Eggolsheim is a small market town about twenty kilometres almost due north of Erlangen in the Fränkischen Schweiz (Franconian Switzerland).

Eggolsheim Source: Wikimedia Commons
The Fränkischen Schweiz is a hilly area with many rock faces and caves in Middle Franconia, to the north of Nürnberg that is very popular with tourists, day trippers, wanderers, rock-climbers and potholers. It also has lots of old churches and castles.

Fränkische Schweiz Source Wikimedia Commons
When I first moved to Middle Franconia the Fränkischen Schweiz had the highest density of private breweries of anywhere in the world. It also has many bierkeller that during the summer months attract large crowds of visitors at the weekend. Eggolsheim is these days probably best known for its bierkeller, but in the late fifteenth century it was the birthplace of the Renaissance mathematicus, Georg Hartmann, who would become one of the leading instrument makers in Renaissance Nürnberg in the early sixteenth century.

Georg Hartmann Source: Astronomie in Nürnberg
Hartmann was born on 9 February 1489. Unfortunately, as with so many Renaissance figures, we know nothing about his background or childhood. He matriculated at the university of Ingolstadt in 1503, which is where people from Franconia often studied as there were no University in either Nürnberg or Bamberg. Johannes Werner and Johannes Stabius, two other members of Nürnberg’s Renaissance mathematical community were graduates of Ingolstadt. In 1506, Hartmann transferred to the University of Köln, where he studied mathematics and theology, graduating in 1510. As was quite common during this period he completed his studies on a journey through Italy between 1510 and 1518. He spent several years in Rome, where he was friends with Andreas Copernicus, the older brother of Nicolas, who died in Rome, possibly of leprosy or syphilis in 1518.
In 1518 Hartmann arrived in Nürnberg, where he was appointed a vicar of the St. Sebaldus Church, one of the two parish churches of the city. Unlike the modern Anglican Church, where the vicar is the principal priest of a church, in the sixteenth century Catholic Church a vicar was a deputy or replacement priest with a special function appointed either permanently or temporarily. He might, for example, be appointed to sing a daily mass in the name of a rich deceased member of the parish, who left a stipend in his will to pay for this service, as another of Nürnberg’s mathematical community, Johannes Schöner, was appointed to do in Kirchehrenbach, also in the Fränkischen Schweiz, in 1523. We don’t know what Hartmann’s specific duties in the St. Sebaldus Church were. In 1522 he was also granted the prebend of the St. Walburga Chapel in Nürnberg.

St. Sebaldus in Nürnberg Source: Wikimedia Commons
This was a sinecure. It was not unusual for mathematici to receive sinecures from the Church to enable them to carry out their activities as mathematicians, instrument makers or cartographers in the service of the Church. This was certainly the case with Johannes Schöner, who was many years paid as a member of the St Joseph Beneficence in Bamberg but worked as mathematicus, printer and bookbinder for the Bishop. If this was actually so in Hartmann’s case is not known.
When he arrived in Nürnberg he became part of the, for the time, comparatively large community of mathematici, print makers, printer/publishers and instrument makers, which included both Werner and Stabius, the latter as a regular visitor, but both of whom died in 1522. I have written about this group before here and here. It also included Schöner, who only arrived in 1525, Erhard Etzlaub, Johann Neudörffer, Johannes Petreius and Albrecht Dürer. Central to this group was Willibald Pirckheimer, who although not a mathematicus, was a powerful local figure–humanist scholar, merchant trader, soldier, politician, Dürer’s friend and patron–who had translated Ptolemaeus’ Geographia from Greek into Latin. Hartmann was friends with both Pirckheimer and Dürer, and acted as Schöner’s agent in Nürnberg, selling his globes in the city, during the time Schöner was still living in Kirchehrenbach. Like other members of this group Hartmann also stood in contact with and corresponded with many other scholars throughout Europe; the Nürnberger mathematici were integrated into the European network of mathematici.
Hartmann established himself as one of Nürnberg’s leading scientific instrument makers; he is known to have produced sundials, astrolabes, armillary spheres and globes. None of his armillary spheres or globes are known to have survived, although a few globe gores made by him are extant, an important factor when trying to assess the impact or range of an instrument maker, we can only work with that which endures the ravages of time. We know for example that Hartmann’s friend and colleague, Schöner, produced and sold large numbers of terrestrial and celestial globes but only a small handful of his globes are preserved.
A total of nine of Hartmann’s brass astrolabes are known to have survived and here Hartmann proved to be an innovator.

Hartmann astrolabe front

Hartmann astrolabe back
As far as is known, Hartmann was the earliest astrolabe maker to introduce serial production of this instrument. It is now assumed that he designed the instruments and then commissioned some of Nürnberg’s numerous metal workers to mass produce the separate parts of the astrolabe, which he them assembled and sold. Nine astrolabes might not seem a lot but compared to other known astrolabe makers, from whom often just one or two instruments are known, this is a comparatively large number. This survival rate suggests that Hartmann made and sold a large number of his mass-produced instruments.
With his sundials the survival rate is much higher, there are seventy-five know Hartmann sundials in collection around the world. Hartmann made sundials of every type in brass, gold and ivory but is perhaps best known for his portable diptych sundials, a Nürnberg specialty. A diptych consists of two flat surfaces, usually made of ivory, connected by a hinge that fold flat to be put into a pocket. When opened the two surfaces are at the correct angle and joined by a thread, which functions as the dial’s gnomon. The lower surface contains a compass to help the user correctly orientate his dial during use.

Hartmann diptych sundial open

Hartmann diptych sundial closed

Open diptych sundial showing string gnomon and Hartmann’s name
Hartmann also made elaborate dials such as this ivory crucifix dial.
One thing that Hartmann is noted for is his paper instruments*. These are the elements for instrument printed on sheets of paper. These can be cut out and glued to thin wood backing to construct cheap but fully functioning instruments. Of course, the survival rates of such instruments are very low and in fact only one single paper astrolabe printed by Hartmann is known to have survived.

Hartmann paper astrolabe Source:History of Science Museum Oxford
However, we are lucky that several hundred sheets of Hartmann’s printed paper instruments have survived and are now deposited in various archives. There have been discussions, as to whether these were actually intended to be cut out and mounted onto wood to create real instruments or whether there are intended as sales archetypes, designed to demonstrate to customers the instruments that Hartmann would then construct out of ivory, brass or whatever.

Printed paper instrument part
Apart from designing and constructing instruments Hartman was obviously engaged in writing a book on how to design and construct instrument. Several partial manuscripts of this intended work exist but the book was never finished in his lifetime. The book however does reveal his debt as an instrument designer to Johannes Stöffler’s Elucidatio fabricae usuque astrolabii.
As a manufacturer of portable sun dials with built in compasses Hartmann also developed a strong interest in the magnetic compass. Whilst living in Rome he determined the magnetic declination of the city, i.e., how much a compass needle varies from true north in that location. Hartmann also appears to have been the first to discover magnetic dip or inclination, which information he shared with Duke Albrecht of Prussia in a letter in 1544, but he never published his discovery, so it is usually credited to the English mariner Robert Norman, who published the discovery in his The Newe Attractive, shewing The Nature, Propertie, and manifold Vertues of the Loadstone; with the declination of the Needle, Touched therewith, under the Plaine of the Horizon in 1581.
The only book that Hartmann did publish in his lifetime was an edition of John Peckham’s Perspectiva communis, the most widely used medieval optic textbook, which was printed by Johannes Petreius in 1542.
Hartmann died in Nürnberg in 1564 and was buried in the St Johannes graveyard, outside the city walls, where the graves of his friend Pirckheimer, Dürer and Petreius can also be found amongst many other prominent citizens of the Renaissance city.

Hartmann’s grave Source: Astronomie in Nürnberg

Hartmann’s epitaph Source: Astronomie in Nürnberg
- For a detailed description of Hartmann’s printed paper instruments see: Suzanne Karr Schmidt, Interactive and Sculptural Printmaking in the Renaissance, Brill, 2017
Very Interesting…thank you for sharing.