Vienna and its university played a very central role in introducing the study of mathematics, cartography and astronomy into Northern Europe in the fifteenth and sixteenth century. In early blog posts I have dealt with Georg von Peuerbach and Johannes Regiomontanus, Conrad Celtis and his *Collegium poetarum et mathematicorum*, Georg Tannstetter and the Apians, and Emperor Maximilian and his use of the Viennese mathematici. Today, I’m going to look at the beginnings of the University of Vienna and the establishment of the mathematical science as a key part of the university’s programme.

The University of Vienna was founded in 1365 by Rudolf IV, Duke of Austria (1339–1365) and his brothers Albrecht III, (c. 1349–1395) and Leopold III (1351–1386) both Dukes of Austria.

Like most young universities it’s early decades were not very successful or very stable. This began to change in 1384 when Heinrich von Langenstein (1325–1397) was appointed professor of theology.

Heinrich von Langenstein studied from 1358 in Paris and in 1363 he was appointed professor for philosophy on the Sorbonne advancing to Vice Chancellor. He took the wrong side during the Western Schism (1378–1417) and was forced to leave the Sorbonne and Paris in 1382. Paris’ loss was Vienna’s gain. An excellent academic and experienced administrator he set the University of Vienna on the path to success. Most important from our point of view is the study of mathematics and astronomy at the university. We tend to think of the curriculum of medieval universities as something fixed: a lower liberal arts faculty teaching the trivium and quadrivium and three higher faculties teaching law, medicine and theology. However in their early phases new universities only had a very truncated curriculum that was gradually expanded over the early decades; Heinrich brought the study of mathematics and astronomy to the young university.

Heinrich was a committed and knowledgeable astronomer, who established a high level of tuition in mathematics and astronomy. When he died he left his collection of astronomical manuscripts and instruments to the university. Henry’s efforts to establish astronomy as a discipline in Vienna might well have come to nothing if a successor to teach astronomy had not been found. However one was found in the person of Johannes von Gmunden (c. 1380–1442).

Unfortunately, as is often the case with medieval and Renaissance astronomers and mathematicians, we know almost nothing personal about Johannes von Gmunden. There is indirect evidence that he comes from Gmunden in Upper Austria and not one of the other Gmunden’s or Gmund’s. His date of birth is an estimate based on the dates of his studies at the University of Vienna and everything else we know about him is based on the traces he left in the archives of the university during his life. He registered as a student at the university in 1400, graduating BA in 1402 and MA in 1406.

His MA was his licence to teach and he held his first lecture in 1406 on the *Theoricae planetarum *by Gerhard de Sabbioneta (who might well not have been the author) a standard medieval astronomy textbook, establishing Johannes’ preference for teaching astronomy and mathematics. In 1407, making the reasonable assumption that Johannes Kraft is Johannes von Gmunden, thereby establishing that his family name was Kraft, he lectured on Euclid. 1408 to 1409 sees him lecturing on non-mathematical, Aristotelian texts and 1410 teaching Aristotelian logic using the Tractatus of Petrus Hispanus. In the same year he also taught Euclid again. 1411 saw a return to Aristotle but in 1412 he taught *Algorismus de minutiis *i.e. sexagesimal fractions. The Babylonian sexagesimal number system was used in European astronomy down to and including Copernicus in the sixteenth century, Aristotelian logic again in 1413 but John Pecham’s *Perspectiva *in 1414.

Around this time Johannes took up the study of theology, although he never proceeded past BA, and 1415 and 16 see him lecturing on religious topics although he also taught *Algorismus de minutiis *again in 1416. From 1417 till 1434, with breaks, he lectured exclusively on mathematical and astronomical topics making him probably the first dedicated lecturer for the mathematical disciplines at a European university. Beyond his lectures he calculated and wrote astronomical tables, taught students how to use astronomical instruments (for which he also wrote instruction manuals), including the construction of cheap paper instruments.

He collected and also wrote extensive astronomical texts. As well as his teaching duties, Johannes served several times a dean of the liberal arts faculty and even for a time as vice chancellor of the university. His influence in his own time was very extensive; there are more than four hundred surviving manuscripts of Johannes Gmunden’s work in European libraries and archives.

When he died Johannes willed his comparatively large collection of mathematical and astronomical texts and instruments to the university establishing a proper astronomy department that would be inherited with very positive results by Georg von Peuerbach and Johannes Regiomontanus. Perhaps the most fascinating items listed in his will are an Albion and an instruction manual for it.

The Albion is possibly the most fascinating of all medieval astronomical instruments. Invented by Richard of Wallingford (1292–1336), the Abbot of St Albans, mathematician, astronomer, horologist and instrument maker, most well known for the highly complex astronomical clock that he designed and had constructed for the abbey.

The Albion, ‘all by one’, was a highly complex and sophisticated, multi-functional astronomical instrument conceived to replace a whole spectrum of other instruments. Johannes’ lecture from 1431 was on the Albion.

Johannes von Gmunden did not stand alone in his efforts to develop the mathematical sciences in Vienna in the first half of fifteenth century; he was actively supported by Georg Müstinger (before 1400–1442), the Prior of the Augustinian priory of Klosterneuburg.

Müstinger became prior of Klosterneuburg in 1418 and worked to turn the priory into an intellectual centre. In 1421 he sent a canon of the priory to Padua to purchase books for over five hundred florins, a very large sum of money. The priory became a centre for producing celestial globes and cartography. It produced a substantial corpus of maps including a mappa mundi, of which only the coordinate list of 703 location still exist. Scholar who worked in the priory and university fanned out into the Southern German area carrying the knowledge acquired in Vienna to other universities and monasteries.

Johannes’ status and influence are nicely expressed in a poem about him and Georg von Peuerbach written by Christoph Poppenheuser in 1551:

The great Johannes von Gmunden, noble in knowledge, distinguished in spirit, and dignified in piety And you Peuerbach, favourite of the muses, whose praise nobody can sing well enough And Johannes, named after his home town, known as far away as the stars for his erudition

The tradition established in Vienna by Heinrich von Langenstein, Johannes von Gmunden and Georg Müstinger was successfully continued by Georg von Peuerbach (1423–1461), who contrary to some older sources was not a direct student of Johannes von Gmunden arriving in Vienna only in 1443 the year after Johannes death. However Georg did find himself in a readymade nest for the mathematical disciplines, an opportunity that he grasped with both hands developing further Vienna’s excellent reputation in this area.