Category Archives: Early Scientific Publishing

Two Greek scholars butting heads in the Renaissance and the consequences for astronomy

The adversaries of the title were Georg of Trebizond (1395–1472) and Basilios Bessarion (1403–1472). There is an ironic twist to their names. George of Trebizond derived his name from his ancestors, who originated in the Empire of Trebizond but he was born in Crete. His later antagonist Basilios Bessarion, however, was born in Trebizond.

At sometime unknown point, whilst he was still relatively young, George of Trebizond moved to Italy, where he learnt Latin and acted as amanuensis to the politician Francesco Barbaro (1390–1454) in Venice. A brilliant Aristotelian scholar he entered the entourage of Pope Nicholas V (1397–1455) a convinced Aristotelian.

Georgius_Trapezuntius

George of Trebizond Source: Wikimedia commons

Basilios Bessarion was educated in Constantinople then went in 1423 to study Plato under Georgius Gemistus (c.1355–c. 1452), known as Plethon, a highly influential revivalist and teacher of Neo-Platonism. He became an orthodox monk, advancing to abbot in 1436 and metropolitan of Nicaea in 1437. In 1439 he travelled with the Orthodox delegation to Italy to try to persuade the Catholic Church to join the Orthodox Church in a crusade against the Ottoman Turks. Bessarion’s political position led to him being heavily criticised in Byzantium and so he stayed in Italy where Pope Eugene IV (1383–1447) appointed him a cardinal of the Catholic Church. A convinced humanist he devoted his life to spreading support for humanism and to amassing a large private library, containing an extensive collection of Greek manuscripts. He presented his library to the Senate of Venice in 1468 and the 482 Greek manuscripts and 264 Latin manuscripts today still form the core of the St. Mark’s Biblioteca Marciana.

Bessarion_1476

Basilios Bessarion Justus van Gent and Pedro Berruguete Source: Wikimedia Commons

Initially Bessarion and George of Trebizond were friends and Bessarion did much to support his colleague. However in the early 1450s their friendship began to unravel. In that year George undertook a translation from Greek into Latin of Ptolemaeus’ Mathēmatikē Syntaxis or as it is better known the Almagest, as a replacement for Gerard of Cremona’s twelfth-century translation from Arabic.  Bessarion lent him his best Greek manuscript for the purpose and suggested that he used Theon of Alexandria’s Commentary, as a guide. He duly produced his translation and an extensive commentary in nine months finishing in December 1451. His work was hurried, sloppy and strewn with errors and the Pope’s evaluator Jacopo di San Cassiano (ca.1400–ca.1454) judged the work deficient and the Pope, Nicholas V, rejected the dedication. Bessarion took issue with George’s treatment of Theon. The incident ruined George’s reputation and he was forced to flee from Rome.

The situation between the two Greek immigrants escalated when in 1458 George published a vicious attack on Plato in his Comparatio Aristotelis et Platonis, which historian James Hankins has described as “one of the most remarkable mixtures of learning and lunacy ever penned.” In this work he accused Plato of being a traitor to Athens, a besmircher of rhetoric, an advocate of paedophilia, and a pagan who lent aid and comfort to Greek Christians. Bessarion, a Platonist, could not let this stand and issued a powerful response, In calumnatorem Platonis, which was printed in 1469. The situation became even more heated when George offered to dedicate his Commentary on the Almagest to Mehmet II, the Ottoman Turk Sultan, who had conquered Constantinople and ended the Byzantine Empire. George entreated Mehmet to convert to Christianity, to conquer Rome and thus to unite Islam and Christianity under his sovereignty. Bessarion got hold of George’s correspondence with Mehmet and appealled to the Pope, Pius II (for whom George might have been working as an agent!), accusing George of treachery and George was imprisoned for four months in 1466-67. Released from prison, George now offered to dedicate both translation and commentary to Matthias Corvinus (1443–1490), the king of Hungary.

We now need to back peddle to 1460. In that year, Bessarion, who was a Papal legate, visited Vienna to negotiate with Frederick III and made the acquaintance of Georg von Peuerbach (1423–1461), who was at the time the leading astronomical scholar in Europe. Bessarion, still deeply upset by George’s abortive Almagest efforts, asked Peuerbach to produce a new commentary on Ptolemaeus’ work. Peuerbach acquiesced and began immediately to produce an epitome or digest of the Almagest. This was an updated, modernised, shortened, mathematically improved version of the Almagest. Peuerbach died in 1461, having only completed the first six of thirteen book of his epitome. He did, however, extract the deathbed promise from his star pupil, Regiomontanus, to finish the work. In the same year Regiomontanus left Vienna for Italy as a member Bessarion’s entourage, where he spent the next four years learning Greek, finishing the epitome and acting as Bessarion’s manuscript collector and librarian. The Epitome of the Almagestis a masterpiece:

The Epitome is neither a translation (an oft repeated error) nor a commentary but a detailed sometimes updated, overview of the Almagest. Swerdlow once called it “the finest textbook of Ptolemaic astronomy ever written.”[1]

I’ve already written an earlier blog post on Regiomontanus so we don’t need to outline the rest of his life but Shank does have an interesting hypothesis. He suggests that Regiomontanus went to Hungary at Bessarion’s behest in order to counter any influence that George might win at the Court of Corvinus through his second attempt to rededicate his Almagest and Commentary.

800px-johannes_regiomontanus

Johannes Regiomontanus, Woodcut Source: Wikimedia Commons

When he set up his printing business in Nürnberg, Regiomontanus published Peuerbach’s lectures on astronomy, Theoricae Novae Planetarum, as his first book.

Peuerbach-Theoricarum-1515

Georg von Peuerbach: Theoricarum novarum planetarum testus, Paris 1515 Source: Wikimedia Commons

Peuerbach_Theoricae_novae_planetarum_1473

Peuerbach Theoricae novae planetarum 1473 Source: Wikimedia Commons

Although he included the Epitome in his publisher’s prospect he didn’t succeed in publishing it before his untimely death in 1476. The Epitoma in Almagestum Ptolemae was first published in 1496 in Venice by Johannes Hamman. Together with Peuerbach’s lectures the Epitome became the standard textbooks for teaching astronomy at the European universities for much of the next century. The influence of the Epitome goes much deeper than this in the history of astronomy.

929246142-612x612

Title page Epitoma in Almagestum Ptolemae Source: Wikimedia Commons

It is well known that Copernicus modelled his De revolutionibus on Ptolemaeus’ Almagest. In fact text analysis has shown that he actually modelled his magnum opus on the Peuerbach-Regiomontanus Epitome, for example taking most of his knowledge of Arabic astronomy from Regiomontanus’ work. This is, however, rather minor compared to what several expert think is the most important influence that Regiomontanus had on Copernicus.

Nikolaus_Kopernikus

Nicolaus Copernicus portrait from Town Hall in Toruń – 1580 Source: Wikimedia Commons

According to ancient Greek cosmology the planets orbit the earth with uniform circular motion. Any extended observation of the planets show that this is not the case and it was the job of the astronomers to construct geometrical model, which corrected the visible deviation from the cosmological norm; these deviations are known as the anomalies. Ptolemaeus had basically two geometrical tools to describe planetary orbits. With the eccentric deferent the centre of the circle that describes the orbit, the deferent, is not in the same position as the earth, i.e. the earth is not at the centre of the planets orbit. The alternative is the epicycle-deferent model in which the planet is carried around an epicycle, which is itself carried around the deferent. The mathematician Apollonius (late 3rdcentury–early 2ndcentury BCE) had shown that the two models were in fact mathematically equivalent; meaning any motion that could be described with the one model could equally well be described with the other.

Ptolemaeus, however, argued in the Almagest that whereas the retrograde motion (the so-called second anomaly, when the planet appears to reverse its orbital direction for a period of time) of the outer planets could be described with either model that of the inner planets (Venus and Mercury) could only be described with the epicycle-deferent model. In Book XII of the Epitome, Regiomontanus proved that the second anomaly of the inner planets could also be described with the eccentric deferent model. Without going into detail this seems to have led Copernicus directly to his heliocentric system for the inner planets, which he then extended to the outer ones.

Thinking hypothetically, if George had not written his translation of and commentary on the Almagest, then Bessarion would not has asked Peuerbach to write the Epitomeand Regiomontanus might never have provided Copernicus with that vital clue.

Regiomontanus wrote a second book inspired by George’s work. His Defensio Theonis contra Georgium Trapezuntium is a vast rambling mathematical work centred on a defence of Theon of Alexandria against what he saw as George’s unfair treatment of him. He accused George as having both misrepresenting Theon and plagiarising him. This work has never been published but Regiomontanus’ antagonism against George was known at the time. The Defensio was announced in Regiomontanus’ prospect and also in works published by Erhard Ratdolt. This situation led to a rather strange claim made by Pierre Gassendi. In the 1650s Gassendi published a collective biography of the great astronomers Brahe, Copernicus, Regiomontanus etc. in which he claimed that Regiomontanus was murdered in Rome by two of George’s sons in 1476. George had many vocal critics, none of whom were murdered and sensible historians think that Regiomontanus died in one of the epidemics that regularly swept Rome.

 

[1]Michael H. Shank, Regiomontanus and Astronomical Controversy in the Background of Copernicus, pp. 79-109 in Rivka Feldhay and F. Jamil Ragep eds., Before Copernicus: The Cultures and Contexts of Scientific Learning in the Fifteenth Century, McGill-Queen’s University Press, Montreal& Kingston, London, Chicago, 2017, p. 90

This blog post owes much to the above paper and to Michael H. Shank, The Almagest, Politics, and Apocalypticism in the Conflict between George of Trebizond and Cardinal Bessarion, in Almagest International Journal for the History of Scientific Ideas, Volume 8, Issue 2, 2017, pp. 49-83

Advertisements

7 Comments

Filed under Early Scientific Publishing, History of Astronomy, History of science, Renaissance Science, Uncategorized

Conversations in a sixteenth century prison cell

Science writer Michael Brooks has thought up a delightful conceit for his latest book.* The narrative takes place in a sixteenth century prison cell in Bologna in the form of a conversation between a twenty-first century quantum physicist (the author) and a Renaissance polymath. What makes this conversation particularly spicy is that the Renaissance polymath is physician, biologist, chemist, mathematician, astronomer, astrologer, philosopher, inventor, writer, auto-biographer, gambler and scoundrel Girolamo Cardano, although Brooks calls him by the English translation of his name Jerome. In case anybody is wondering why I listed autobiographer separately after writer, it is because Jerome was a pioneer in the field writing what is probably the first autobiography by a mathematician/astronomer/etc. in the Early Modern Period.

Gerolamo_Cardano_(colour)

Portrait of Cardano on display at the School of Mathematics and Statistics, University of St Andrews. Source: Wikimedia Commons

So what do our unlikely pair talk about? We gets fragments of conversation about Jerome’s current situation; a broken old man rotting away the end of his more than extraordinary life in a prison cell with very little chance of reprieve. This leads to the visitor from the future, relating episodes out of that extraordinary life. The visitor also picks up some of Jerome’s seemingly more strange beliefs and relates them to some of the equally, seemingly strange phenomena of quantum mechanics. But why should anyone link the misadventures of an, albeit brilliant, Renaissance miscreant to quantum mechanics. Because our author sees Jerome the mathematician, and he was a brilliant one, as the great-great-great-great-great-great-great-great-great-great-great-great-great grandfather of quantum mechanics!

Brook001

As most people know quantum mechanics is largely non-deterministic in the conventional sense and relies heavily on probability theory for its results. Jerome wrote the first mathematical tome on probability theory, a field he entered because of his professional gambling activities. He even included a section about how to cheat at cards. I said he was a scoundrel. The other thing turns up in his Ars Magna (printed and published by Johannes Petreius the publisher of Copernicus’ De revolutionibus in Nürnberg and often called, by maths historians, the first modern maths book); he was the first person to calculate with so-called imaginary numbers. That’s numbers using ‘i’ the square root of minus one. Jerome didn’t call it ‘i’ or the numbers imaginary, in fact he didn’t like them very much but realised one could use them when determining the roots of cubic equation, so, holding his nose, that is exactly what he did. Like probability theory ‘i’ plays a very major role in quantum mechanics.

What Michael Brooks offers up for his readers is a mixture of history of Renaissance science together with an explanation of many of the weird phenomena and explanations of those phenomena in quantum mechanics. A heady brew but it works; in fact it works wonderfully.

This is not really a history of science book or a modern physics science communications volume but it’s a bit of both served up as science entertainment for the science interested reader, lay or professional. Michael Brooks has a light touch, spiced with some irony and a twinkle in his eyes and he has produced a fine piece of science writing in a pocket-sized book just right for that long train journey, that boring intercontinental flight or for the week in hospital that this reviewer used to read it. If this was a five star reviewing system I would be tempted to give it six.

*  Michael Brooks, The Quantum Astrologer’s Handbook, Scribe, Melbourne & London, 2017

5 Comments

Filed under Book Reviews, Early Scientific Publishing, History of Astrology, History of Astronomy, History of Physics, Renaissance Science, Uncategorized

Exposing Galileo’s strawmanning

There is a widespread, highly erroneous, popular perception in the world, much loved by gnu atheists and supporters of scientism, that as soon as Petreius published Copernicus’s De Revolutionibus in 1543 the question as to which was the correct astronomical/cosmological system for the cosmos was as good as settled and that when Galileo published his Dialogo[1] everything was finally done and dusted and anybody who still persisted in opposing the acceptance of the heliocentric world view, did so purely on grounds of ignorant, anti-science, religious prejudice. Readers of this blog will know that I have expended a certain amount of energy and several thousand words over the years countering this totally mistaken interpretation of the history of astronomy in the early modern period and today I’m going to add even more words to the struggle.

Galileo is held up by his numerous acolytes as a man of great scientific virtue, who preached a gospel of empirical scientific truth in the face of the superstitious, faith based errors of his numerous detractors; he was a true martyr for science. The fact that Galileo was capable of scientific skulduggery does not occur to them, but not only was he capable of such, his work is littered with examples of it. One of his favourite tactics was not to present his opponents true views when criticising them but to create a strawman, claiming that this represents the views of his opponent and then to burn it down with his always-red-hot rhetorical flamethrower.

Towards the end of The First Day in the Dialogo, Galileo has Simplicio, the fall guy for geocentricity, introduce a “booklet of theses, which is full of novelties.” Salviati, who is the champion of heliocentricity and at the same time Galileo’s mouthpiece, ridicules this booklet as producing arguments full of “falsehoods and fallacies and contradictions” and as “thinking up, one by one, things that would be required to serve his purposes, instead of adjusting his purposes step by step to things as they are.” Galileo goes on to do a polemical hatchet job on what he claims are the main arguments in said “booklet of theses.” Amongst others he accuses the author of “setting himself up to refute another’s doctrine while remaining ignorant of the basic foundations upon which the whole structure are supported.”

The “booklet of theses”, which Galileo doesn’t name, is in fact the splendidly titled:

locher001

English translation of the Latin title page Source: Notre Dame Press

Now most of the acolytes who fervently praise Galileo as the great defender of science against superstition probably have no idea who Johann Georg Locher was but they might well have heard of Christoph Scheiner, who was famously embroiled in a dispute with Galileo over the nature of sunspots and who first observed them with a telescope. In fact the authorship of the Mathematical Disquisitions has often falsely attributed to Scheiner and Galileo’s demolition of it seen as an extension of that dispute and it’s sequel in the pages of his Il Saggiatore.

Whereas Galileo’s Dialogo has been available to the general reader in a good English translation by Stillman Drake since 1953, anybody who wished to consult Locher’s Mathematical Disquisitions in order to check the veracity or lack thereof of Galileo’s account would have had to hunt down a 17th century Latin original in the rare books room of a specialist library. The playing field has now been levelled with the publication of an excellent modern English translation of Locher’s booklet by Renaissance Mathematicus friend, commentator and occasional guest contributor Chris Graney[2].

locher002

Graney’s translation (Christopher M. Graney, Mathematical Disquisitions: The Booklet of Theses Immortalised by Galileo, University of Notre Dame Press, Notre Dame, Indiana, 2017)  presents a more than somewhat different picture of Locher’s views on astronomy to that served up by Galileo in the Dialogo and in fact gives us a very clear picture of the definitely rational arguments presented by the opponents to heliocentricity in the early part of the seventeenth century. The translation contains an excellent explanatory introduction by Graney, extensive endnotes explaining various technical aspects of Locher’s text and also some of the specific translation decisions of difficult terms. (I should point out that another Renaissance Mathematicus friend, Darin Hayton acted as translation consultant on this volume). There is an extensive bibliography of the works consulted for the explanatory notes and an excellent index.

The book is very nicely presented by Notre Dame Press, with fine reproductions of Locher’s wonderful original illustrations.

locher003

Locher’s illustration to his discussion of diurnal rotation p. 32

Graney’s translation provides a great addition to his previous Setting Aside All Authority, which I reviewed here. Graney is doing sterling work in adjusting the very distorted view of the astronomical system discussion in the first half of the seventeenth century and anybody, who is seriously interested in learning the true facts of that discussion, should definitely read his latest contribution.

 

 

 

[1] By a strange cosmic coincidence the first printed copy of the Dialogo was presented to the dedicatee Ferdinando II d’Medici, Grand Duke of Tuscany 386 years ago today on 22 February 1632.

[2] At the end of my review of Setting Aside All Authority I wrote the following, which applies equally to this review; in this case I provided one of the cover blurbs for Chris’ latest book.

Disclosure; Chris Graney is not only a colleague, but he and his wife, Christina, are also personal friends of mine. Beyond that, Chris has written, at my request, several guest blogs here at the Renaissance Mathematicus, all of which were based on his research for the book. Even more relevant I was, purely by accident I hasten to add, one of those responsible for sending Chris off on the historical trail that led to him writing this book; a fact that is acknowledged on page xiv of the introduction. All of this, of course, disqualifies me as an impartial reviewer of this book but I’m going to review it anyway. Anybody who knows me, knows that I don’t pull punches and when the subject is history of science I don’t do favours for friends. If I thought Chris’ book was not up to par I might refrain from reviewing it and explain to him privately why. If I thought the book was truly bad I would warn him privately and still write a negative review to keep people from wasting their time with it. However, thankfully, none of this is the case, so I could with a clear conscience write the positive review you are reading. If you don’t trust my impartiality, fair enough, read somebody else’s review.

Addendum: The orthography of the neologism in the title was change—23,02,18— following a straw pole on Twitter

8 Comments

Filed under Book Reviews, Early Scientific Publishing, History of Astronomy, History of Mathematics, Myths of Science, Renaissance Science

Christmas Trilogy 2017 Part 3: Kepler’s big book

Johannes Kepler was incredibly prolific, he published over eighty books and booklets over a very wide range of scientific and mathematical topics during his life. As far as he was concerned his magnum opus was his Ioannis Keppleri Harmonices mundi libri V (The Five Books of Johannes Kepler’s The Harmony of the World) published in 1619 some twenty years after he first conceived it. Today in popular #histsci it is almost always only mentioned for the fact that it contains the third of his laws of planetary motion, the harmonic law. However it contains much, much more of interest and in what follows I will attempt to give a brief sketch of what is in fact an extraordinary book.

kepler001

A brief glace at the description of the ‘five books’ thoughtfully provided by the author on the title page (1) would seem to present a mixed bag of topics apparently in some way connected by the word or concept harmonic. In order to understand what we are being presented with we have to go back to 1596 and Kepler’s first book Mysterium Cosmographicum (The Cosmographic Mystery). In this slim volume Kepler presents his answer to the question, why are there only six planets? His, to our eyes, surprising answer is that the spaces between the planets are defined by the regular so-called Platonic solids and as the are, and can only be, five of these there can only be six planets.

Using the data from the greatest and least distances between the planets in the Copernican system, Kepler’s theory produces an unexpectedly accurate fit. However the fit is not actually accurate enough and in 1598 Kepler began working on a subsidiary hypothesis to explain the inaccuracies. Unfortunately, the book that he had planned to bring out in 1599 got somewhat delayed by his other activities and obligations and didn’t appear until 1619 in the form of the Harmonice mundi.

The hypothesis that Kepler presents us with is a complex mix of ideas taken from Pythagoras, Plato, Euclid, Proclus and Ptolemaeus centred round the Pythagorean concept of the harmony of the spheres. Put very simply the theory developed by the Pythagoreans was that the seven planets (we are talking geocentric cosmology here) in their orbits form a musical scale than can, in some versions of the theory, only be heard by the enlightened members of the Pythagorean cult. This theory was developed out of the discovery that consonances (harmonious sounds) in music can be expressed in the ratio of simple whole numbers to each other (the octave for example is 1:2) and the Pythagorean belief that the integers are the building block of the cosmos.

This Pythagorean concept winds its way through European intellectual history, Ptolemaeus wrote a book on the subject, his Harmonice and it is the reason why music was one of the four disciplines of the mathematical quadrivium along with arithmetic, geometry and astronomy. Tycho Brahe designed his Uraniburg so that all the architectonic dimensions from the main walls to the window frames were in Pythagorean harmonic proportion to one another.

Uraniborg_main_building

Tycho Brahe’s Uraniborg Blaeus Atlas Maior 1663 Source: Wikimedia Commons

It is also the reason why Isaac Newton decided that there should be seven colours in the rainbow, to match the seven notes of the musical scale. David Gregory tells us that Newton thought that gravity was the strings upon which the harmony of the spheres was played.

In his Harmony Kepler develops a whole new theory of harmony in order to rescue his geometrical vision of the cosmos. Unlike the Pythagoreans and Ptolemaeus who saw consonance as expressed by arithmetical ratios Kepler opted for a geometrical theory of consonance. He argued that consonances could only be constructed by ratios between the number of sides of regular polygons that can be constructed with a ruler and compass. The explication of this takes up the whole of the first book. I’m not going to go into details but interestingly, as part of his rejection of the number seven in his harmonic scheme Kepler goes to great lengths to show that the heptagon construction given by Dürer in his Underweysung der Messung mit dem Zirckel und Richtscheyt is only an approximation and not an exact construction. This shows that Dürer’s book was still being read nearly a hundred years after it was originally published.

kepler002

In book two Kepler takes up Proclus’ theory that Euclid’s Elements builds systematically towards the construction of the five regular or Platonic solids, which are, in Plato’s philosophy, the elemental building blocks of the cosmos. Along the way in his investigation of the regular and semi-regular polyhedra Kepler delivers the first systematic study of the thirteen semi-regular Archimedean solids as well as discovering the first two star polyhedra. These important mathematical advances don’t seem to have interested Kepler, who is too involved in his revolutionary harmonic theory to notice. In the first two books Kepler displays an encyclopaedic knowledge of the mathematical literature.

kepler003

The third book is devoted to music theory proper and is Kepler’s contribution to a debate that was raging under music theorist, including Galileo’s father Vincenzo Galilei, about the intervals on the musical scale at the beginning of the seventeenth century. Galilei supported the so-called traditional Pythagorean intonation, whereas Kepler sided with Gioseffo Zarlino who favoured the ‘modern’ just intonation. Although of course Kepler justification for his stance where based on his geometrical arguments. Another later participant in this debate was Marin Mersenne.

kepler004

In the fourth book Kepler extends his new theory of harmony to, amongst other things, his astrology and his theory of the astrological aspects. Astrological aspects are when two or more planets are positioned on the zodiac or ecliptic at a significant angle to each other, for example 60° or 90°. In his Harmonice, Ptolemaeus, who in the Renaissance was regarded as the prime astrological authority, had already drawn a connection between musical theory and the astrological aspects; here Kepler replaces Ptolemaeus’ theory with his own, which sees the aspects are being derived directly from geometrical constructions. Interestingly Kepler, who had written and published quite extensively on astrology, rejected nearly the whole of traditional Greek astrology as humbug keeping only his theory of the astrological aspects as the only valid form of astrology. Kepler’s theory extended the number of influential aspects from the traditional five to twelve.

The fifth book brings all of the preceding material together in Kepler’s astronomical/cosmological harmonic theory. Kepler examines all of the mathematical aspects of the planetary orbits looking for ratios that fit with his definitions of the musical intervals. He finally has success with the angular velocities of the planets in their orbits at perihelion and aphelion. He then examines the relationships between the tones thus generated by the different planets, constructing musical scales in the process. What he in missing in all of this is a grand unifying concept and this lacuna if filled by his harmonic law, his third law of planetary motion, P12/P22=R13/R23.

kepler005

There is an appendix, which contains Kepler’s criticisms of part of Ptolemaeus’ Harmonice and Robert Fludd’s harmony theories. I blogged about the latter and the dispute that it triggered in an earlier post

With his book Kepler, who was a devoted Christian, was convinced that he had revealed the construction plan of his geometrical God’s cosmos. His grandiose theory became obsolete within less than fifty years of its publication, ironically pushed into obscurity by intellectual forces largely set into motion by Kepler in his Astronomia nova, his Epitome astronomiae Copernicanae and the Rudolphine Tables. All that has survived of his great project are his mathematical innovations in the first two books and the famous harmonic law. However if readers are prepared to put aside their modern perceptions and prejudices they can follow one of the great Renaissance minds on a fascinating intellectual journey into his vision of the cosmos.

(1) All of the illustration from the Harmonice mundi in this post are taken from the English translation The Harmy of the World by Johannes Kepler, Translated into English with an Introduction and Notes by E.J. Aston, A.M. Duncan and J.V. Field, American Philosophical Society, 1997

14 Comments

Filed under Early Scientific Publishing, History of Astrology, History of Astronomy, History of Mathematics, History of science, Renaissance Science, Uncategorized

The House of Blaeu vs.The House of Hondius – The Battle of the Globes and Atlases

There is a South to North trajectory in the evolution of the modern mathematical cartography in Europe over the two hundred years between fourteen hundred and sixteen hundred. Ptolemaic mathematical cartography re-entered Europe in Northern Italy with the first translation into Latin of his Geographia by Jacobus Angulus in 1406. Following this the first modern first modern cartographers, including Paolo dal Pozzo Toscanelli, were also situated in Northern Italy. By the middle of the fifteenth century the main centre of cartographical activity had moved north to Vienna and was centred around Kloster-Neuburg and the University with its First Viennese School of Mathematics, Georg von Peuerbach and Johannes Regiomontanus. Towards the end of the century printed editions of Ptolemaeus’ work began to appear both north and south of the Alps. The beginning of the sixteenth century saw the main centres of cartographic development in the Southern German sphere. Two principle schools are identifiable, the Nürnberg-Vienna school, whose main figures are Johannes Stabius, Peter Apian and Johannes Schöner, and the South-Western school with Waldseemüller and Ringmann in Saint-Dié-des-Vosges and Sebastian Münster in Basel. Again by the middle of the century the centre had once again moved northwards to Leuven and the Flemish school founded by Gemma Frisius and including the two great atlas makers Abraham Ortelius and Gerard Mercator. At the start of the seventeenth century the final step northwards had been taken and the new state of The United Provinces (The Netherlands) had taken the lead in modern cartography. This final step is the subject of this post.

Willem Janszoon Blaeu was born into a prosperous herring trading family in Alkmaar or Uitgeest in 1471. As would have been expected he was sent at an early age to Amsterdam to learn the family trade but it did not appeal to him and he worked instead as a carpenter and clerk in the office of his cousin. In late 1595 his life took a radical turn when he travelled to Hven to study astronomy under Tycho Brahe. It is not known what level of foreknowledge Blaeu took to Hven with him but he spent six months there studiously learning astronomy, instrument making, geodesy and cartography with Tycho and his staff. When he started his observing marathon Tycho had had a large brass globe constructed on which he, over the years, engraved the positions of all the stars that he had measured. Blaeu was given permission to transfer this data to a globe of his own. In 1596 he returned to Alkmaar and his wife Maertgen Cornilisdochter who bore his eldest son Joan on 21 September. On 21 February 1598 Blaeu in Alkmaar and Tycho in Hamburg both observed a lunar eclipse to determine the relative longitude of the two cities.

Portrait of Willem Janszoon Blaeu Artist unknown

Sometime in 1598/9 Blaeu took his family to Amsterdam and set up shop as a printer, instrument maker, globe maker and cartographer; making his first celestial globe, 34 cm diameter, for Adriaan Anthoniszoon, using Tycho’s data; this was the first publication of that data. However Blaeu’s new career was not going to be simple as he had an established competitor, Jocodus Hondius.

Jocodus Hondius was born Joost de Hondt in Wakken and grew up in Ghent, both now in Belgium, on 14 October 1563. He received an education in mathematics and learnt engraving, drawing and calligraphy. He had already established himself as a successful engraver when he was forced by the Spanish, as a Calvinist, to flee to London in 1584. In London he worked for and with Richard Hakluyt and Edward Wright and expanded his knowledge of geography and cartography through contact with the English explorers Francis Drake, Thomas Cavendish and Walter Raleigh. Around 1589 he published a wall map in London showing Drake’s voyage around the world. In 1593 he moved back to The Netherlands, establishing himself in Amsterdam.

Self-portrait of Jodocus Hondas taken from one of his maps

Portrait of Francis Drake by Jodocus Hondas from his Drake world map

He formed an alliance with the Plantin printing house in Leiden for who he made several globes. In 1602 he matriculated at the University of Leiden to study mathematics. In 1604 he made the most important decision of his career in that he bought the copper printing plates of the of both Mercator’s edition of Ptolemaeus’ Geographia and Mercator’s Atlas from his heirs.He published a new edition of Mercator’s Ptolemaeus, Claudïï Ptolemaeï Alexandrini geographicae libri octo graecog latini, in the same year. He set up his own publishing house in Amsterdam in December 1604. In the sixteenth century Mercator’s Atlas had failed to establish itself in a market dominated by Ortelius’ Theatum Orbis Terrarum, however Hondius republished it in 1606 with 36 new maps and it became a best seller.

Atlas sive Cosmographiae Meditationes de Fabrica Mundi et Frabicati Figura
Mercator (left) and Hondius (right) shown working together on tittle page of 1630 Atlas
Slightly ironical as they never met and both were dead by then.

Meanwhile Blaeu had established himself as a globe maker and astronomer. Following the tradition established by Johannes Schöner and continued by Mercator Blaeu issued a pair of 23.5 cm globes, terrestrial and celestial, in 1602. His rival Hondius introduced the southern constellation on a celestial globe produced in cooperation with the astronomer-cartographer Petrus Plancius in 1598. Blaeu followed suite in 1603. Hondius produced a pair of 53.5 cm globes in 1613; Blaeu countered with a pair of 68 cm globes in 1616, which remained the largest globes in production for over 70 years.

Hondas celestial globe 1600
Source: Linda Hall Library

A matching pair of Blaeu globes

As an astronomer Blaeu discovered the star P Cygni, only the third variable star to be discovered. In 1617 Willebrord Snellius published his Eratosthenes Batavus (The Dutch Eratosthenes) in which he described his measurement of a meridian arc between Alkmaar and Bergen op Zoom. This was done in consultation with Blaeu, who had learnt the art of triangulation from Tycho, using a quadrant, with a radius of more than 2 metres, constructed by Blaeu. Blaeu specialised in publishing books on navigation beginning in 1605 with his Nieuw graetbouck and established himself as the leading Dutch publisher of such literature.

Source: Wikimedia Commons

Title page
Source: Wikimedia Commons

Quadrant constructed by Blaeu for Snellius now in Museum Boerhaave in Leiden
Source: Wikimedia Commons

Jodocus Hondius died in 1612 and his sons Jodocus II and Henricus took over the publish house later going into partnership with Jan Janszoon their brother in law. They continued to publish new improved version of the Mercator-Hondius Atlas. Blaeu had already established himself as the successful publisher of wall maps when he began planning a major atlas to rival that of the house of Hondius. That rivalry is also reflected in a name change that Blaeu undertook in 1617. Up till then he had signed his work either Guilielmus Janssonius or Willem Janszoon, now he started add the name Blaeu to his signature probably to avoid confusion with Jan Janszoon (Janssonius), his rival.

Jan Janszoon Original copperplate from his Atlas Novus 1647

In 1630 the strangest episode in the battle of the globes and atlases took place when Jodocus II’s widow sold 37 of the copper plates of the Mercator-Hondius Atlas to Willem Blaeu. He published them together with maps of his own in his Atlantic Appendix in 1631. In 1636 Blaeu published the first two volumes of his own planned world atlas as Atlas Novus or Theatrum Orbis Terrarum, thus reviving the old Ortelius name.

In 1633 the States General (the government of the United Provinces) appointed Blaeu mapmaker of the Republic. In the same year he was appointed cartographer and hydrographer of the Vereenighde Oostindische Compagnie (VOC) – The Dutch East India Company. His son Joan inherited the VOC position, as did his grandson Joan II; The Blaeu family held this prestigious position from 1633 till 1712.

Willem Blaeu had great plans to publish several more volumes of his world atlas but he didn’t live to see them realised, dying 21 October 1638. The publishing house passed to his two sons Joan (1596-1673) and Cornelis (c.1610-1644). The last two volumes prepared by Willem appeared in 1640 and 1645. Joan completed his father’s atlas with a sixth volume in 1655.

Along with all his other achievements Willem Janszoon Blaeu made a substantial improvement to the mechanical printing press by adding a counter weight to the pressure bar in order to make the platen rise automatically. This ‘Blaeu’ or ‘Dutch’ press became standard throughout the low countries and was also introduced into England. The first printing press introduced into America in 1639 was a Blaeu press.

Although he held a doctorate in law, Joan devoted his life to the family cartographic publishing business. In 1662 he set the high point of the atlas battle with the House of Hondius with the publication of the Atlas Maior; containing 600 double page maps and 3,000 pages of text it was the most spectacular atlas of all time. Along with its lavish maps the Atlas Maior contained a map of Hven and pictures of the house and stellar observatory on the island where Willem Janszoon Blaeu first learnt his trade. Whereas Willem was careful not to take sides in the dispute between the different systems for the cosmos – geocentric, heliocentric, geo-heliocentric – in the Atlas Maior, Joan committed to heliocentricity.

Joan Blaeu. By J.van Rossum
Source: Wikimedia Commons

Blaeu Atlas Maior 1662-5, Volume 1
Nova Et Accvratissima Totius Terrarvm Orbis Tabvla
Source: National Library of Scotland

The rivalry between the Houses of Hondius and Blaeu, pushing each other to new heights of quality and accuracy in their maps and globes led to them totally dominating the European market in the first half of the sixteenth century, particularly in the production of globes where they almost had a monopoly. Globes in the period, which weren’t from one of the Amsterdam producers, were almost always pirated copies of their products.

As an interesting footnote, as with all things mathematical England lagged behind the continent in cartography and globe making. Although there had been earlier single globes made in on the island, England’s first commercial producer of terrestrial and celestial globes, Joseph Moxon, learnt his trade from Willem Janszoon Blaeu in Amsterdam. In 1634 Blaeu had published a manual on how to use globes, Tweevoudigh onderwijs van de Hemelsche en Aerdsche globen (Twofold instruction in the use of the celestial and terrestrial globes). In the 1660s, Moxon published his highly successful A Tutor to Astronomie and Geographie. Or an Easie and speedy way to know the Use of both the Globes, Cœlestial and Terrestrial : in six Books, which went through many editions, however the first edition was just an English translation of Blaeu’s earlier manual.

The Dutch painter Jan Vermeer often featured globes and maps in his paintings and it has been shown that these are all reproductions of products from the Blaeu publishing house.

Vermeer’s Art of Painting or The Allegory of Painting (c. 1666–68)
With Blaeu Wall Map
Google Art Project Source: Wikimedia Commons

Jan Vermeer The Astronomer with Blaeu celestial globe and right on the wall a Blaeu wall map
Source: Wikimedia Commons

Jan Vermeer The Geographer with Blaeu terrestrial globe and again right a Blaeu wall map
Source: Wikimedia Commons

The Blaeu wall map used in Vermeers’ The Astronomer and The Geographer

We tend to emphasise politicians, artists and big name scientists, as the people who shape culture in any given age but the cartographic publishing houses of Hondius and Blaeu made significant contributions to shaping the culture of The United Provinces in the so-called Dutch Golden Age and deserve to be much better known than they are.

 

 

 

 

6 Comments

Filed under Early Scientific Publishing, History of Astronomy, History of Cartography, History of Navigation, History of science, Renaissance Science

A very innovative early scientific printer/publisher

It is a commonplace amongst historians that the invention of movable type, and through it the advent of the printed book, in the middle of the fifteenth century, was one of the principal driving forces behind the emergence of modern science in the Early Modern Period. However, although historians of science pay lip service to this supposedly established fact very few of them give any consideration to the printer/publishers who produced those apparently so important early books on science, medicine and technology. Like the technicians and instrument makers, the printer/publishers, not being scientist, are pushed to the margins of the historical accounts, left to the book historians.

Here at the Renaissance Mathematicus I have in the past featured Regiomontanus, considered to be the very first printer/publisher of science, Johannes Petreius the publisher of Copernicus’ De revolutionibus amongst numerous other scientific works and Anton Koberger around 1500 the world’s biggest printer/publisher and the man who produced the first printed encyclopaedia, The Nuremberg Chronicle. Today I want to turn my attention to a less well-known but equally important printer/publisher of scientific texts, who was responsible for several significant innovations in book production, Erhard Ratdolt.

Erhard Ratdolt was born in Aichach in Bavaria in 1459 or 60 the son of the carpenter Erhard Ratdolt and wife Anna. Erhard apprenticed as a carpenter and a maker of plaster figures. At the age of fifteen, according to his own account, he travelled to Venice, where he set up a printer/publisher office together with Bernhart Pictor a painter from Augsburg and Peter Loslein from Langenzenn, a small town near Nürnberg, in 1476.[1] The printing house was one of the earliest in Venice, where Johannes de Spira had set up the first one in 1469. By 1480 Venice had become to main centre for book production in Europe It seems that Ratdolt ran the business, whilst Pictor was responsible for the book decoration and Loslein for the text and copyediting. Both Pictor and Loslein had left the publishing house by 1478 leaving Ratdolt as the sole proprietor. Ratdolt’s two partners were probably victims of the plague, which wiped out eleven of the twenty-two printer/publishing establisments existing in Venice in 1478.

Their first publication was Regiomontanus’ Calendar, published in Latin and Italian in 1476 and in German in 1478. This book already contained several innovations. Ratdolt and his partners introduced the concept of printed ornamental borders for the pages of their books, a style that became typical for Renaissance books. They also introduced the first modern title page! It almost certainly seems strange to the modern book reader but the volumes printed in the first twenty or so years of book printing didn’t have title pages, as we know them. Ratdolt’s Regiomontanus Calendar was the first book to have a separate page at the beginning of the volume giving place, date and name of the printer. It was also the first book to have its publication date printed in Hindu-Arabic numerals and not in Roman ones. It would be some time before title pages of the type introduced by Ratdolt became common.

Calendarius by Regiomontanus, printed by Erhard Ratdolt, Venice 1478, title page with printers’ names
Source: Wikimedia Commons

In terms of the sciences Ratdolt’s most important work was the first printed edition of Euclid’s Elements, which he published in 1482. Here the innovation, a very major one was the inclusion of illustrations in the text. I say within the text but in fact the book was printed with very wide margins and the geometrical diagrams were printed next to the relevant text passage in these margins.

A page with marginalia from the first printed edition of Euclid’s Elements, printed by Erhard Ratdolt in 1482
Folger Shakespeare Library Digital Image Collection
Source: Wikimedia Commons

Another of Ratdolt’s innovations was the introduction of first two-coloured printing and then over time building up to books printed in as many as five colours and also printing with gold leaf.

Diagram, showing eclipse of the moon; woodcut, printed in three colours, from Sphaericum opusculum by Johannes de Sacro Bosco, printed by Erhard Ratdolt, Venice 1485
Source: Wikimedia Commons

In 1486 Ratdolt returned to Bavaria and set up a new publishing house in Augsburg at the invitation of the bishop and it was here that he introduced his next innovation. He is the earliest known printer/publisher to issue a printer’s type specimen book, in his case a broadsheet, displaying the fonts that he had available to print his wares. Upon his return to Augsburg Ratdolt was the first to introduce the Italian Rotunda font into Germany. He was also one of the earliest printers to offer Greek fonts for printing. Another of his innovations was the dust jacket. Like most other printer/publishers in the first half-century of book printing Ratdolt’s output in Augsburg was mostly religious works, although he did print some astrological/astronomical volumes. Ratdolt’s output declined from 1500 onwards but between 1487 and his death in 1522 his publishing house issued some 220 volumes.

Wappen des Bischofs Johann von Werdenberg, in der Widmung des Augsburger Breviers, 1485
Source: Wikimedia Commons

Given his youth when he left Bavaria for Venice Ratdolt’s contributions to the development of early book printing were truly remarkable. Even if his original partners were older and had started this chain of innovation, Ratdolt was still a teenager when they both disappeared from the business (died?) and the innovations continued when he was running the business alone.

Two interesting historical questions remain open concerning Ratdolt’s activities as a printer/publisher. We actually have no idea when, where or how he learnt the black art, as printing was known in that early period. The second problem concerns another early printer of scientific texts, Regiomontanus, and his connection to Ratdolt. The first book that Ratdolt published was Regiomontanus’ Calendar an important astrological/astronomical text that was something of a fifteenth-century best seller. The manuscript of the Euclid that Ratdolt published was one of the ones that Regiomontanus had discovered in Northern Italy when he was in the service of Cardinal Bessarion, as his book collector between 1461 and 1467. This raises the question, how did Ratdolt come into possession of Regiomontanus’ manuscripts?

Some earlier writers solved both questions by making Ratdolt into Regiomontanus’ apprentice in his publishing house in Nürnberg. The theory is not so far fetched, as Aichach is not so far away from Nürnberg and Ratdolt moved to Venice at about the same time as Regiomontanus disappeared and is presumed to have died. Unfortunately there is absolutely no evidence whatsoever to support this theory. Also given Regiomontanus’s renown at the time of his death, not just as a mathematical scholar but also as a printer/publisher, if Ratdolt had been his apprentice he would surely have advertised the fact in his own printing endeavours. I suspect that we will never know the answers to these questions.

 

 

 

 

 

[1] On a personal note I spent my first four years in Germany living just down the road from Langenzenn, where I spent most of my free time.

1 Comment

Filed under Early Scientific Publishing, Uncategorized

Books!

When I dropped out of academia (for the second time in my life) in the early 1990s, because of serious (mental) health problems, I throttled back my life-long interest in the history of science, giving my energy instead to recovering my mental equilibrium. When, after a break of several years, I returned to an intensive engagement with the history of science, one of the first things I did was to take part in a seminar at the university on Copernicus’ De revolutionibus. This led me to the question, why was De revolutionibus published in Nürnberg? Regular readers will know that I live just down the road from Nürnberg, so this a fairly natural question for me to ask. My attempts to find an answer led to an in depth study of the life and work of Johannes Petreius, the printer publisher who published De revolutionibus and to the early history of the printed book, as Petreius stood in a direct line of descent from Gutenberg through his Basler relatives who had learnt the black art directly from its inventor.

The more general question of the influence of the printed book on the evolution of modern science led quite naturally to a deepened interest in the early history of scientific book publication in which Nürnberg again played a role through Regiomontanus the first printer publisher of scientific books.

Curiously Nürnberg was also the site of the first paper mill north of the Alps, paper being an essentially ingredient in mass production of printed books and this fact led to a strong interest in the history of paper making and to the materials that preceded paper as a medium for transmitting the written word.

Another seminar that I took part in at the university, following my return to the history of science, concerned the history of illustrations in scientific texts, which awakened my interest in the various methods of illustration reproduction and their histories. Another Nürnberger, Albrecht Dürer, played a significant role in that history.

Over the years I acquired a deep interest, and a modicum of knowledge of the histories of all the various aspects of recording knowledge in word and picture, so it was not surprising that my interest was drawn almost magnetically to a fairly recent new publication with the title, The Book: A Cover to Cover Exploration of the Most Powerful Object of Our Times. An interest made even stronger by the fact that the author of this tome is Keith Houston, the author of both the book Shady Characters: The Secret Life of Punctuation, Symbols & Other Typographical Marks, a serious candidate for ultimate geek bedtime reading, and of the blog of the same name. Unable to resist temptation I acquired a copy of The Book.

the-book001

Having delved deeply into the subject over a number of years I expected to be entertained, Houston is a witty writer, but not really to learn much that was new. I was mistaken, even though I consider myself well informed on the topic I took away much that was new from Houston’s excellent study of the topic.

The Book is divided into four sections, The Page, The Text, Illustrations and Form. The first deals with the history of writing material from papyrus over parchment to paper and the progress from hand-made paper to modern industrial paper production. The second deals with methods of bringing writing onto that material starting with Babylonian cuneiform symbols impressed into clay tablets, outlining the history of ink and moving on to the history of moveable type printing. Once again covering the arc from the cradle of civilisation to the twentieth century. Part three does the same for pictures on the page. The final part deals with the forms that books have taken over the centuries from the papyrus roles to the codex and the various sizes and forms that the codex has adopted down the years. We also get a detailed history of the evolution of bookbinding.

Houston has researched his topic exceedingly well and delivers his cornucopia of information in a well-digested and easily accessible form for the reader, with a healthy portion of humour. One aspect of the book that appealed to me as a history of science myth buster is Houston’s use of multiple layers of historical story telling. For example, he takes a topic and tells his readers how its history was understood and presented in the nineteenth century. Then he explains how modern research showed this to be wrong and represents the history from this standpoint. Having gone into great detail he then explodes this version by showing why it can’t be true. I’m not going to go here into any great detail, as it would spoil the fun for future readers, and it really is fun, but Houston gives his readers a useful lesson in the evolution of the historiography of his subject.

One thing that has to be said is that The Book is beautifully produced with much obvious loving care for detail. It is printed with a very attractive typeface on lovely paper both of which make it a real pleasure to hold and to read. It comes bound in heavy light-grey carton boards joined together by dark read spinal binding tape. Its gatherings are, as befits a book about the history of the book, stitched and not glued. Throughout the book, starting with the cover, all of the bits and pieces that a book consists of are bracketed and labelled with their corrected technical terms. The book is beautifully illustrated, each illustration possessing an extensive explanatory text of its own. There are a helpful further reading list, extensive endnotes (as always I would have preferred footnotes) and an equally extensive index. Despite being just over 400 pages long, and being a high quality, beautifully produced, bound book it retails at a ridiculously low price. The publishers offer it at $29.95 but it can be had for less than twenty pounds, euro or dollar depending on your location.

If you have any interest in the history of the book as an object or the history of moveable type printing then I can only recommend acquiring a copy of Keith Houston’s wonderful book on the book.

 

4 Comments

Filed under Book Reviews, Early Scientific Publishing