Renaissance Science – XVII

As we saw in the last episode, Ptolemaeus’ Geographia enjoyed a strong popularity following its rediscovery and translation into Latin from Greek at the beginning of fifteenth century, going through at least five printed editions before the end of the century. The following century saw several important new translation and revised editions both in Latin and in the vernacular. This initial popularity can at least be partially explained by the fact that Ptolemaeus’ Mathēmatikē Syntaxis and his Tetrabiblos, whilst not without rivals, were the dominant books in medieval astronomy and astrology respectively. But the Geographia, although, as explained in the previous episode, in some senses related to the other two books, was a book about mapmaking. So how did affect European mapmaking in the centuries after its re-emergence? To answer this question, we first need to look at medieval European, terrestrial mapmaking.

Mapmaking was relatively low level during the medieval period before the fifteenth century and although there were certainly more, only a very small number of maps have survived. These can be divided into three largely distinct categories, regional and local maps, Mappa Mundi, and portolan charts. There are very few surviving regional or local maps from the medieval period and of those the majority are from 1350 or later, mapmaking was obviously not very widespread in the early part of the Middle Ages. There are almost no maps of entire countries, the exceptions being maps of Palestine,

Map of Palestine according to Burchard of Mount Sion Manuscript c. 1300 entitled: “De more vivendi diversarum gentium, secundum Hieronymum in libro II contra Iovinianum, quae illis cibariis vesci solent, quibus abundant” Source: Wikimedia Commons

the Matthew Paris and Gough maps of Britain,

The most developed of Matthew Paris’s four maps of Britain 13th century (Cotton MS Claudius D VI, fol. 12v). The work is organised around a central north-south itinerary from Dover to Newcastle. The crenellations of both the Antonine Wall and Hadrian’s Wall can be seen in the upper half of the drawing. British Library, London. via Wikimedia Commons

and Nicolas of Cusa’s maps of Germany and central Europe. 

Nicolas of Cusa map of central Europe printed edition 1491 Germanisches Nationalmuseum Nürnberg via Wikimedia Commons

The Mappa Mundi are the medieval maps of the known world. These range from very simple schematic diagrams to the full-blown presentations of the oikoumenikos, the entire world as known to European antiquity, consisting of the three continents of Asia, Europe, and Africa. The sketch maps are mostly of two different types, the zonal maps, and the T-O maps. 

The zonal maps show just the eastern hemisphere divided by lines into the five climata or climate zones, as defined by Aristotle. These are the northern frigid zone, the northern temperate zone, the equatorial tropical zone, the southern temperate zone, and the southern frigid zone, of which the Greek believed only the two temperate zones were habitable. In the medieval period, zonal maps are mostly found in copies of Macrobius’ Commentarii in Somnium Scipionis (Commentary on Cicero’s Dream of Scipio).

Macrobius zonal world map c. 1050 Source: British Library

T-O sketch maps show a diagrammatic presentation of the three know continents, Asia, Europe, and Africa enclosed within a double circle representing the ocean surrounding oikoumenikos. The oikoumenikos is orientated, that is with east at the top and is divided into three parts by a T consisting of the Mediterranean, the Nile, and the Danube, with the top half consisting of Asia and the bottom half with Europe on the left and Africa on the right. T-O maps have their origin in the works of Isidore, his De Natura Rerum and Etymologiae. He writes in De Natura Rerum

So the earth may be divided into three sides (trifarie), of which one part is Europe, another Asia, and the third is called Africa. Europe is divided from Africa by a sea from the end of the ocean and the Pillars of Hercules. And Asia is divided from Libya with Egypt by the Nile… Moreover, Asia – as the most blessed Augustine said – runs from the southeast to the north … Thus we see the earth is divided into two to comprise, on the one hand, Europe and Africa, and on the other only Asia

This T and O map, from the first printed version of Isidore’s Etymologiae, identifies the three known continents as populated by descendants of Sem, Iafeth and Cham. Source: Wikimedia Commons

For most people the term Mappa Mundi evokes the large circular, highly coloured maps of the oikoumenikos, packed with symbols and text such as the Hereford and Ebstorf maps, rather that the small schematic ones.

The Hereford Mappa Mundi, about 1300, Hereford Cathedral, England Source: Wikimedia Commons

These are basically T-O maps but appear to be geographically very inaccurate. This is because although they give an approximate map of the oikoumenikos, they are not intended to be geographical maps, as we understand them today. So, what are they? The clue can be found in the comparatively large number of regional maps of Palestine, the High Middle Ages is a period where the Catholic Church and Christianity dominated Europe and the Mappa Mundi are philosophical maps depicting the world of Christianity. 

Recreation of the Ebstorf Map of about 1235; the original was destroyed by wartime bombing Source: Wikimedia Commons

These maps are literally orientated, that is East at the top and have Jerusalem, the hub of the Christian world, at their centre. The Hereford map has the Garden of Eden at the top in the east, whereas the Ebstrof map, has Christ’s head at the top in the east, his hands on the sides north and south and his feet at the bottom in the south, so that he is literally holding the world. The much smaller Psalter map has Christ above the map in the east blessing the world.

Psalter world map, ca. 1260 British Library via Wikimedia Commons

These are not maps of the world but maps of the Christian world. The illustrations and cartouches scattered all over the maps elucidate a motley collection of history, legends and myths that were common in medieval Europe. These Mappa Mundi are repositories of an extensive collection of information, but not the type of geographical knowledge we expect when we hear the word map.

The third area of medieval mapping is the portolan charts, which pose some problems. These are nautical charts that first appeared in the late thirteenth century in the Mediterranean and then over the centuries were extended to other sea areas. They display a detailed and surprising accurate stretch of coastline and are covered with networks of rhumb lines showing compass bearings.

The oldest original cartographic artifact in the Library of Congress: a portolan nautical chart of the Mediterranean. Second quarter of the 14th century. Source: Wikimedia Commons

Portolan charts have no coordinates. The major problem with portolan charts is their origin. They display an accuracy, at the time, unknown in other forms of mapping but the oldest known charts are fully developed. There is no known development leading to this type of mapping i.e., there are no known antecedent charts. The second problem is the question, are they based on a projection? There is some discussion on this topic, but the generally accepted view is that they are plate carrée or plane chart projection, which means that the mapmakers assumes that the area to be map is flat. This false assumption is OK if the area being mapped is comparatively small but leads to serios problems of distortion, when applied to larger areas.

Maps, mapping, and map making began to change radically during the Renaissance and one of the principle driving factors of that change was the rediscovery of Ptolemaeus’ Geographia. It is important to note that the Geographia was only one factor and there were several others, also this process of change was gradual and drawn out. 

What did the Geographia bring to medieval mapmaking that was new? It reintroduced the concept of coordinates, longitude and latitude, as well as map projection. As Ptolemaeus points out the Earth is a sphere, and it is mathematically impossible to flatten out the surface of a sphere onto a flat sheet without producing some sort of distortion. Map projections are literally what they say they are, they are ways of projecting the surface of the sphere onto a flat surface. There are thousands of different projections, and the mapmaker has to choose, which one is best suited to the map that he is drawing. As Ptolemaeus points out for a map of the world, it is actually better not the draw it on a flat sheet but instead to draw it on a globe. 

The Geographia contains instructions for drawing a map of the Earth i.e., the oikoumenikos, and for regional maps. For his regional maps Ptolemaeus uses the plate carrée or plane chart projection, the invention of which he attributes to his contemporary Marinus of Tyre. In this projection, the lines of longitude (meridians) and latitude (parallels) are parallel sets of equally spaced lines. For maps of the world, he describes three other projections. The first of these was a simple conic projection in which the surface of the globe is projected onto a cone, tangent to the Earth at the 36th parallel. Here the meridians are straight lines that tend to close towards the poles, while the parallels are concentric arcs. The second was a modified cone projection where the parallels are concentric arcs and the meridians curve inward towards the poles.

Ptolemaeus’ projection I above and II below Source: Marjo T Nurminen, “The Mapmakers’ World”, Pool of London Press, 2014

His third projection, a perspective projection, needn’t interest us here as it was hardly used, however the art historian Samuel Y Edgerton, who died this year, argued that the rediscovery of Ptolemaeus’ third projection at the beginning of the fifteenth century was the impulse that led to Brunelleschi’s invention of linear perspective.

A mid-15th century Florentine Ptolemaic map of the world Ptolemy’s 1st projection.
A printed Ptolemaic world map using his 2nd projection Johannes Schnitzer (1482). Source: Wikimedia Commons

From very early on Renaissance cosmographers began to devise and introduce new map projections, at the beginning based on Ptolemaeus’ projections. For example, in his In Hoc Opere Haec Continentur Nova Translatio Primi Libri Geographicae Cl Ptolomaei, from 1514, Johannes Werner (1468–1522) introduced the heart shaped or cordiform projection devised by his friend and colleague Johannes Stabius (1540–1522), now know as the Werner-Stabius projection. This was used by several mapmakers in the sixteenth century, perhaps most famously by Oronce Fine (1494–1555) in 1536.

Oronce Fine World Map 1536 Source: Wikimedia Commons

Francesco Rosselli (1455–died before 1513) introduced an oval projection with his world map of 1508

World Map oval by Francesco Rosselli, copper plate engraving on vellum 1508, National Maritime Museum via Wikimedia Commons

It should be noted that prior to the rediscovery of the Geographia, map projection was not unknown in medieval Europe, as the celestial sphere engraved on the tympans or climata of astrolabes are created using a stereographic projection.

Animation showing how celestial and geographic coordinates are mapped on an astrolabe’s tympan through a stereographic projection. Hypothetical tympan (40° north latitude) of a 16th-century European planispheric astrolabe. Source: Wikimedia Commons

The first wave of Renaissance mapmaking concerned the Geographia itself. As already noted, in the previous episode, the first printed edition with maps appeared in Bologna in 1477. This was closely followed by one produced with copper plate engravings, which appeared in Rome in 1478. An edition with maps printed with woodblocks in Ulm in 1482. Another edition, using the same plates as the 1478 edition appeared in Rome in 1490. Whereas the other fifteenth century edition only contained the twenty-seven maps described by Ptolemaeus in his text, the Ulm edition started a trend, that would continue in later editions, of adding new contemporary maps to the Geographia. These editions of the Geographia represent the advent of the modern atlas, to use an anachronistic term, an, at least nominally, uniform collection of maps with text bound together in book. It would be approximately a century before the first real modern atlas, that of Abraham Ortelius, would be published, but as Elizabeth Eisenstein observed, the European mapmakers first had to catch up with Ptolemaeus. 

These printed edition of the Geographia also illustrate another driving force behind the radical increase in mapmaking during the Renaissance, the invention of the printing press. The invention of the printing press and the development of cooper plate engraving, as well as woodblock printing meant that the multiple reproduction of maps and plans became much easier and also much cheaper. 

Another factor behind the increase in mapmaking was the so-called age of discovery. The Portuguese had been working their way down the coast of Africa throughout the fifteenth century and Bartolomeu Dias (c. 1450–1500) rounded the southern tip of Africa, for the first time in 1488, paving the way for the first trip by a European by an ocean route to India by Vasco da Gama (c. 1460s–1524) in 1497–99. Of course, as every school kid knows “In fourteen hundred and ninety-two, Columbus sailed the ocean blue” or put for formally the Genoese seaman Christopher Columbus (1451–1506) undertook his first voyage to Asia in service of the Spanish Crown in 1492 and accidentally discovered the so-called forth continent, which Martin Waldseemüller (c. 1475–1520) and Matthias Ringmann (c. 1482–1511) incorrectly christened America in 1507, in honour of Amerigo Vespucci (1451–1512), whom they falsely believed to be the discoverer of the new, to Europeans, continent. 

The initial maps produced by the European discovery expedition carried the portolan chart tradition out from the Mediterranean into the Atlantic Ocean, down the coast of Africa and eventually across the Atlantic to the coasts of the newly discovered Americas.

Kunstmann II or Four Finger Map. Dating from the period circa 1502‒6 Source: World Digital Library

Although not really suitable for maps of large areas the tradition of the portolan charts survived well into the seventeenth century. In 1500, Juan de la Cosa (c. 1450–1510) produced a world portolan chart. This is the earliest known map to include a representation of the New World.

Juan de la Cosa world map 1500

The 1508 edition of the Geographia published in Rome was the first edition to include the European voyages of exploration to the New World. The world map drawn by the Flemish mapmaker Johan Ruysch (c. 1460–1533), who had himself sailed to America, includes the north coast of South America and some of the West Indian islands. On the other side it also includes eastern Asia with China indicated by a city marked as Cathaya, however, Japan (Zinpangu) is not included.

Ruysch’s 1507 map of the world. Source: Wikimedia Commons

Ruysch’s map bears a strong resemblance to the Cantarini-Rosselli world map published in Venice or Florence in 1506. Drawn by Giovanni Matteo Conarini (died 1507) and engraved by Francesco Rosselli (1455–died before 1513), which was the earliest known printed map containing the New World. The Ruysch map and the Cantarini-Rosselli probably shared a common source. 

The most famous map showing the newly discovered fourth continent is, of course, the Waldseemüller world map of 1507, which gave America its name.

Universalis Cosmographia, the Waldseemüller wall map dated 1507, depicts America, Africa, Europe, Asia, and the Oceanus Orientalis Indicus separating Asia from the Americas. Source: Wikimedia Commons

Of interest here is the fact that Waldseemüller apparently also published a small, printed globe of his wall map, which is the earliest known printed globe.

Waldseemüller globe gores of 1507 Source: Wikimedia Commons

The age of the modern terrestrial globe was ushered in by the earliest known, surviving manuscript globe produced by Martin Behaim (1549-1507) in 1493. Because he had supposedly taken part on Portuguese expedition along the African coast, he was commissioned, by the city council of Nürnberg, during a visit to the city of his birth,  to produce a globe and a large wall map of the world for the council chamber. The map no longer exists. Behaim’s main source for his maps was Ptolemaeus’ Geographia.

Behaim Globe Germanisches Nationalmuseum Nürnberg

Waldseemüller’s globe had apparently little impact and only four sets of globe gores still exist but none of the finished globes. The person who really set the production of printed globes in motion was the Nürnberger mathematicus Johannes Schöner (1477–1547), who produced his first printed terrestrial globe in 1515, which did much to cement the name America given to the fourth continent by Waldseemüller and Ringmann. Schöner was the owner of the only surviving copy of the Waldseemüller map.

Schöner Terrestrial Globe 1515, Historisches Museum Frankfurt

Like Behaim and Waldseemüller, Schöner’s main source of information was Ptolemaeus’ Geographia, of which he owned a heavily annotated copy, and which like them he supplemented with information from various other sources. In 1517, he also produced a matching, printed celestial globe, establishing the tradition of matching globe pairs that persisted down to the nineteenth century.

Schöner was not the only Nürnberger mathematicus, who produced globes. We know that Georg Hartmann (1489–1564), who acted as Schöner’s globe salesman in Nürnberg, when Schöner was still living in Kirchehrenbach, also manufactured globes, but none of his have survived. Although they weren’t cheap, it seems that Schöner’s globes sold very well, well enough to motivate others to copy them. Both Waldseemüller, with his map, and Schöner, with his globes, published an accompanying cosmographia, a booklet, consisting of instructions for use as well as further geographical and historical information. An innovative printer/publisher in Louvain reprinted Schöner’s cosmographia, Lucullentissima quaedam terrae totius descriptio, and commissioned Gemma Frisius (1508–1555) to make a copy of Schöner’s globe to accompany it. Frisius became a globe maker, as did his one-time student and assistant Gerard Mercator (1512-1594), who went on to become the most successful globe maker in Europe.

Gemma Frisius globe 1536

Both Willem Janszoon Blaeu (1571–1638) and Jodocus Hondius (1563–1612) emulated Mercator’s work establishing the Netherlands as the major European map and globe making centre in the seventeenth century.

Another factor that contributed to the spread of map making in the sixteenth century was the Renaissance development of realism in painting. This was a combination of the invention of linear perspective during the fifteenth century on the one hand and on the other, the development of Naturalism beginning in the late fourteenth century in the Netherlands. During the sixteenth century many notable artists were also map makers and several map makers were also artists. 

Dürer-Stabius world map a rare example of Ptolemaeus’ 3rd projection

It became fashionable during the Renaissance for those in power to sponsor and employ those working in the sciences. This patronage also included map makers. On the one hand this meant employing map makes to make maps as status symbols for potentates to display their magnificence. A good example is the map galleries that Egnatio Danti (1536–1586) was commissioned to create in the Palazzo Vecchio in Florence for Cosimo I de’ Medici and in the Vatican for Pope Gregory XIII.

Source: Fiorani The Marvel of Maps p. 110 Note that the map is up side down!

Similarly, Peter Apian ((1495–1552) was commissioned to produce maps for the Holy Roman Emperor, Charles V

Peter Apian cordiform world map 1530 Source: British Library

His son Philipp (1531–1589) did the same for Duke Albrecht V of Bavaria.

Overview of the 24 woodblock prints of Apian’s map of Bavaria

Another example is Oronce Fine (1494–1555), who made maps for Francis I. The first English atlas created by Christopher Saxton (c. 1540–c. 1610) was commissioned by Thomas Seckford, Master of Ordinary on the instructions of William Cecil, 1stBaron Burghley (1520–1598), Queen Elizabeth’s chief advisor.

Saxton England and Wales proof map Source: British Library

These maps came more and more to serve as aids to administration. The latter usage also led to European rulers commissioning maps of their new overseas possessions. 

Another area that required map making was the changes in this period in the pursuit of warfare. Larger armies, the increased use of artillery, and a quasi-professionalisation of the infantry led to demand for maps for manoeuvres during military campaigns. 

Starting around 1500 mapping took off in Renaissance Europe driven by the various factors that I’ve sketched above, a full account would be much more complex and require a book rather than a blog post. The amount of mapmaking increased steadily over the decades and with it the skill of the mapmakers reaching a first high point towards the end of the century in the atlases of Ortelius, De Jode, and Mercator. The seventeenth century saw the establishment of a major European commercial map and globe making industry dominated by the Dutch map makers, particularly the Houses of Blaeu and Hondius.

24 Comments

Filed under Early Scientific Publishing, History of Cartography, History of science, Renaissance Science

24 responses to “Renaissance Science – XVII

  1. Have you read the book The Fourth Part of the World?

  2. I used to live in a small village quite near Ebstorf.

    • When that article got published, the producers of the map got their arses handed to them on a plate, because the projection they were proposing had already been used by cartographers for a couple of centuries

      • Interesting. What is it called?

      • Basically it’s a variation on a stereographic projection, double polar stereographic projections have been well-known for a long time

      • I’ve certainly seen circular maps with arbitrary centres, including the poles, before. I think that the interesting idea is that they minimize the sum of the squares of the six different types of errors and show (in the corresponding technical article, not in the SciAm piece) that that cannot be improved. So even with the pole in the middle and radial lines of longitude, there is freedom with regard to how things are spaced in latitude.

      • They literally did nothing that had not been done before

      • Including minimizing the six sources of error? Can you point me to a map which is the same as theirs? I know of Gott because he works mainly in cosmology and general relativity. I find it hard to believe that he authored a technical publication on this map without knowing that it had been done before and, moreover, that neither the referees nor the editor noticed that it wasn’t original. Point me to a map which is demonstrably equivalent to theirs and I’ll write a paper and make you co-author. 🙂

      • Read Matthew Edney, probably the world’s No 1 historian of cartography
        https://www.mappingasprocess.net/blog/2021/2/17/a-radically-different-world-map

      • Thanks; I’m convinced. Actually, perhaps I should have been more skeptical since I once wrote a
        paper
        which debunked a sensational claim by Gott and a co-author.

  3. Sniffnoy

    Huh, I’d never heard of zonal maps before! Well, I hadn’t even heard of Aristotle’s five zones before. But this gets me wondering.

    See, Aristotle’s five zones implies that Aristotle (or the Greeks of his time, or at least some of them?) knew (or at least hypothesized) that temperatures get hotter near the equator and colder near the poles.

    Now, I assume that any wide-ranging people living in the northern hemisphere would notice that, within the places they can reach, temperatures get colder in the north and hotter in the south. But there are two possible ways of generalizing this to the whole world: Saying that things get colder in the north and hotter in the south on the one hand, versus saying that things get colder at the poles and hotter at the equator on the other hand. (At least, these are the obvious two generalizations if you know that the earth is round; if you don’t, the second one doesn’t make a lot of sense.)

    So a thing I’ve wondered for some time is, when was the second of these ideas — that the appropriate distinction is poles vs equator, rather than north vs south — developed? (The answer will differ in different civilizations of course, but…) Evidently for the Greeks, and for those who read them which is a wide range of peoples, it was at least hypothesized at least as far back as the time of Aristotle!

    But, do you by any chance know more about this? Do we know among the Greeks when this idea originated, or when among other civilizations this idea originated? I’ve been wondering about this for some time and never been able to get an answer.

    Thank you!

    • Giulio

      It’s not exactly the same thing, but is very similar: the fondamental distinction between up/down from toward the earth/toward the skies is attributed to Anaximander that was the first to say that the bodies fall toward the earth and not down (in absolute) as a justification of his idea of the cylindrilcal shape of the earth.

    • The Greek world consisted of the oikoumenikos, that is Europe Asia and North Africa. They were well aware that it got colder the further north you went and warmer the further south. Aristotles contemporary Pytheas of Massalia famously sailed around the British Isles and further north to to the Arctic polar ice.

      Aristotle was well aware that the Earth is a sphere, his writings actually deliver all the well-known arguments proving this, and assumed/believed that the southern hemisphere was a mirror image of the northern hemisphere, with the same climate zones. He and others also believed that there was a souther continent that balanced out the oikoumenikos in the north. This believe is the origin of the words antipodes and the name Australia, which comes from the Latin Terra Australis, that is southern land.

  4. Giulio

    Off topic: do you know Singer’s “A Short History of Science to the Nineteenth Century” and what do you think about it? I’m reading it in this period and I wish to know if it’s good or not so much.
    P.S. “the first printed edition with maps appeared in Bologna in 1577.” Maybe 1477?

    • I have had a copy of Singer’s “A Short History of Science to the Nineteenth Century” sitting on my bookshelf for more than thirty years. In his time Charles Singer (1876–1960) was a leading historian of medicine, science and technology, with an emphasis on the history of medicine. The book, published in 1959 a year before he died, is a revised and extended version of a book he originally published in 1941. It was, justifiably, in its time regarded as a classic. However in the last sixty years the history of science has developed extensively and so Singer’s book is dated. One can probably read it with profit but should then read more up to date and modern texts on the subject.

      Thanks for pointing out the typo!

      • Giulio

        And what about Bernal’s “Science in History”? Do you knoe it?

      • John Desmond Bernal’s four volume epic “Science in History” is a classic in the history of science and an important mile stone in the history of the discipline. Bernal was an intellectual Marxist historian and his book was the first major monograph that deals with the social history of science, putting the development of science into its social, cultural, economic and political context. Something that has developed since then into an important aspect of the discipline.

        However, it was not free of serious historical errors, for example he propagates the totally false claim that people believed that the world was flat in the middle ages.

        It was originally published in 1954 and the discipline has advanced massively since then, so it is now very dated.

        If you want a good general, up to date, introduction to the discipline, the I recommend the volumes of the Cambridge History of Science

      • Giulio

        In the meanwhile I’ve read Singer’s book with profit and sometimes with very fun. I have an edition of Bernal’s book in only one volume (it’s very big) and maybe i’ll read it one day or another.
        Thanks for the suggestion.

      • Giulio

        After all this time I’ve read Bernal’s book, and it isn’t the claim that people believed that the world was flat in the middle ages, at least in the edition I’ve read.

Leave a comment