards the elevation of the status of empirical and practical knowledge if at all? This is in fact our second area of development. Those early Renaissance scholars, who searched for Latin literature texts and orations in the monastic libraries also unearthed Greek and Latin texts on science, technology, mathematics and medicine and in the general renewal of the culture of antiquity also translated and made these texts available, often arguing for their purity in comparison to the texts from the same authors that had come into Europe through the filter of translation into Arabic and then back into Latin. Example of texts that became available for the first time are Vitruvius’ work on architecture De architectura and Ptolemaeus’ Geographia. The latter had been known to the Islamic cartographers but had not been translated into Latin from Arabic during the twelfth century translation movement. As well as bringing new original Greek and Latin manuscripts into circulation the Renaissance scholars introduced a strong empirical element through their philological work. This work was based on an empirical analysis of various copies of a given work as well as an investigation of the plausibility of a given word, phrase or sentence, which didn’t appear to make sense. Beyond this in some areas the Renaissance scholars, as we shall see in more detail later, began to try and understand what the scholars were referring to in specific instances. For example, which plants was Dioscorides referring to in his De meteria medica? The answer to such questions required real empirical research.

The Renaissance opened up a whole new world of practical, empirical knowledge alongside the theoretical book knowledge of the medieval university. The last question is how did this differ from the knowledge of the following period and when did this transition take place?

The emphasis on this Renaissance empirical knowledge was very much on the practical. How can we use it, where and how can it be applied? During the seventeenth century the emphasis changed to one of devising theoretical explanations for all of the freshly won empirical knowledge from the previous two hundred years. The transition is from how do we use or apply it, to how do we explain it. It is impossible to set a firm date for this transition as it was by its very nature a gradual one, so both Boas Hall and Dear are in a certain sense correct with their respective 1630 and 1600. The transition had definitely already begun by 1600 and probably wasn’t finished, yet by 1630. In my case I follow Francis Yates in choosing the end of the Thirty Year’s War in 1648, as I think the transition had been completed by then at the latest.

6 Comments

Filed under History of Cartography, History of Navigation, History of science, Renaissance Science

Illuminating medieval science

 

There is a widespread popular vision of the Middle ages, as some sort of black hole of filth, disease, ignorance, brutality, witchcraft and blind devotion to religion. This fairly-tale version of history is actively propagated by authors of popular medieval novels, the film industry and television, it sells well. Within this fantasy the term medieval science is simply an oxymoron, a contradiction in itself, how could there possible be science in a culture of illiterate, dung smeared peasants, fanatical prelates waiting for the apocalypse and haggard, devil worshipping crones muttering curses to their black cats?

Whilst the picture I have just drawn is a deliberate caricature this negative view of the Middle Ages and medieval science is unfortunately not confined to the entertainment industry. We have the following quote from Israeli historian Yuval Harari from his bestselling Sapiens: A Brief History of Humankind (2014), which I demolished in an earlier post.

In 1500, few cities had more than 100,000 inhabitants. Most buildings were constructed of mud, wood and straw; a three-story building was a skyscraper. The streets were rutted dirt tracks, dusty in summer and muddy in winter, plied by pedestrians, horses, goats, chickens and a few carts. The most common urban noises were human and animal voices, along with the occasional hammer and saw. At sunset, the cityscape went black, with only an occasional candle or torch flickering in the gloom.

On medieval science we have the even more ignorant point of view from American polymath and TV star Carl Sagan from his mega selling television series Cosmos, who to quote the Cambridge History of Medieval Science:

In his 1980 book by the same name, a timeline of astronomy from Greek antiquity to the present left between the fifth and the late fifteenth centuries a familiar thousand-year blank labelled as a “poignant lost opportunity for mankind.” 

Of course, the very existence of the Cambridge History of Medieval Science puts a lie to Sagan’s poignant lost opportunity, as do a whole library full of monographs and articles by such eminent historians of science as Edward Grant, John Murdoch, Michael Shank, David Lindberg, Alistair Crombie and many others.

However, these historians write mainly for academics and not for the general public, what is needed is books on medieval science written specifically for the educated layman; there are already a few such books on the market, and they have now been joined by Seb Falk’s truly excellent The Light Ages: The Surprising Story of Medieval Science.[1]  

falk01

How does one go about writing a semi-popular history of medieval science? Falk does so by telling the life story of John of Westwyk an obscure fourteenth century Benedictine monk from Hertfordshire, who was an astronomer and instrument maker. However, John of Westwyk really is obscure and we have very few details of his life, so how does Falk tell his life story. The clue, and this is Falk’s masterstroke, is context. We get an elaborate, detailed account of the context and circumstances of John’s life and thereby a very broad introduction to all aspects of fourteenth century European life and its science.

We follow John from the agricultural village of Westwyk to the Abbey of St Albans, where he spent the early part of his life as a monk. We accompany some of his fellow monks to study at the University of Oxford, whether John studied with them is not known.

falk02

Gloucester College was the Benedictine College at Oxford where the monks of St Albans studied

We trudge all the way up to Tynemouth on the wild North Sea coast of Northumbria, the site of daughter cell of the great St Alban’s Abbey, main seat of Benedictines in England. We follow John when he takes up the cross and goes on a crusade. Throughout all of his wanderings we meet up with the science of the period, John himself was an astronomer and instrument maker.

Falk is a great narrator and his descriptive passages, whilst historically accurate and correct,[2] read like a well written novel pulling the reader along through the world of the fourteenth century. However, Falk is also a teacher and when he introduces a new scientific instrument or set of astronomical tables, he doesn’t just simply describe them, he teachers the reader in detail how to construct, read, use them. His great skill is just at the point when you think your brain is going to bail out, through mathematical overload, he changes back to a wonderfully lyrical description of a landscape or a building. The balance between the two aspects of the book is as near perfect as possible. It entertains, informs and educates in equal measures on a very high level.

Along the way we learn about medieval astronomy, astrology, mathematics, medicine, cartography, time keeping, instrument making and more. The book is particularly rich on the time keeping and the instruments, as the Abbott of St Albans during John’s time was Richard of Wallingford one of England’s great medieval scientists, who was responsible for the design and construction of one of the greatest medieval church clocks and with his Albion (the all in one) one of the most sophisticated astronomical instruments of all time. Falk’ introduction to and description of both in first class.

falk03

The book is elegantly present with an attractive typeface and is well illustrated with grey in grey prints and a selection of colour ones. There are extensive, informative endnotes and a good index. If somebody reads this book as an introduction to medieval science there is a strong chance that their next question will be, what do I read next. Falk gives a detailed answer to this question. There is an extensive section at the end of the book entitled Further Reading, which gives a section by section detailed annotated reading list for each aspect of the book.

Seb Falk has written a brilliant introduction to the history of medieval science. This book is an instant classic and future generations of schoolkids, students and interested laypeople when talking about medieval science will simply refer to the Falk as a standard introduction to the topic. If you are interested in the history of medieval science or the history of science in general, acquire a copy of Seb Falk’s masterpiece, I guarantee you won’t regret it.

[1] American edition: Seb Falk, The Light Ages: The Surprising Story of Medieval Science, W. W. Norton & Co., New York % London, 2020

British Edition: Seb Falk, The Light Ages: A Medieval Journey of Discover, Allen Lane, London, 2020

[2] Disclosure: I had the pleasure and privilege of reading the whole first draft of the book in manuscript to check it for errors, that is historical errors not grammatical or orthographical ones, although I did point those out when I stumbled over them.

5 Comments

Filed under History of Astrology, History of Astronomy, History of Cartography, History of Mathematics, History of Navigation, History of science, Mediaeval Science, Myths of Science

The emergence of modern astronomy – a complex mosaic: Part XLVI

The discovery of stellar aberration was empirical evidence that the Earth orbits the Sun; finding empirical evidence that the Earth rotates daily on its axis proved, perhaps surprisingly, difficult. The first indirect evidence for diurnal rotation in interesting in two ways. Firstly, it is based, not on a single theory but on a chain of interdependent theories. Secondly, it is an interdisciplinary proof involving physics, astronomy, geophysics and geodesy.

That the Earth was a sphere had been accepted in educated European circles since at least the fifth century BCE. The acceptance of this knowledge automatically led to attempts to estimate or in fact measure the size of that sphere. Aristotle claimed that mathematicians had measured the circumference of the Earth to be 400,000 stadia (between 62,800 and 74,000km) which is far to large. Archimedes set an upper limit of 3,000,000 stadia (483,000km), making Aristotle look almost reasonable. One of the earliest serious attempts to measure the circumference of the Earth was that of Eratosthenes, which now has legendary status. It is reported that he calculated a figure of 250,000 stadia. What is not known is which stadium he was using so the error in his value lays somewhere between about 2% and 17%. Eratosthenes was by no means the only thinker in antiquity to give a calculated figure for the Earth’s circumference. Posidonius produced a value, which varies considerably in size in the literature in which it is quoted. Ptolemaeus gives two completely different values 252,000 stadia in his Mathēmatikē Syntaxis and later 180,000 stadia in his Geōgraphikḕ Hyphḗgēsis. In the Middle Ages, the Indian mathematician, Aryabhata, calculated a value for the Earth’s diameter of 12,500km. Islamic scholars also produced varying figures, most famously al-Khwarizmi and al-Biruni. Up till the Early Modern Period nobody could actually say, which of the various values, that were floating around in the available literature, was the correct one, Columbus famously chose the wrong value.

The basic method of determining the circumference of the Earth is to determine the length of a stretch of a meridian, a line of longitude through both poles, and then determine how many degrees of latitude this represents. From this data it is then possible to determine the circumference. This process took a major turn in accuracy with the invention, by Gemma Frisius (1508–1555), of triangulation in the sixteenth century. This meant that it was now possible to exactly measure the length of a stretch of a meridian and by taking the latitudes of the ends of the stretch to determine the length of one degree of latitude.

g-f_triangulation

The Libellus de locorum describendum ratione, Gemma Frisius’ pamphlet outlining completely and in detail the technique of triangulation.

The first mathematicus to try and determine the circumference of the Earth using triangulation was the Dutchman Willebrord Snel (1580–1626), who carried out a triangulation of the Netherlands in the early part of the seventeenth century. He published the results of survey in his Eratosthenes Batavus, De Terræ ambitus vera quantitate in 1617.

default

The first part of the title translates as the Dutch Eratosthenes. Taking the distance between Alkmaar and Breda, which almost lie on the same meridian, he calculated one degree of latitude to be 107.37km giving a circumference of 38,653km, an error of about 3.5%.

337419_0_De_2-1_Fig5_HTML.gif

Snel’s triangulation netwerk Source

Later in the seventeenth century the French astronomer Jean-Félix Picard (1620–1682) now triangulated a meridian arc through Paris, between 1669 and 1670, calculating a value for one degree of latitude of 110.46km producing values for the Earth’s polar radius and circumference with more than 99% accuracy.

picard_meridian_thmb

Picard’s triangulation and his instruments

In 1672 Jean-Dominique Cassini (1625–1712) made an attempt to measure the parallax of Mars in order to determine the astronomical unit, the distance between the Earth and the Sun.

giovanni_cassini

Jean-Dominique Cassini (artist unknown) Source: Wikimedia Commons

He sent his assistant Jean Richer (1630–1696) to Cayenne in French Guiana, so that he and Cassini could make simultaneous observations of Mars during its perihelic opposition. We shall return to this in a later episode, but it is another experiment or better said discovery of Richer’s, whilst in Cayenne, that is of interest here. Richer was equipped with all the latest equipment including a state-of-the-art pendulum clock with a seconds pendulum, that is a pendulum whose period is exactly two seconds, or at least it was a seconds pendulum when calibrated in Paris. Richer discovered that in Cayenne that he needed to shorten the pendulum by 2.8mm. As gravity is the driving force of a pendulum clock this meant that the Earth’s gravity was different in Cayenne to in Paris or that Cayenne was further from the Earth’s centre than Paris. The Earth was not, after all, a sphere.

kOT27yU

Jean Richer working in French Guiana from an engaging by Sébastien Leclerc.

Jean-Dominique Cassini and later his son Jacques (1677–1756) extended Picard’s Paris meridian northwards to Dunkirk and southwards to the Spanish border.

Jacques_Cassini

Jacques Cassini Source: Wikimedia Commons

They split the meridian into two and compared lengths for one degree of latitude thus obtained, combining the results with Richer’s pendulum discovery, they proposed and defended the theory that the Earth was not a sphere but a prolate spheroid or an ellipsoid created by rotating an ellipse along its major axis; put in simple terms the Earth was lemon shaped. Jacques Cassini published these results and this theory in his De la grandeur et de la figure de la terre in 1723.

bub_gb_5ylCdOa5ztcC_0016

Both Newton and Huygens interpreted Richer’s pendulum discovery differently. Newton arguing from an assumption of diurnal rotation and his theory of gravity theorised that the Earth was in fact flattened to the poles and a bulge at the equator. That is the Earth is an oblate spheroid or ellipsoid created by rotating an ellipse along its minor axis, put in simple terms the Earth was shaped like an orange. Huygens also arguing from an assumed diurnal rotation but Descartes’ vortex theory, rather than Newton’s theory of gravity, arrived at the same conclusion. What is important here is that the theory depended on the existence of diurnal rotation.

cassinis_ellipsoid_huygens_theoretical_ellipsoid

Given the already strident philosophical debate between the largely French supporters of Descartes and the largely English supporters of Newton, this new dispute between the Cassini, Cartesian, model of the Earth and the Newton-Huygens, Newtonian model, Huygens actually a Cartesian was here viewed as a Newtonian, rumbled on into the early decades of the eighteenth century. Finally, in the 1730s, the Académie des sciences in Paris decided to solve the issue empirically. They equipped and sent out two scientific expeditions to Lapland and to Peru, now part of Ecuador, to measure one degree of latitude.

The expedition to Meänmaa or Torne Valley in Lapland

2560px-Tornedalen-Tornionlaakso.svg

Traditional location of Meänmaa in Norrbotten County (Sweden) and Finnish Lapland Source: Wikimedia Commons

under the leadership of Pierre Louis Maupertuis (1698–1755)

Pierre-Louis_Moreau_de_Maupertuis_(Levrac-Tournières)

Portrait of Maupertuis wearing the costume he adopted for his Lapland expedition by Robert Le Vrac de Tournières

took place successfully in 1736-37, despite atrocious conditions, and their results combined with the results of the Paris meridian showed that the Newton-Huygens model was indeed correct.

337419_0_De_2-1_Fig8_HTML.gif

Map of the Lapland triangulation Source

Maupertuis published his account of the expedition La Figure de la Terre, déterminée par les Observations de Messieurs Maupertuis, Clairaut, Camus, Le Monier & de M, L’Abbé Outhier accompagnés de M. Celsius. (Paris, 1738).

lf

Jacques Cassini launched a last-ditch attempt to defend his father’s honour and wrote a scathing criticism of the expeditions work in his Méthode de déterminer si la terre est sphérique ou non (Method to determine if Earth is a sphere or not) in 1738. However, the Swedish scientist Anders Celsius (1704–1744), who had also taken part in the expedition completely demolished Cassini’s paper and the Newtonians, of whom Maupertuis although a Frenchman was one, carried the day. Celsius’ De observationibus pro figura telluris determinanda (Observations on Determining the Shape of the Earth) from 1738 made his reputation.

Headshot_of_Anders_Celsius

Portrait of Anders Celsius by Olof Arenius

The second expedition to Peru under the leadership of Pierre Bouguer (1698–1758)

Pierre_Bouguer_-_Jean-Baptiste_Perronneau

Portrait of Pierre Bouguer by Jean-Baptiste Perronneau Source: Wikimedia Commons

and Charles Marie de La Condamine (1701–1774)

Carmontelle,_Monsieur_de_la_Condamine_(1760,_détail)

Portrait of La Condamine by Carmontelle 1760 Source: Wikimedia Commons

actually left Paris a year earlier that the Lapland expedition in 1735. This team had even more difficulties than their northern colleagues and only returned to Paris in 1744. Their results, however confirmed those of the Lapland expedition and the Newton-Huygens oblate spheroid. Bouguer published his account of the expedition in his La figure de la terre (1749),

La_figure_de_la_terre_[...]Bouguer_Pierre_bpt6k1051288w

La Condamine his Journal du voyage fait par ordre du roi, a l’équateur, 1751.

Journal_du_voyage_fait_par_[...]La_Condamine_bpt6k1051290z

Through these two expeditions the Earth had acquired a new shape, it was no longer a sphere but an oblate spheroid, an important advance in the history of geodesy. However, possible more important, because the prediction of the Newton-Huygens model was based on the assumption of diurnal rotation, these results produced the first indirect empirical evidence that the Earth rotates around its own axis. This result combined with the return of Comet Halley in 1759 also led to the final general acceptance of Newtonian theory over Cartesian theory.

10 Comments

Filed under History of Astronomy, History of Cartography, History of Geodesy

Microscopes & Submarines

The development of #histSTM in the early decades of the Dutch Republic, or Republic of the Seven United Netherlands, to give it its correct name, was quite extraordinary. Alongside the development of cartography and globe making, the most advanced in the whole of Europe, there were important figures such as the engineer, mathematician and physicist, Simon Stevin, the inventors of the telescope Hans Lipperhey and Jacob Metius, the mathematical father and son Rudolph and Willebrord Snel van Royan and Isaac Beeckman one of the founders of the mechanical philosophy in physics amongst others. However, one of the most strange and wonderful figures in the Netherlands during this period was, without doubt, the engineer, inventor, (al)chemist, optician and showman Cornelis Jacobszoon Drebbel (1571–1631).

Drebbel_Van_Sichem_ca_1631_groot

Source: Wikimedia Commons

Drebbel is one of those larger than life historical figures, where it becomes difficult to separate the legends and the myths from the known facts, but I will try to keep to the latter. He was born to Jacob Drebbel an Anabaptist in Alkmaar in the province of North Holland. He seems not to have received much formal education but in about 1587 he started attending the Academy of the printmaker, draftsman and painter Hendrick Goltzius (1558–1617) in Haarlem also in North Holland.

1024px-Hendrick_Goltzius_-_Self-Portrait,_c._1593-1594_-_Google_Art_Project

Hendrick Goltzius – Self-Portrait, c. 1593-1594 – Google Art Project Source: Wikimedia Commons

Goltzius was regarded as the leading engraver in the Netherlands during the period and he was also an active alchemist. Drebbel became a skilled engraver under Goltzius’ instruction and also acquired an interest in alchemy. In 1595 he married Sophia Jansdochter Goltzius, Hendrick’s younger sister. They had at least six children of which four survived into adulthood. The legend says that Sophia’s prodigal life style drove Drebbel’s continual need to find better sources for earning money.

1920px-Plattegrond_van_Alkmaar,_1597

Drebbel’s town plan of Alkmaar 1597 Source: Wikimedia Commons

Drebbel initially worked as an engraver, cartographer and painter but somewhere down the line he began to work as an inventor and engineer.

Goltzius_Astronomie

Astronomy [from the series The Seven Liberal Arts]. Engraving by Drebbel Source: Wikimedia Commons

Not surprisingly, for a Netherlander, he a turned to hydraulic engineering receiving a patent for a water supply system in 1598. In 1600 he built a fountain at the Noorderpoort in Middelburg and at the end of his life living in England he was involved in a plan to drain the Fens. At some point, possibly when he was living in Middelburg, he learnt the craft of lens grinding, which would play a central roll in his life.

Also in 1598 he acquired a patent for Perpetuum mobile but which he, however, had not invented. The so-called Perpetuum mobile was a sort of clock, which was in reality powered in changes by the air temperature and air pressure had actually been invented by Jakob Dircksz de Graeff (1571–1638), an influential politician and natural philosopher, who was a friend of both Constantijn Huygens and René Descartes, and Dr Pieter Jansz Hooft (1574/5–1636) a politician, physician and schoolteacher.

1024px-Jacob_de_Graeff

Jakob Dircksz de Graeff Source: Wikimedia Commons

800px-Pieter_Jansz_Hooft

Pieter Jansz Hooft (1619), Attributed to Michiel van Mierevelt Source: Wikimedia Commons

Drebbel not only patented the Perpetuum mobile but also claimed to have invented it. His increasing reputation driven by this wonder machine earned his an invitation to the court of King James VI &I in London as the guest of the crown prince Henry in 1604. When on the court in London the Queen accidentally broke the Perpetuum mobile, Drebbel was unable to repair it.

800px-Drebbel-Clock

The barometric clock of Cornelis Drebbel patented in 1598 and then known as “perpetuum mobile”. Print by Hiesserle von Choda (1557-1665) Source: Wikimedia Commons

At the court in London he was responsible for staging masques, a type of play with poetry, music, dance, and songs that was popular in the sixteenth and seventeenth centuries. He designed and built the stage sets and wonderful machines to enchant the audiences. Drebbel was by no means the only scientist-engineer to be employed to stage such entertainments during the Early Modern Period but he appears to have been very good at it. It was almost certainly Drebbel, who through his contacts imported from the Netherlands the first ever telescope to be seen in England, which was presented to James at the high point of a masque in 1609. He also built a magic lantern and a camera obscura with which he also entertained the members of the court.

Drebbel’s reputation grew to the point where he received an invitation to the court of the Holly Roman Empire, Rudolf II, in Prague in October 1610. Rudolf liked to surround himself with what might be termed wonder workers. Amongst those who had served in this capacity in Prague were Tycho Brahe, John Dee, Edward Kelley, Johannes Kepler and Jost Bürgi. There are no reports of any interactions between Drebbel and either Kepler or Bürgi, who were all on the court of Rudolf at the same time. In Prague he once again functioned as a court entertainer or showman.

1024px-AACHEN,_Hans_von_-_Portrait_of_Emperor_Rudolf_II_-_WGA

AACHEN, Hans von – Portrait of Emperor Rudolf II Source: Wikimedia Commons

Rudolf was deposed by his brother Archduke Mathias in 1611and Drebbel was imprisoned for about a year. Following the death of Rudolf in 1612, Drebbel was released from prison and returned to London. Here, however, his situation was not as good as previously because Henry, his patron, had died in 1612. He kept his head above water as a lens grinder and instrument maker.

As a chemist Drebbel published his best-known written work Een kort Tractaet van de Natuere der Elemente (A short treatise of the nature of the elements) (Haarlem, 1621).

page_1

He was supposedly involved in the invention of the explosive mercury fulminate, Hg(CNO)2, but this is disputed. He also developed other explosive mixtures. He invented a chicken incubator with a mercury thermostat to keep it at a constant, stable temperature. This is one of the earliest feedback controlled devices ever created. He also developed and demonstrated a functioning air conditioning system.

2560px-Error-controlled_regulator_-_Drebbel_and_Ashby.svg

Error-controlled regulator using negative feedback, depicting Cornelius Drebbel’s thermostat-controlled incubator of circa 1600. Source: Wikimedia Commons

He didn’t himself exploit one of his most successful discoveries, one that he made purely by accident. He dropped a flask of aqua regia (a mixture of nitric and hydrochloric acid, normally used to dissolve gold) onto a tin windowsill and discovered that stannous chloride (SnCl2) makes the colour of carmine (the red dye obtained from the cochineal insect) much brighter and more durable. Although Drebbel didn’t exploit this discovery his daughters Anna and Catherina and their husbands the brothers, Abraham and Johannes Sibertus Kuffler (a German inventor and chemist) did, setting up dye works originally in Leiden and then later in Bow in London. The colour was known as Colour Kuffler of Bow Dye and was very successful. Kuffler later continued his father-in-law’s development of self-regulating ovens that he demonstrated to the Royal Society.

In the early 1620s Constantijn Huygens, the father of Christiaan, came to London on a diplomatic mission. He made the acquaintance of Drebbel, who demonstrated his magic lantern and his camera obscura for the Dutch diplomat. Huygens was much impressed by his landsman and for a time became his pupil learning how to grind lenses, a skill that he might have passed onto his sons.

1024px-Constantijn_Huygens_(1596-1687),_by_Michiel_Jansz_van_Mierevelt

Constantijn Huygens (1596-1687), by Michiel Jansz van Mierevelt. Source: Wikimedia Commons

It is not known, who actually invented the microscope and it’s more than likely that the principle of the microscope was discovered by several people, all around the same time, who like Galileo looked through their Galilean or Dutch telescope the wrong way round. What, however, seems to be certain is that Drebbel is the first person known to have constructed a Keplerian telescope, that is with two convex lenses rather than a concave and a convex lens. As with all of his other optical instruments, Drebbel put on microscope demonstration introducing people to the microscopic world, as always the inventor as showman.

Drebbel’s most famous invention was without doubt his submarine. This is claimed to be the first-ever navigable submarine but has become the stuff of legends, how much of story is fact is difficult to assess. His submarine consisted of a wooden frame covered in leather, and one assumes waterproofed in someway; it was powered by oar.

Van_Drebbel-2

Artistic representation of Drebbel’s submarine, artist unknown Source: Wikimedia Commons

It had bladders inside that were filled with water to enable the submarine to submerge; the bladders were emptied when the vessel was required to surface. In total between 1620 and 1624 Drebbel built three different vessels increasing in size. The final submarine had six oars and could carry up to sixteen passengers. Drebbel gave public demonstrations with this vessel on the river Thames. According to reports the vessel dived to a depth of four to five metres and remained submerged for three hours traveling from Westminster and Greenwich and back again. Assuming the reports to be true, there has been much speculation as to how fresh air was supplied inside the closed vessel. These speculations include a mechanical solution with some form of snorkel as well as chemical solutions with some sort of chemical apparatus to generate oxygen. It is also reported that Drebbel took King James on a dive under the Thames. Despite all of this Drebbel failed to find anybody, who would be prepared to finance a serious use of his submarine.

In the later 1620s Drebbel served the Duke of Buckingham as a military advisor but his various suggestions for weapons proved impractical and failed, the British blaming  the inventor and Drebbel blaming the English soldiers, finally ruining whatever reputation he still had. As already stated above towards the end of his life he was supposedly involved in a scheme to drain the Fens but the exact nature of his involvement remains obscure. Drebbel died in financial straights in 1633 in London, where he was scraping a living running a tavern on the banks of the Thames.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 Comments

Filed under History of Alchemy, History of Cartography, History of Chemistry, History of Optics, History of Technology, Renaissance Science

A uniform collection of maps should have been a Theatre but became an Atlas instead but it might have been a Mirror.

Early Modern cartography was centred round a group of pioneers working in the Netherlands in the sixteenth century. The two best-known cartographers being Gerhard Mercator and Abraham Ortelius but they were by no means the only map publishers competing for the market. One notable engraver cartographer, who has slipped out of public awareness, is Gerard de Jode.

1024px-Portret_van_Gerard_de_Jode_Gerardus_de_Jode_(titel_op_object),_RP-P-OB-10.220

Source: Wikimedia Commons

He was born in Nijmegen, then part of the Spanish Lowlands in 1509, which appears to be the sum total of all that is know about his origins or early life; a not uncommon situation with Renaissance figures. At some point he moved to Antwerp and in 1547 he was admitted to the Guild of St Luke. At the time Antwerp was a booming trading city, the second biggest city in Northern Europe after Paris and probably the richest city in Europe. Because of its large population and accumulated wealth it was also a major centre for both the book and map trades.

Antwerpen_hoefn_1598

Map of Antwerp around 1598 Hoefnaegels, cartographer XVIth century Source: Wikimedia Commons

The Guild of St Luke was principally the guild for painters and other artists and De Jode was an engraver. To become a guild member he would have had to have been a master, so we can assume that he had served an apprenticeship and worked as a journeyman engraver prior to becoming a guild member.  He received permission to set up a printing office in Antwerp in 1551.

c543e92451de9d67ac6749870fee25a2

Coat of arms of the Antwerp Guild of Saint Luke

This was not a one-man business and he employed a number of skilled engravers, who are well known craftsmen. His workshop produced a wide range of engraved products but he appears to have specialised to a certain extent in cartography and map production. Antwerp was a major centre for the map trade and De Jode printed and published single maps by notable cartographers.

In 1555 he issued an edition of the world map of the renowned Venetian cartographer Giacomo Gastaldi (c. 1500–1566). Gastaldi had originally been an engineer working for the Venetian Republic but in the 1640s he turned to cartography. His 1648 edition of Ptolemaeus’ Geographia is notable for including regional maps of the Americas and for being reduced in size to produce the first ‘pocket’ atlas. It also represents a shift from woodblock to copper plate printing in cartography. His world map is interesting in that it shows the Americas and Asia as a single conjoined landmass, a common geographical misconception of the period.

default-2

Paolo Forlani & Ferando Bertelli, world map based on world map of Giacomo Gastaldi Source: Library of Congress

In 1558 he produced an edition of Jacob van Deventer’s map of Brabant.

jacob-van-deventer-hertogdom-brabant

hertogdom Brabant uit 1540 door Jacob van Deventer Source

Jacob van Deventer (c. 1500–1575) was born in Kampen, also in the Spanish Lowlands. He is part of the mathematical heritage of the University of Leuven, where he registered as a student in 1520. It was in Leuven that he developed his interest in geography and cartography. He later moved to Mechelen and in 1572 to Köln to escaped the Dutch Revolt against the Spanish. In 1536 he produced the map of Brabant that De Jode would later reprint. It is the earliest known map to use the method of triangulation first described in print by Gemma Frisius (1508–1555) in his Libellus de locorum describendorum ratione (1533).

g-f_triangulation-2

It was once thought that Deventer had learnt the technique from Gemma but given that Gemma’s book was only published in 1533 and Van Deventer’s map already in 1536 it seems improbable. Two other possibilities are that Gemma learnt the technique from Deventer or they both learnt it from a third unknown source. We will probably never know.

Deventer was appointed Imperial Cartographer by Charles V in 1540, the title being changed to Royal Cartographer after the emperor’s abdication in 1555. In 1559 he was commissioned to survey and map all of the cities in the Spanish Lowlands, a task that he completed with great competence. Due to their military significance the maps were never published.

Asperen1560

Town plan of Asperen c. 1560 by Jacob van Deventer Source: Wikimedia Commons

In 1564 De Jode published another world map by a famous cartographer, the eight-sheet wall map of Abraham Ortelius (1527–1598), which would later appear in reduced form in Ortelius’ Theatrum Orbis Terrarum (1570).

1920px-OrteliusWorldMap1570

Ortelius World Map in reduced form from Theatrum Orbis Terrarum (1570) Source: Wikimedia Commons

This was actually Ortelius’ first published map and De Jode would also produce a reduced version of it. The two cartographers would go on to become serious rivals.

It is not known if De Jode independently came up with the idea of producing a book of uniform maps, what we now call an atlas, or whether he was inspired by Ortelius’ endeavour but he produced his own Speculum Orbis Terrarum.

Gerard_De_Jode,_Universi_Orbis_seu_Terreni_Globi,_1578

Gerade de Jode’s World Map 1578 Source: Wikimedia Commons

Whereas Ortelius presented the world on a stage as a theatre, De Jode held a mirror up to the globe reflecting it in his maps.  It appears that Ortelius used his reputation and his influential connections to enforce his monopoly and De Jode’s Speculum first appeared in 1578, when Ortelius’ official printing privilege for Antwerp ended. However, by that time Ortelius had established himself so well in the market that De Jode’s atlas suffered the same fate as Mercator’s and flopped, although it was considered at least as good as if not actually superior to Ortelius’ Theatrum.

However, De Jode appears not to have been too dispirited by the failure of his project as he set about preparing a second expanded edition. Rather like Mercator, he died in 1591 before he could complete this work and like Mercator, it was his son Cornelius de Jode (1568–1600), who completed the work and issued the Speculum Orbis Terrae in 1593.

Speculum_Orbis_Terrae

Title page of Speculum Orbis Terrae. 1593 Source: Wikimedia Commons

1920px-Africa_1593,_Gerard_de_Jode_(3805116-recto)

Africa Gerade de Jode 1593 Source: Wikimedia Commons

1024px-Jode,_Quiviræ_Regnum_cum_aliis_versus_Boream_(1593)-2

Map Quiviræ Regnum cum aliis versus Boream from the Speculum Orbis Terræ. This map is one of the earliest depictions of the North American West Coast based on a veröffentlichten world map published by Petrus Plancius 1592 Source: Wikimedia Commons

This too failed to sell well. The book however, features a pair of interesting polar projection world maps strongly influenced by Guillaume Postel’s polar planisphère from 1578.

6b6762c511e1c2cc7fd312b62d543fe8

Guillaume Postel polar projection world map 1578

Guillaume Postel (1510-1581) was a French polymath principally known as a linguist, he was also an astronomer, cosmologists, cartographer, cabbalist, diplomat and religious universalist.

1024px-Guillaume_Postel_-_Thevet

Postel as depicted in Les vrais pourtraits et vies des hommes illustres grecz, latins et payens (1584) by André Thevet Source: Wikimedia Commons

Tried by the Inquisition in 1553 for heresy he was found insane and imprisoned in the Papal prisons in Rome. He was released in 1559 but then confined in a monastery in Paris from 1566 till his death. Postel did not invent the polar projection; it had already been used by Walter Ludd (1448–1547)–administrator of the Gymnasium Vosagense, whose most well known member was the cartographer Martin Waldseemüller(c. 1470–1520)–for a diagram in Gregor Reisch’s Margarita philosophica (1512), but Postel’s was the first large scale use of the projection and it influenced not just De Jode.

1024px-Gerard_de_Jode_1593_Map_Northern_hemisphere

Gerard de Jode polar projection map of the Northern hemisphere. Color print from copper engraving (printer Arnold Coninx), Antwerp, 1593. Source: Wikimedia Commons

1024px-Gerard_de_Jode_1593_Map_Southern_hemisphere

Gerard de Jose polar projection map of the Southern Hemisphere Source: Wikimedia Commons

Following Cornelius’ death the plates for the De Jode Speculum were sold to the Antwerp book and print seller Joan Baptista Vrients, who also acquired the plates for Ortelius’ Theatrum at about the same time. Although Vrients published several very successful editions of the Theatrum in the early years of the seventeenth century, he never reissued the Speculum, so it appears he only acquired it to remove a potential competitor from the market.

It should not be thought that because his atlas project failed that De Jode was not in general successful. His business in Antwerp was very successful turning out prints of all kinds and he also had a flourishing stand at the Frankfurt Book Fair where he not only sold his wares but acquired foreign prints and maps that he then copied for his own printing office back home. Following the death of Gerard and his oldest son Cornelius the family business was set forth by his second son Pieter de Jode the elder (1570–1634), an artist and engraver, who became a master of the Guild of St Like in Antwerp in 1599.

1024px-Lucas_Emil_Vorsterman_after_Sir_Anthony_van_Dyck,_Pieter_de_Jode_the_Elder,_probably_1626-1641,_NGA_39259_(cropped)

Pieter de Jode the Elder by Lucas Emil Vorsterman after Sir Anthony van Dyck Source: Wikimedia Commons

He in turn was succeeded by his son Pieter de Jode (1606–1674) the younger, also an artist and engraver.

Pieter_de_jode_II

Portrait of Pieter de Jode the younger based on portrait by Thomas Willeboirts Bosschaert

The line ended with Pieter the younger’s son Arnold born in 1638, who although he studied engraving under his father never rose to the standards of his illustrious forebears.

I find it an interesting speculation that if De Jode’s Speculum had been successful, we today take down a mirror from the bookshelf to look at maps of the world.

Leave a comment

Filed under Early Scientific Publishing, History of Cartography

How Renaissance Nürnberg became the Scientific Instrument Capital of Europe

This is a writen version of the lecture that I was due to hold at the Science and the City conference in London on 7 April 2020. The conference has for obvious reasons been cancelled and will now take place on the Internet. You can view the revised conference program here.

The title of my piece is, of course, somewhat hyperbolic, as far as I know nobody has ever done a statistical analysis of the manufacture of and trade in scientific instruments in the sixteenth century. However, it is certain that in the period 1450-1550 Nürnberg was one of the leading European centres both for the manufacture of and the trade in scientific instruments. Instruments made in Nürnberg in this period can be found in every major collection of historical instruments, ranging from luxury items, usually made for rich patrons, like the column sundial by Christian Heyden (1526–1576) from Hessen-Kassel

heyden002

Column Sundial by Christian Heyden Source: Museumslandschaft Hessen-Kassel

to cheap everyday instruments like this rare (rare because they seldom survive) paper astrolabe by Georg Hartman (1489–1564) from the MHS in Oxford.

49296

Paper and Wood Astrolabe Hartmann Source: HSM Oxford

I shall be looking at the reasons why and how Nürnberg became such a major centre for scientific instruments around 1500, which surprisingly have very little to do with science and a lot to do with geography, politics and economics.

Like many medieval settlements Nürnberg began simply as a fortification of a prominent rock outcrop overlooking an important crossroads. The first historical mention of that fortification is 1050 CE and there is circumstantial evidence that it was not more than twenty or thirty years old. It seems to have been built in order to set something against the growing power of the Prince Bishopric of Bamberg to the north. As is normal a settlement developed on the downhill slopes from the fortification of people supplying services to it.

Nuremberg_chronicles_-_Nuremberga

A fairly accurate depiction of Nürnberg from the Nuremberg Chronicle from 1493. The castles (by then 3) at the top with the city spreading down the hill. Large parts of the inner city still look like this today

Initially the inhabitants were under the authority of the owner of the fortification a Burggraf or castellan. With time as the settlement grew the inhabitants began to struggle for independence to govern themselves.

In 1200 the inhabitants received a town charter and in 1219 Friedrich II granted the town of Nürnberg a charter as a Free Imperial City. This meant that Nürnberg was an independent city-state, which only owed allegiance to the king or emperor. The charter also stated that because Nürnberg did not possess a navigable river or any natural resources it was granted special tax privileges and customs unions with a number of southern German town and cities. Nürnberg became a trading city. This is where the geography comes into play, remember that important crossroads. If we look at the map below, Nürnberg is the comparatively small red patch in the middle of the Holy Roman Empire at the beginning of the sixteenth century. If your draw a line from Paris to Prague, both big important medieval cities, and a second line from the border with Denmark in Northern Germany down to Venice, Nürnberg sits where the lines cross almost literally in the centre of Europe. Nürnberg also sits in the middle of what was known in the Middle Ages as the Golden Road, the road that connected Prague and Frankfurt, two important imperial cities.

p500ME_Eng_g1

You can also very clearly see Nürnberg’s central position in Europe on Erhard Etzlaub’s  (c. 1460–c. 1531) pilgrimage map of Europe created for the Holy Year of 1500. Nürnberg, Etzlaub’s hometown, is the yellow patch in the middle. Careful, south is at the top.

1024px-Rompilger-Karte_(Erhard_Etzlaub)

Over the following decades and centuries the merchant traders of Nürnberg systematically expanded their activities forming more and more customs unions, with the support of various German Emperors, with towns, cities and regions throughout the whole of Europe north of Italy. Nürnberg which traded extensively with the North Italian cities, bringing spices, silk and other eastern wares, up from the Italian trading cities to distribute throughout Europe, had an agreement not to trade with the Mediterranean states in exchange for the Italians not trading north of their northern border.

As Nürnberg grew and became more prosperous, so its political status and position within the German Empire changed and developed. In the beginning, in 1219, the Emperor appointed a civil servant (Schultheis), who was the legal authority in the city and its judge, especially in capital cases. The earliest mention of a town council is 1256 but it can be assumed it started forming earlier. In 1356 the Emperor, Karl IV, issued the Golden Bull at the Imperial Diet in Nürnberg. This was effectively a constitution for the Holy Roman Empire that regulated how the Emperor was to be elected and, who was to be appointed as the Seven Prince-electors, three archbishops and four secular rulers. It also stipulated that the first Imperial Diet of a newly elected Emperor was to be held in Nürnberg. This stipulation reflects Nürnberg’s status in the middle of the fourteenth century.

The event is celebrated by the mechanical clock ordered by the town council to be constructed for the Frauenkirche, on the market place in 1506 on the 150th anniversary of the Golden Bull, which at twelve noon displays the seven Prince-electors circling the Emperor.

MK40639_Kunstuhr_Frauenkirche_(Nürnberg)

Mechanical clock on the Frauenkirche overlooking the market place in Nürnberg. Ordered by the city council in 1506 to celebrate the 150th anniversary of the issuing of the Golden Bull at the Imperial Diet in 1356

Over time the city council had taken more and more power from the Schultheis and in 1385 they formally bought the office, integrating it into the councils authority, for 8,000 gulden, a small fortune. In 1424 Emperor, Sigismund appointed Nürnberg the permanent residence of the Reichskleinodien (the Imperial Regalia–crown, orb, sceptre, etc.).

Arolsen_Klebeband_16_091

The Imperial Regalia

This raised Nürnberg in the Imperial hierarchy on a level with Frankfurt, where the Emperor was elected, and Aachen, where he was crowned. In 1427, the Hohenzollern family, current holders of the Burggraf title, sold the castle, which was actually a ruin at that time having been burnt to the ground by the Bavarian army, to the town council for 120,000 gulden, a very large fortune. From this point onwards Nürnberg, in the style of Venice, called itself a republic up to 1806 when it was integrated into Bavaria.

In 1500 Nürnberg was the second biggest city in Germany, after Köln, with a population of approximately 40,000, about half of which lived inside the impressive city walls and the other half in the territory surrounding the city, which belonged to it.

a0004795f47e9ac8e47b93f935e325c5

Map of the city-state of Nürnberg by Abraham Ortelius 1590. the city itself is to the left just under the middle of the map. Large parts of the forest still exists and I live on the northern edge of it, Dormitz is a neighbouring village to the one where I live.

Small in comparison to the major Italian cities of the period but even today Germany is much more decentralised with its population more evenly distributed than other European countries. It was also one of the richest cities in the whole of Europe.

Pfinzing_Nürnberg_Grundriss

Nürnberg, Plan by Paul Pfinzing, 1594 Castles in the top left hand corner

Nürnberg’s wealth was based on two factors, trading, in 1500 at least 27 major trade routes ran through Nürnberg, which had over 90 customs unions with cities and regions throughout Europe, and secondly the manufacture of trading goods. It is now time to turn to this second branch of Nürnberg’s wealth but before doing so it is important to note that whereas in other trading centres in Europe individual traders competed with each other, Nürnberg function like a single giant corporation, with the city council as the board of directors, the merchant traders cooperating with each other on all levels for the general good of the city.

In 1363 Nürnberg had more than 1200 trades and crafts masters working in the city. About 14% worked in the food industry, bakers, butchers, etc. About 16% in the textile industry and another 27% working leather. Those working in wood or the building branch make up another 14% but the largest segment with 353 masters consisted of those working in metal, including 16 gold and silver smiths. By 1500 it is estimated that Nürnberg had between 2,000 and 3,000 trades and crafts master that is between 10 and 15 per cent of those living in the city with the metal workers still the biggest segment. The metal workers of Nürnberg produced literally anything that could be made of metal from sewing needles and nails to suits of armour. Nürnberg’s reputation as a producer rested on the quality of its metal wares, which they sold all over Europe and beyond. According to the Venetian accounts books, Nürnberg metal wares were the leading export goods to the orient. To give an idea of the scale of production at the beginning of the 16th century the knife makers and the sword blade makers (two separate crafts) had a potential production capacity of 80,000 blades a week. The Nürnberger armourers filled an order for armour for 5,000 soldiers for the Holy Roman Emperor, Karl V (1500–1558).

The Nürnberger craftsmen did not only produce goods made of metal but the merchant traders, full blood capitalists, bought into and bought up the metal ore mining industry–iron, copper, zinc, gold and silver–of Middle Europe, and beyond, (in the 16th century they even owned copper mines in Cuba) both to trade in ore and to smelt ore and trade in metal as well as to ensure adequate supplies for the home production. The council invested heavily in the industry, for example, providing funds for the research and development of the world’s first mechanical wire-pulling mill, which entered production in 1368.

Duerer_Drahtziehmuehle

The wirepulling mills of Nürnberg by Albrecht Dürer

Wire was required in large quantities to make chainmail amongst other things. Around 1500 Nürnberg had monopolies in the production of copper ore, and in the trade with steel and iron.  Scientific instruments are also largely made of metal so the Nürnberger gold, silver and copper smiths, and toolmakers also began to manufacture them for the export trade. There was large scale production of compasses, sundials (in particular portable sundials), astronomical quadrants, horary quadrants, torquetum, and astrolabes as well as metal drawing and measuring instruments such as dividers, compasses etc.

The city corporation of Nürnberg had a couple of peculiarities in terms of its governance and the city council that exercised that governance. Firstly the city council was made up exclusively of members of the so-called Patrizier. These were 43 families, who were regarded as founding families of the city all of them were merchant traders. There was a larger body that elected the council but they only gave the nod to a list of the members of the council that was presented to them. Secondly Nürnberg had no trades and crafts guilds, the trades and crafts were controlled by the city council. There was a tight control on what could be produced and an equally tight quality control on everything produced to ensure the high quality of goods that were traded. What would have motivated the council to enter the scientific instrument market, was there a demand here to be filled?

It is difficult to establish why the Nürnberg city corporation entered the scientific instrument market before 1400 but by the middle of the 15th century they were established in that market. In 1444 the Catholic philosopher, theologian and astronomer Nicolaus Cusanus (1401–1464) bought a copper celestial globe, a torquetum and an astrolabe at the Imperial Diet in Nürnberg. These instruments are still preserved in the Cusanus museum in his birthplace, Kues on the Mosel.

1280px-Bernkastel_Kues_Geburtshaus_Nikolaus_von_Kues

The Cusanus Museum in Kue

In fact the demand for scientific instrument rose sharply in the 15th & 16th centuries for the following reasons. In 1406 Jacopo d’Angelo produced the first Latin translation of Ptolemy’s Geographia in Florence, reintroducing mathematical cartography into Renaissance Europe. One can trace the spread of the ‘new’ cartography from Florence up through Austria and into Southern Germany during the 15th century. In the early 16th century Nürnberg was a major centre for cartography and the production of both terrestrial and celestial globes. One historian of cartography refers to a Viennese-Nürnberger school of mathematical cartography in this period. The availability of the Geographia was also one trigger of a 15th century renaissance in astronomy one sign of which was the so-called 1st Viennese School of Mathematics, Georg von Peuerbach (1423–1461) and Regiomontanus (1436–176), in the middle of the century. Regiomontanus moved to Nürnberg in 1471, following a decade wandering around Europe, to carry out his reform of astronomy, according to his own account, because Nürnberg made the best astronomical instruments and had the best communications network. The latter a product of the city’s trading activities. When in Nürnberg, Regiomontanus set up the world’s first scientific publishing house, the production of which was curtailed by his early death.

Another source for the rise in demand for instruments was the rise in interest in astrology. Dedicated chairs for mathematics, which were actually chairs for astrology, were established in the humanist universities of Northern Italy and Krakow in Poland early in the 15th century and then around 1470 in Ingolstadt. There were close connections between Nürnberg and the Universities of Ingolstadt and Vienna. A number of important early 16th century astrologers lived and worked in Nürnberg.

The second half of the 15th century saw the start of the so-called age of exploration with ships venturing out of the Iberian peninsular into the Atlantic and down the coast of Africa, a process that peaked with Columbus’ first voyage to America in 1492 and Vasco da Gama’s first voyage to India (1497–199). Martin Behaim(1459–1507), son of a Nürnberger cloth trading family and creator of the oldest surviving terrestrial globe, sat on the Portuguese board of navigation, probably, according to David Waters, to attract traders from Nürnberg to invest in the Portuguese voyages of exploration.  This massively increased the demand for navigational instruments.

258

The Erdapfel–the Behaim terrestial globe Germanische National Museum

Changes in the conduct of wars and in the ownership of land led to a demand for better, more accurate maps and the more accurate determination of boundaries. Both requiring surveying and the instruments needed for surveying. In 1524 Peter Apian (1495–1552) a product of the 2nd Viennese school of mathematics published his Cosmographia in Ingolstadt, a textbook for astronomy, astrology, cartography and surveying.

1024px-peter_apian

The Cosmographia went through more than 30 expanded, updated editions, but all of which, apart from the first, were edited and published by Gemma Frisius (1508–1555) in Louvain. In 1533 in the third edition Gemma Frisius added an appendix Libellus de locorum describendum ratione, the first complete description of triangulation, the central method of cartography and surveying down to the present, which, of course in dependent on scientific instruments.

g-f_triangulation

In 1533 Apian’s Instrumentum Primi Mobilis 

754l18409_9jhfv.jpg.thumb_.500.500

was published in Nürnberg by Johannes Petreius (c. 1497–1550) the leading scientific publisher in Europe, who would go on ten years later to publish, Copernicus’ De revolutionibus, which was a high point in the astronomical revival.

All of this constitutes a clear indication of the steep rise in the demand for scientific instruments in the hundred years between 1450 and 1550; a demand that the metal workers of Nürnberg were more than happy to fill. In the period between Regiomontanus and the middle of the 16th century Nürnberg also became a home for some of the leading mathematici of the period, mathematicians, astronomers, astrologers, cartographers, instrument makers and globe makers almost certainly, like Regiomontanus, at least partially attracted to the city by the quality and availability of the scientific instruments.  Some of them are well known to historians of Renaissance science, Erhard Etzlaub, Johannes Werner, Johannes Stabius (not a resident but a frequent visitor), Georg Hartmann, Johannes Neudörffer and Johannes Schöner.**

There is no doubt that around 1500, Nürnberg was one of the major producers and exporters of scientific instruments and I hope that I have shown above, in what is little more than a sketch of a fairly complex process, that this owed very little to science but much to the general geo-political and economic developments of the first 500 years of the city’s existence.

WI12; WI33 WI3; WI2; WI30;

One of the most beautiful sets on instruments manufactured in Nürnberg late 16th century. Designed by Johannes Pretorius (1537–1616), professor for astronomy at the Nürnberger University of Altdorf and manufactured by the goldsmith Hans Epischofer (c. 1530–1585) Germanische National Museum

**for an extensive list of those working in astronomy, mathematics, instrument making in Nürnberg (542 entries) see the history section of the Astronomie in Nürnberg website, created by Dr Hans Gaab.

14 Comments

Filed under Early Scientific Publishing, History of Astronomy, History of Cartography, History of Mathematics, History of Navigation, History of science, History of Technology, Renaissance Science