Category Archives: Book History

Renaissance Science – XXI

One of the products of the Republic of Letters during the Humanist Renaissance was the beginning or the foundation of the modern European library. Naturally they didn’t invent libraries; the concept of the library goes back quite a long way into antiquity. To a great extent, libraries are a natural consequence of the invention of writing. When you have writing, then you have written documents. If you preserve those written documents then at some point you have a collection of written documents and when that collection becomes big enough, then you start to think about storage, sorting, classification, listing, cataloguing and you have created an archive or a library. I’m not going try and sort out the difference between an archive and a library and will from now on only use the term library, meaning a collection of books, without answering the question, what constitutes a book?

The oldest know libraries are the collections of clay tablets found in the temples of Sumer, some of which date back to the middle of the third millennium BCE. There were probably parallel developments in ancient Egypt but as papyrus doesn’t survive as well as clay tablets there is less surviving evidence for early Egyptian libraries. There is evidence of a library in the Sumerian city of Nippur around two thousand BCE and a library with a classification system in the Assyrian city of Nineveh around seven hundred BCE. The Library of Ashurbanipal in Nineveh contained more than thirty thousand clay tablets containing literary, religious, administrative, and scientific works. Other ancient cultures such as China and India also developed early libraries.

Library of Ashurbanipal Mesopotamia 1500-539 BC Gallery, British Museum, Source: Wikimedia Commons

The most well-known ancient library is the legendary Library of Alexandria, which is clouded in layers of myth. The library was part of the of the Mouseion, a large research institute, which was probably conceived by Ptolemy I Soter (c. 367–282 BCE) but first realised by his son Ptolemy II Philadelphus (309–246 BCE). Contrary to popular myth it was neither destroyed by Christian zealots nor by Muslim ones but suffered a steady decline over a number of centuries. For the full story read Tim O’Neill’s excellent blog post on the subject, which also deals with a number of the other myths. As Tim points out, Alexandria was by no means the only large library during this period, its biggest rival being the Library of Pergamum founded around the third century BCE. The Persian Empire is known to have had large libraries as did the Roman Empire.

Artistic rendering of the Library of Alexandria, based on some archaeological evidence Source: Wikimedia Commons

With the gradual decline of the Western Roman Empire, libraries disappeared out of Europe but continued to thrive in the Eastern Empire, the future Byzantium. The Islamic Empire became the major inheritor of the early written records of ancient Greece, Egypt, Persia, and Rome creating in turn their own libraries throughout their territories. These libraries became to source of the twelfth century translation movement, also known as the scientific renaissance, when those books first began to re-enter medieval Europe. 

During the Early Middle Ages, the only libraries still in existence in what had been the Western Roman Empire were those that existed in the Christian monasteries. Here we must once again dispose of two connected myths. The first more general one is the widespread myth that Christians deliberately destroyed pagan literature i.e., the texts of the Greeks and Romans. In fact, as Tim O’Neill points out in another excellent blog post, we have Christians to thank for those texts that did survive the general collapse of an urban civilisation. The second, closely related myth, spread by the “the Church is and always was anti-science brigade”, is that the Church deliberately abandoned Greek science because it was ant-Christian. Once again as Stephen McCluskey has documented in his excellent, Astronomies and Cultures in Early Medieval Europe, (CUP; 1998) it was the monasteries that keep the flame of the mathematical science burning during this period even if only on a low flame.

The manuscript collections of the medieval libraries were very small in comparison to the great Greek libraries such as Alexandria and Pergamum or the many public libraries of Rome, numbering in the best cases in the hundreds but often only in the tens. However, the guardians of these precious written documents did everything in their power to keep the books safe and in good condition and also endeavouring to acquire new manuscripts by copying those from other monastery libraries, often undertaking very arduous journeys to do so. 

Chained library in Hereford Cathedral Most of the books in the collection date to about 1100. Source: Wikimedia Commons

Things began to improve in the twelfth century with the scientific renaissance and the translation movement, which coincided with the founding of the European universities. The number of works available in manuscript increased substantially but they still had to be copied time and again to gradually spread throughout Europe. Like the monasteries the universities also began to collect books and to establish libraries but if we look at the figures for Cambridge University founded in 1209. The university library has its roots in the beginning of the fifteenth century, there would have been earlier individual college libraries earlier. The earliest surviving catalogue from c. 1424 list 122 volumes in the library. By 1473 a second catalogue lists 330 volumes. It is first in the sixteenth century that things really take off and the library begins to grow substantially. The equally famous Oxford University Bodleian Library was first founded in 1600 by the humanist scholar Thomas Bodley in 1600, replacing the earlier university library from 1444, which had been stripped and dissipated during the Reformation. 

Thomas Bodley Artist unknown Source: Wikimedia Commons 

We have of course now reached the Humanist Renaissance and it is here that the roots of the modern library were laid. The Humanist Renaissance was all about written texts. The humanists read texts, analysed the content of texts, annotated texts, translated texts, and applied philological analysis to texts to correct and/or eliminate errors introduced into texts by repeated copying and translations. The text was everything for the humanists, so they began to accumulate collections of manuscripts. Both humanist scholars and the various potentates, who sponsored the humanist movement began to create libraries, as new spaces of learning. 

The Malatestiana Library was founded by Malatesta Novello of Cesena (1418–1485) in 1454.

Malatestiana Library of Cesena, the first European civic library Source: Wikimedia Commons

The foundations of the Laurentian Library in Florence were laid by Cosimo de’ Medici (1389–1464), as one of a sequence of libraries that he funded.

Reading room of the Laurentian Library Source: Wikimedia Commons

Pope Nicholas V (1397–1455) brought the papal Greek and Latin collections together in separate libraries in Rome and they were then housed by Pope Sixtus IV (1414–1484), who appointed the humanist Bartolomeo Platina (1421–1481) librarian of the Bibliotheca Apostolica Vaticana.

Sixtus IV appointing Bartolomeo Platina librarian of the Bibliotheca Apostolica Vaticana. From left Giovanni della Rovere, Girolamo Riario, Bartolomeo Platina, later Julius II (Giuliano della Rovere), Raffaele Riario, Pope Sixtus IV Source: Wikimedia Commons

This was followed by the establishment of many private libraries both in Rome and in other Italian cities. As with other aspects of the Humanist Renaissance this movement spread outside of Italy to other European Countries. For example, the Bibliotheca Palatina was founded by Elector Ludwig III (1378–1436) in Heidelberg in the 1430s.

Elector Ludwig III. Contemporary image on the choir ceiling of the  Stiftskirche (Neustadt an der Weinstraße). Source: Wikimedia Commons

These new humanist libraries were not just book depositories but as stated above new spaces for learning. The groups of humanist scholars would meet regularly in the new libraries to discuss, debate or dispute over new texts, new translations, or new philological corrections to old, corrupted manuscripts. 

The (re)invention of movable type printing in about 1450 meant that libraries began to collect printed books as well as manuscripts. The first printer publishers in Italy concentrated on publishing the newly translated texts of the humanists even creating a new type face, Antiqua, which imitated the handwriting that had been developed and propagated by the first generations of humanist scholars. 

The spread of libraries during the Renaissance is a vast subject, too much to deal with in a blog post, but one can get a perspective on this development by looking at a sketch of the career of Johannes Müller (1436–1476) aka Regiomontanus or as he was known during his live time, Johannes de Monte Regio. 

Smithsonian “Print Artist: Braeht” (whereby the signature appears to be rather Brühl sculps[it] possibly Johann Benjamin Brühl (1691-1763) ) – Smithsonian Institution Libraries Digital Collection Source: Wikimedia Commons

Regiomontanus is, today, best known as the most significant European mathematician, astronomer, and astrologer of the fifteenth century, so it comes as something of a surprise to discover that he spent a substantial part of his life working as a librarian for various humanist book collectors. 

Regiomontanus graduated MA at the University of Vienna on his twenty-first birthday in 1457. He had actually completed the degree requirements much earlier, but university regulations required MA graduates to be at least twenty-one years old. He then joined his teacher Georg von Peuerbach as a teacher at the university, lecturing on optics amongst other things. Both Regiomontanus and Peuerbach were convinced humanists. In 1460 Basilios Bessarion (1403–1472) came to Vienna.

Basilios Bessarion Justus van Gent and Pedro Berruguete Source: Wikimedia Commons

He was a Greek Orthodox monk, who had converted to Catholicism, been elevated to Cardinal and was in Vienna as papal legate to negotiate with the Holy Roman Emperor Frederick III on behalf of Pope Pius II. Pius II, civil Aeneas Silvius Piccolomini (1405–1464), was a humanist scholar well acquainted with Frederick and Vienna from his own time as a papal legate. Bessarion, a Neo-Platonist, was a very active humanist, setting up and sponsoring humanist circles wherever his travels took him. In Vienna he sought out Peuerbach to persuade him to undertake a new Latin translation of Ptolemaeus’ Mathēmatikē Syntaxis from the original Greek. Peuerbach couldn’t read Greek but he, and after his death Regiomontanus, produced their Epitome of the Almagest, the story of which I have told elsewhere. Bessarion asked Peuerbach to return to Italy with him. Peuerbach agreed on the condition that Regiomontanus could also accompany them. Peuerbach died in 1461, so only Regiomontanus accompanied Bessarion back to Italy and it is here that his career as librarian began.

Bessarion was an avid book collector and Regiomontanus’ job in his personal entourage was to seek out and make copies of new manuscripts for Bessarion’s collection. A task that he fulfilled with esprit. Bessarion had in the meantime also taught him Greek. In 1468, Bessarion presented his personal library to the Senate of Venice in 1468 and the 482 Greek manuscripts and 264 Latin manuscripts today still form the core of the St. Mark’s Biblioteca Marciana.

Cardinal Bessarion’s letter to Doge Cristoforo Moro and the Senate of Venice, announcing the donation of his library. BNM Lat. XIV, 14 (= 4235), fol. 1r. Source: Wikimedia Commons

Regiomontanus left Bessarion’s entourage around 1465 and reappears in 1467 at the court of János Vitéz Archbishop of Esztergom (German, Gran) in Hungary. 

János Vitéz frontispiece of a manuscript Source: Wikimedia Commons

Vitéz, an old friend of Peuerbach, was a humanist scholar and an avid book collector. Although Regiomontanus served as court astrologer, his Tabulae Directionum, one of the most important Renaissance astrological texts was produced at Vitéz’s request, his main function at Vitéz’s court was as court librarian. From Esztergom he moved to the court of the Hungarian King, Matthias Corvinus (1443–1490), who had been educated by Vitéz.

Matthias Corvinus of Hungary portrait by Andrea Mantegna Source: Wikimedia Commons

Like his teacher, Corvinus was a humanist scholar and a major book collector. Once more, Regiomontanus served as a court librarian. The Bibliotheca Corviniana had become one of the largest libraries in Europe, second only to the Bibliotheca Apostolica Vaticana, when Corvinus died. Unfortunately, following his death, his library was dissipated. 

Long before Corvinus’ death, Regiomontanus had left Hungary for Nürnberg, with Corvinus’ blessing and a royal pension, to set up a programme to reform astronomy in order to improve astrological divination. During his travels, Regiomontanus had not only made copies of manuscripts for his patrons, but also for himself, so he arrived in Nürnberg with a large collection of manuscript in 1471. His aim was to set up a printing house and publish philologically corrected editions of a long list of Greek and Latin mathematical, astronomical, and astrological texts, which he advertised in a publisher’s list that he printed and published. Unfortunately, he died in 1476 having only published nine texts including his publishers list and to the shame of the city council of Nürnberg, his large manuscript collection was not housed in a library but dissipated. 

To close a last example of a lost and dissipated Renaissance library. The English mathematicus John Dee (1527–1609) hoped to establish a national library, but he failed to get the sponsorship he wished for.

John Dee artist unknown Source: Wikimedia Commons

Instead, he collected books and manuscripts in his own house in Mortlake, acquiring the largest library in England and one of the largest in Europe. In the humanist tradition, this became a research centre, with other scholars coming to Mortlake to consult the books and to discuss their research with Dee and other visitors. However, when Dee left England for the continent, in the 1580s with Edward Kelly, to try and find sponsors for his occult activities, his house was broken into, and his library pillaged and sold off. 

Despite the loss of some of the largest Renaissance book collections and libraries, the period saw the establishment of the library both public and private, as a centre for collecting books and a space for learning from them. 

1 Comment

Filed under Book History, Early Scientific Publishing, Renaissance Science

Renaissance Science – XIX

The publication of Vesalius’ De fabrica certainly marks a major change in the study and teaching of anatomy at the medieval university, but, as I hope is clear, that change did not come out of thin air but was the result of a couple of centuries of gradual developments in the discipline. It also didn’t trigger an instant revolution in the discipline throughout the university system but spread slowly, as is almost always the case with major innovations in a branch of knowledge. In the case of Vesalius’ anatomy, it was not just the normal inertia inherent in theory change, but also a long-prolonged opposition by neo-Galenists. 

The beginnings of the acceptance of Vesalius anatomy took place, naturally, in his own university of Padua and other North Italian universities resulting in a dynasty of excellent professors at those universities, leading to a major influx of eager students from all over Europe. 

Following Vesalius, the first of the significant Paduan anatomists was Gabriele Falloppio (1523–1562). Born in Modena, the son of an impoverished noble family. Lacking money, he joined the clergy, was appointed a canon of Modena Cathedral, and received an education in medicine at the University of Ferrara, graduating in 1548. In the same year he was appointed professor for anatomy at the university. In 1549 he was appointed professor for anatomy at the University of Pisa and in 1551 he received the same position at the University of Padua. Although, most well know today for his study of the reproductive organs leading to the naming of the Fallopian tubes after him, he made major contributions to our knowledge of bones and muscles. His major area of research was, however, the anatomy of the head where he systematically expanded our knowledge.

Portrait of Gabriele Falloppio artist unknown Source: Wikimedia Commons

Earlier that Falloppio was Matteo Realdo Colombo (c. 1515 – 1559), who was a colleague of Vesalius at Padua. The son of apothecary born in Cremona he initially apprenticed to his father but then became apprentice to the surgeon Giovanni Antonio Lonigo for seven years. In 1538 he enrolled as a medical student at Padua, where he quickly acquired a reputation for the study of anatomy. He became friends with Vesalius and was appointed to teach his courses while Vesalius was in Basel overseeing the publication of De fabrica. Vesalius attributes many of the discoveries in De fabrica to Colombo. Their relationship declined, when Colombo pointed out errors in Vesalius’ work, leading to them becoming rivals. 

Matteo Realdo Colombo artist unknown Source: Wikimedia Commons

Colombo left Padua in 1544 and went to the University of Pisa and from 1548 he worked at the papal university teaching anatomy until his death in 1459. Colombo was also involved in priority disputes with Falloppio. His only published text, De re anotomica issued posthumously in 1559 contains many discoveries also claimed by Falloppio, most notably the discovery of the clitoris and its sexual function.

Source: Wikimedia Commons

Colombo made many contributions to the study of anatomy, perhaps his most important discovery was the rediscovery of the so-called pulmonary circulation, previously discovered by Ibn al-Nafis (1213–1288) and Michael Servetus (c. 1511–1553).

Bartolomeo Eustachi (c. 1510–1574), a contemporary of Vesalius, who belonged to the competition, was a dedicated supporter of Galen working at the Sapienza University of Rome. 

Bartolomeo Eustachi artist unknown Source: Wikimedia Commons

 However, he made many important anatomical discoveries. He collated his work in his Tabulae anatomicae in 1552, but unfortunately this work was first published in 1714. 

Bartolomaeus Eustachius, Tabulae Anatomicae. Credit: Wellcome Library, London.

Julius Caesar Aranzi (1529/30–1589) was born in Bologna and studied surgery under his uncle Bartolomeo Maggi (1477–1552), who lectured on surgery at the University of Bologna.

Portrait of Julius Caesar Arantius (Giulio Cesare Aranzi, 1530–1589). From the Collection Biblioteca Comunale dell’Archiginnasio, Bologna, Italy. Source.

He studied medicine at Padua, where he made his first anatomical discovery at the age of nineteen in 1548. He finished his studies at the University of Bologna graduating in 1556. At the age of twenty-seven he was appointed lecturer for surgery at the university. Like the others he made numerous small contributions to our understanding of human anatomy, of particular importance was his study of foetuses. However, his major contribution was in the status of anatomy as a discipline. As professor for anatomy and surgery in Bologna starting in 1556, he established anatomy as a major discipline in its own right. 

A very central figure in the elevation of anatomy as a discipline at the medieval university was Girolamo Fabrici d’Acquapendente (1533–1619). Fabrici studied medicine in Padua under Falloppio graduating in 1559. He went into private practice in Padua and was very successful, numbering many rich and powerful figures amongst his patients. From 1562 till 1565 he also lectured at the university on anatomy. In 1565 he succeeded Falloppi as professor for anatomy and surgery at the university, a post he retained until 1613. As an anatomist he is considered one of the founders of modern embryology and as also renowned for discovering the valves that prevent blood following backwards in the veins, an important step towards the correct description of blood circulation.

Girolamo Fabrizi d’Acquapendente artist unknown Source: Wikimedia Commons

Girolamo Fabrici is also renowned for several of the students, who studied under him in Padua. Giulio Cesare Casseri (1552 – 8 March 1616) not only studied under Fabrici but was also employed as his servant.

Giulio Cesare Casseri artist unknown Source: Wikimedia Commons

The two of them later had a major falling out, but Casseri still succeeded Fabrici as professor in Padua. His biggest contribution was his Tabulae anatomicae, containing 97 copperplate engravings, published posthumously in in Venice 1627, which became one of the most important anatomical texts in the seventeenth century. 

Casseri was succeeded as professor in Padua by another of Fabrici’s students the Netherlander, Adriaan van den Spiegel (1578–1625).

Adriaan van den Spiegel artist unknown Source: Wikimedia Commons

Van den Spiegel was born in Brussels but studied initially in Leuven and Leiden, in 1601 he transferred to Padua, where he graduated in 1604. His main text, his De humani corporis fabrica libri decem, which he saw as an updated version of Vesalius’ book of the same title, was also published in Venice in 1627.

Source: Wikimedia Commons

For English readers Girolamo Fabrici’s most well-known student was William Harvey (1578–1657). Born the eldest of nine children to the jurist Thomas Harvey and his wife Joan Halke.

William Harvey, after a painting by Cornelius Jansen Source: Wikimedia Commons

He was educated at King’s School Canterbury and matriculated at Gonville & Caius College Cambridge in 1593. He graduated BA in 1597 and then set off on travels through mainland Europe. He travelled through France and Germany and matriculated as a medical student at Padua in 1599. During his time in Padua, he developed a close relationship with Fabrici graduating in 1602. Upon graduation he returned to England and having obtained a medical degree from Cambridge University, he became a fellow of Gonville & Caius. The start of a very successful career. His major contribution was, of course, his Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus (An Anatomical Exercise on the Motion of the Heart and Blood in Living Beings), the first correct account of the blood circulation and the function of the heart published in Frankfurt in 1628.

Source

He also published an important work on the development of chicken embryos in the egg, Exercitationes de generatione animalium (On Animal Generation) published in 1651.

L0010265 W. Harvey, Exercitationes de generatione animalium Credit: Wellcome Library, London.

It could be argued that Girolamo Fabrici’s most important contribution to the history of anatomy was the erection of the university’s anatomical theatre. We saw in the last episode that the universities had been erecting temporary wooden dissecting spaces in winter for a couple of centuries, as described by Alessandro Benedetti (1450?–1512) in his Anatomicesivede historia corporis humani libri quique (AnatomyorFive Books on the History of the Human Body) in 1502:

A temporary theatre should be built at a large and well-ventilated place, with seats arranged in a circle, as in the Colosseum in Rome and the Area in Verona, sufficiently large to accommodate a great number of spectators in such a manner that the teacher would not be inconvenienced by the crowd… The corpse has to be put on a table in the centre of the theatre in an elevated and clear place easily accessible to the dissector. 

During the second half of the sixteenth century several institutions began to assign a permanent room for such spaces, the University of Montpellier in 1556, the Company of Barber Surgeons in London in 1557 and so on. Girolamo Fabrici raised the stakes by having the first ever purpose-built anatomical theatre designed and built in Padua in 1594. The project was the work of the Venetian polymath Paolo Sarpi (1552–1623) and the artist-architect Dario Varotari (c. 1539–1596). A closed elliptical shape with tiers of standing spaces for the observers rising steeply up the sides, giving a clear view of the dissecting table in the centre. 

Anatomical Theatre Padua design Source: Wikimedia Commons
Anatomical Theatre Padua as it is today Source: Wikimedia Commons

In Northern Italy the first to follow suit was the University of Bologna, which one year later opened its Anatomical Theatre of the Archiginnasio now situated in the Archiginnasio Palace the main building of the university.

A general view of the Anatomical theatre reconstructed after WWI when it was destroyed by bombing. Source: Wikimedia Commons

Originally situated elsewhere, it was rebuilt in its current setting between 1636 and 1638. The Bolognese rejected the Paduan Ellipse for a rectangular room claiming it to be superior.

Of greatest interest however was the Theatrum Anatomicum built far away from Northern Italy in 1596 in the still young university of Leiden. The University of Leiden was established in 1575, in the early phases of the Eighty Years’ War, as the first university of the newly founded United Provinces.

The Academy building of Leiden University in 1614. Source: Wikimedia Commons

Leuven, the original alma mater of Vesalius, was located in the remaining Spanish Netherlands. Home to both Rudolph Snel (1546–1613) and his son Willebrord (1580–1626) as well as Simon Stevin (1548–1629), who founded its school of engineering, the university was strong on the sciences for its early days. However, it was its school of medicine that would become most influential in the seventeenth century, and this school of medicine had deep connections to Padua and Girolamo Fabrici. 

The connections start with Johannes Heurnius (Jan van Heurne) (1543–1601), born in Utrecht, he initially studied in Leuven and Paris before going to Padua to study under Fabrici, where he graduated MD in 1566. Returning to the Netherlands he became a town physician in Utrecht before being appointed professor of medicine at the new University of Leiden in 1581. He introduced anatomy in the tradition of Vesalius into the still young Dutch university, as well as the Paduan emphasis on anatomical demonstrations and practical clinical work. 

Source: Wikimedia Commons

The anatomical theatre was introduced by Pieter Pauw (1564–1617), born in Amsterdam the son of the politician Pieter Pauw and his wife Geertruide Spiegel, he studied medicine at the University of Leiden, under Johannes Heurnius and Gerard Bontius (c. 1537–1599), another Padua graduate, graduating in 1584.

Pieter Pauw Source: Wikimedia Commons

He continued his studies in Rostock graduating MD in 1587. From here, he moved to Padua to study under Fabrici. Forced by his father’s illness he returned to Leiden in 1589, he was appointed assistant to Bontius, taking over responsibility for the medical botany. In 1592 he was appointed professor for anatomy and in 1596 he erected the permanent anatomical theatre in the same year. 

Leiden anatomical theatre in 1610. Source: Wikimedia Commons

Otto Heurnius (otto van Heurne) (1577–1652) was the son of Johannes Heurnius and studied medicine under his father and Pieter Pauw in Leiden. He graduated MD in 1601 and was appointed assistant to his father, whom he succeeded a year later as professor, not without criticism. In 1617 he then succeeded Pieter Pauw as professor for anatomy.

Otto Heurnius Source: Wikimedia Commons

Otto’s most famous student was Franciscus Sylvius (Franz de le Boë) (1614–1672). Born into an affluent family in Hanau he studied medicine at the Protestant Academy of Sedan then from 1632 to 1634 in Leiden, where he studied under Otto Heurius and Adolphus Vorstius (Adolphe Vorst) (1597–1663), who had also studied at Padua under Adriaan van den Spiegel, graduating MD in 1622. Vorstius was appointed an assistant in Leiden in 1624 and full professor in 1625. Sylvius continued his studies in Jena and Wittenberg, graduating MD in Basel in 1637. He initial practice medicine in Hanau but returned to Leiden to lecture in 1639. From 1641 he had a successful private practice in Amsterdam. In 1658 he was appointed professor for medicine at Leiden, with twice the normal salary. 

Franciscus Sylvius and his wife by Frans van Mieris, Sr. Source: Wikimedia Commons

Under Sylvius it became obvious, what had been true for some time, that Leiden had, in the place of Padua, become the leading European medical school, particularly in terms of anatomy. By the middle of the seventeenth century the change that Vesalius had introduced into the study and teaching of anatomy at the medieval university had been completed. Previously a minor aspect of the medical education, anatomy had now become a prominent and central discipline in that course of studies. Sylvius produced a stream of first-class graduates, who would go on to dominate the life sciences in the next decades that included Reinier de Graaf (1641–1673), who made important contributions to the understanding of reproduction,

Reinier de Graaf Source: Wikimedia Commons

Jan Swammerdam (1637–1680), an early microscopist, who made important studies of insects, 

Jan Swammerdam Reproductive organs of the bee drawn with a microscope Credit: Wellcome Library, London. There is no known portrait of Swammerdam

Nicolas Steno (1638–1686), who made important contribution to anatomy and geology,

Portrait of Nicolas Steno (1666–1677). Unsigned but attributed to court painter Justus Sustermans. (Uffizi Gallery, Florence, Italy) Source: Wikimedia Commons

and  Frederik Ruysch (1638–1731), an anatomist best know for his techniques for conserving anatomical specimens. 

The Anatomy Lesson of Dr. Frederick Ruysch by Jan van Neck (1683). Amsterdam Museum. Source: Wikimedia Commons

Sylvius was also one of those, who introduced chemistry into the study of medicine, which we will look at in the next episode.

For a detailed study of the work on reproduction of Harvey and many of the Leiden anatomist, I recommend Matthew Cobb’s The Egg & Sperm Race: The Seventeenth-Century Scientists Who Unravelled the Secrets of Sex, Life and Growth, The Free Press, London, 2006

4 Comments

Filed under Book History, History of medicine, History of science, Renaissance Science

Renaissance Science – XVIII

One area of knowledge that changed substantially during the Renaissance was the study of medicine and the branch of medicine that probably changed the most was anatomy. This change has produced two notable myths that need to be quickly dealt with before we tackle the real history. 

The myths concern Leonardo da Vinci (1452–1519) and Andreas Vesalius (1514–1564), the two most well-known anatomical practitioners of the period. According to the first myth that applies to both of them, although most often associated with Leonardo, is that they had to carry out their anatomical studies of the human body secretly, because dissection was forbidden by the Church. The second applies to Vesalius and is the oft repeated claim, in one form or another, that he singlehandedly launched a revolution in the study of anatomy out of the blue. I will deal with the Leonardo did it all in secret myth first and the Vesalius myth in due course.

To start with there was no Church ban on dissections. Like most apprentice artists in the Renaissance, Leonardo began his study of human anatomy during his apprenticeship. His master, Andrea del Verrochio (1435–1488), insisted that his apprentices gain a thorough grounding in anatomy.

Half-length portrait of Andrea del Verrocchio, Italian painter and sculptor, engraved on a copperplate by Nicolas de Larmessin and printed in a book “Académie des Sciences et des Arts” written by Isaac Bullart and published in Amsterdam by Elzevier in 1682.

Leonardo would probably have attended the public dissections carried out in winter at the local university. Leonardo being Leonardo took a greater interest in the topic than that required by an artist, and he was granted permission to carry out dissections in the Hospital of Santa Maria Nuova in Florence.

Old facade of the Hospital of Santa Maria Nuova in Florencebefore the completion of the porch (painting by Fabio Borbottoni, 1820-1902)

Later he carried out dissections in hospitals in Milan and Rome. From 1510 to 1511, he collaborated with Marcantonio della Torre (1481–1511) lecturer on anatomy at the universities of Pavia and Padua.

Marcantonio della Torre Source:

There is evidence that they intended to publish a book together, but the endeavour was torpedoed by della Torre’s death in 1511. Leonardo never published his extensive collection of anatomical drawings, and although there is some evidence that they were viewed by other Renaissance artists, they only became generally known in the nineteenth century and had no real influence on the development of medicine.

Leonardo Anatomical study of the arm (c. 1510) Source: Wikimedia Commons

I said above that Leonardo might well have attended public dissections at the local university, this was a well-established practice by the time Leonardo was learning anatomy. The most prominent anatomist in antiquity was Galen of Pergamon (129–c. 216 CE), whose work, however, suffered from the problem that it was largely based on the dissection of animals rather than humans.  His medical text had arrived in medieval Europe via the Arabic world in the twelfth century, but his major anatomy texts were somehow not translated at this time. In the early period of the medieval university anatomy was taught from authoritative texts rather than from dissection. This changed in the fourteenth century with the work of Mondino de Luzzi (c. 1270­–1326), professor in Bologna, who carried out the first public dissection on a human corpse in 1315. He was possibly inspired by animal dissections carried out in Salerno in the previous century. He published the results of his anatomical work, Anthomia corporis humani in 1316. This became a standard textbook. 

Titelpage ofAnathomia Mundini Emèdata p doctoré melerstat (“Anatomy of Mundinus. Published byDoktor Mellrichstadt”, 1493. Source: Erlangen University Library via Wikimedia Commons

It soon became obligatory for all medical students to attend at least one or sometimes two public dissections during their studies. These dissections were always conducted in winter, to keep the corpse fresher longer, usually in a specially constructed, temporary wooden building in the grounds of the university. By 1400 regular anatomical dissections were an established part of the curriculum in most medical schools. The corpse was dissected on a table in the middle of the room, usually by a barber-surgeon, surrounded by the students and other observers, whilst the professor on a raised lecture platform read the prescribed text (see image above), usually Mondino, sometimes supplemented by Galen’s De Juvamentis. This although Niccoò da Reggio (1280-?) had produced the first full Latin translation of Galen’s anatomical text On the Use of the Parts in 1322. The first printed edition of Anthomia corporis humani appeared in 1476 and more than 40 editions had appeared altogether by the end of the sixteenth century. A tradition of published commentaries on Modino also became established by the professors who lectured on anatomy. 

In the early years of the sixteenth century the Humanist Renaissance made its appearance in the study of anatomy with new translations of Galen directly from the Greek and a growing disdain for the earlier translations from Arabic. In 1528 a series of four handy texts in pocket size was published for students including Galen’s On the Use of Parts, in the da Reggio translation, a new translation of On the Motion of Muscles, and the translation by Thomas Linacre (c. 1460–1524) of On the Natural Faculties from 1523. Paris had now risen to be a major centre for the study of medicine and the professor for anatomy, Johannes Winter von Andernach (1505–1574) produced the first Latin translation of Galen’s newly discovered and most important De Anatomicis Administrationibus (On Anatomical Procedures) 9 vols. Paris in 1531.

Bibliotheca chalcographica, hoc est Virtute et eruditione clarorum Virorum Imagines, Jean-Jacques Boissard (1528-1602), Teodoro de Bry (1528-1598)SOurce: Wikimedia Commons

Equally important was his own textbook, Anatomicarum institutionum, secundum Galeni sententiam (Anatomical Institutions according to the opinions of Galen) 4 vols, Paris and Basel, 1536; Venice, 1538; Padua, 1558.

Source

Earlier than this Berengario da Capri (c. 1460–c. 1530) was the first to include anatomical illustrations into his work, a commentary on Mondino published in 1521 and his Isagogae breves in anatomiam humani corporis (A Short but very Clear and Fruitful Introduction to the Anatomy of the Human Body, Published by Request of his Students) a year later. From the 1520s onwards there was an increasing stream of anatomy books entering the market. 

Berengario da Capri Isagogae breves in anatomiam humani corporis 1523
Anatomical plate by Jacopo Berengario da Carpi depicting a pregnant woman with opened uterus Source: Wikimedia Commons

It should by now be clear that when Andreas Vesalius (1514–1564) appeared on the scene that both anatomy and dissection were well establish areas of study in the European schools of medicine, albeit the oft highly inaccurate anatomy of Galen. Of interest here is that when dissectors discovered things in their work that contradicted the contents of Galen’s work, they tended to believe the written text rather than their own eyes.

Vesalius was born Andries van Wesel in Brussels, then part of the Spanish Netherlands, in 1514, the son of Andries van Wesel (1479–1544) and Isabel Crabbe. He was born into a well-connected medical family, his father was apothecary to the Holy Roman Emperor Maximillian (1459–1519) and then valet de chambre to his son Charles V (1500­–1558), His grandfather Everard van Wessel was Royal Physician to Maximillian and His great grandfather Jan van Wesel received his medical degree from the University of Parvia and was professor for medicine at the University of Leuven.

A portrait of Vesalius from his De Humani Corporis Fabrica (1543) Source: Wikimedia Commons

Vesalius studied Greek and Latin with the Brethren of the Common Life a pietist religious community before entering the University of Leuven in 1528. In 1533 he transferred to the University of Paris where he came under the Galenic influence of Johannes Winter von Andernach and in fact assisted him in preparing his Anatomicarum institutionum for the press. In 1536 he was forced to leave Paris due to hostilities between France and the Holy Roman Empire. He returned to the University of Leuven to complete his studied graduating in 1537. His doctoral thesis was a commentary on the ninth book of the ten century, twenty-three volume Al-Hawi or Kitāb al-Ḥāwī fī al-ṭibb by the Persian physician Abū Bakr Muhammad Zakariyyā Rāzī (854–925) known in medieval Europe as Rhazes. This was translated, in the fourteenth century as The Comprehensive Book on Medicine and was a central textbook on the medieval European universities.

During his time in Leuven his was friends with Gemma Frisius (1508–1555), who became professor of medicine at the university, but is more famous for his work as a mathematician, cartographer, astronomer, astrologer, and instrument maker. According to one story the two of them, whilst out walking one day, stole parts of a corpse from a gallows to study.

Vesalius and Gemma Frisius remove a dead man from the gallows (Artist unknown).

On the day of his graduation, he was offered the position of professor for surgery and anatomy (explicator chirurgiae) at the University of Padua. With the assistance of the artist Johan van Calcar (c. 1499–1546), a student of Titian, he produced six large posters of anatomical illustrations for his students. When he realised that they were being pirated, he published them himself as Tabulae anatomicae sex in 1538. He followed this in 1539 with an updated edition of Winter von Andernach’s Anatomicarum institutionum.

Tabulae II of Vesalius’s ” Tabulae Anatomicae Sex ” (1538). Note the 5-lobed liver, which is reminiscent of simian anatomy. The original text surrounding the figure has been removed. Courtesy of the Wellcome Library, London, UK.  

Vesalius’s great change was that rather than regurgitating Galen and/or Mondino he devoted himself to doing his own basic research on the dissection table. Well trained by Winter von Andernach he approached his task with an open mind and wide open eyes. The result was a new catalogue of human anatomy that corrected many of the errors and mistaken beliefs contained in the works of Galen. Mistakes produced because Galen’s work was, as Vesalius was keen to point out, carried out on animals and not humans, under the assumption that a liver is a liver, whether in a dog or a human. It is also important to note that Vesalius did not think that he had overthrown Galen, as is often claimed, but that he had corrected Galen.

Vesalius took the results of his investigations to Basel, where he assisted the printer/publisher Johannes Oporinus (1507–1568) to prepare his monumental, and, its fair to say, revolutionary work, De Humani Corporis Fabrica Libri Septem, published in 1543.

Portrait of Johannes Oporinus by Hans Bock Source: Wikimedia Commons

He simultaneously published an abridged edition for students, his Andrea Vesalii suorum de humani corporis fabrica librorum epitome (which only contained six images)

The book contains 273 highly impressive and informative illustration that are usually attributed to Johan van Calcar, but there are doubts about this attribution.

Vesalius Fabrica frontispiece Source: Wikimedia Commons

Each of the seven books is devoted to a different aspect of the body: Book 1: The Bones and Cartilages,

Book 2: The Ligaments and Muscles,

Credit: Wellcome Library, London.

Book 3: The Veins and Arteries,

Book 4: The Nerves, Book 5: The Organs of Nutrition and Generation,

Book 6: The Heart and Associated Organs,

Figure of the heart rolled toward the right side but also showing the recurrent laryngeal nerves. Woodcut illustration from the Fabrica (Vesalii, 1543), Liber VI, p. 564 (due to a mistake in the page numbering, this should be p. 664). Courtesy of the U.S. National Library of Medicine.  

Book 7: The Brain. 

From the 1543 book in the collection in National Institute of Medicine. Andreas Vesalius’ Fabrica, showing the Base Of The Brain, including the cerebellum, olfactory bulbs, optic nerve.

(All De Fabrica images via Wikimedia Commons

Vesalius almost singlehandedly raised the study of anatomy to new levels and the book was a financial success despite the very high printing costs. A second edition was published in 1555 and there is evidence that Vesalius was preparing a third edition, which, however, never appeared. The fame that De fabrica brought him led to him being appointed imperial physician to Charles V. When he announced his intention to leave the University of Padua, Duke Cosimo I de’ Medici offered him a position at the University of Pisa, which he declined. He remained at the imperial court becoming physician to Philipp II, following Charles V’s abdication. In 1559 when Philipp moved his court to Madrid, Vesalius remained at the court in the Netherland. In 1564 he went on a pilgrimage to Jerusalem from which he never returned, dying on the journey home. There are numerous speculations as to why he undertook this pilgrimage, but the final answer is that we don’t know why.

Vesalius revolutionised the study of anatomy and was followed by many prominent successors in Padua and other North Italian universities, which we will look at in the next episode of this series. However, his own work was not without error, and he left much still to be discovered by those successors. Also, he was much attacked by the neo-Galenists, that is those whose work was based on the new translations direct from the Greek originals and who rejected the earlier ‘corrupt translations’ from Arabic. Jacobus Sylvius (1478–1555), one of his earlier teachers from Paris, even went so far as to claim that the human body had changed since Galen had studied it.  

4 Comments

Filed under Book History, History of medicine, History of science, Renaissance Science

Renaissance Science – XIV

In the previous episode we saw how the Renaissance rediscovery of Vitruvius’ De architectura influenced the development of architecture during the Renaissance and dissolved the boundary between the intellectual theoreticians and the practical artisans. However, as stated there Vitruvius was not just an architect, but was also an engineer and his Book X deals quite extensively with machines both civil and military. This had a massive influence on a new type of artisan the Renaissance artist-engineer and it is to these that we now turn our attention. 

Artist-engineers were very much a Northern Italian Renaissance phenomenon, but even earlier artists had been categorised as craftsmen or artisans and not as artists as we would understand the term. The occupation of artist-engineer was very much influenced by the popularity of Vitruvius’ De architectura. The most well-known Renaissance artist engineer is, of course, Leonardo da Vinci (1452–1519), but he was by no means unique, as he is often presented in popular accounts, but he stood at the end of a line of other artist-engineers, who are known to have influenced him. Here I will deal principally with those artisan artist-engineers, who dissolved the boundary between practice and theory by witing and circulating treatises on their work.

At the beginning of the line were the Florentine rival, goldsmiths Lorenzo Ghiberti (1378–1455) and Filippo Brunelleschi (1377–1446). In 1401 there was a competition to design the first set of new doors for the Florence Baptistery. Ghiberti and Brunelleschi were two of the seven artists on the short list. Ghiberti won the commission and set up a major engineering workshop to carry out the work. 

It took Ghiberti twenty-one years to complete the first set of doors featuring twenty New Testament Bible scenes, the four evangelists and four of the Church Fathers, but once finished they established his reputation, as a great Renaissance artist. In 1425 he was awarded a second commission for another set of doors, these featuring ten Old Testament scenes in realistic perspective presentation took another twenty-seven years. The second set of doors included portraits of both Ghiberti and his father Bartolomeo Ghiberti. 

Ghiberti self portrait from his second set of doors (modern copy Source: Wikimedia Commons

We don’t need to go into any great detail here about the doors or the other commissions that Ghiberti’s workshop finished.

Ghiberti’s second set of doors, known as the Gates of Paradise (modern copy) Source: Wikimedia Commons

What is much more relevant to our theme is his activities as an author. Although he was the artisan son of an artisan father, Ghiberti crossed the medieval boundary between theory and practice with his Commentarii, a thesis on the history of art, written in Italian. He drew on various sources from antiquity including the first century BCE illustrated Greek text on machines by Athenaeus Mechanicus and Pliny’s Naturalis Historia, a text much discussed by the Renaissance Humanists, but his major source was Vitruvius’ De architectura. Ghiberti died without finishing his Commentarii and it was never published. However, many important Renaissance artist, such as Donatello and Paolo Uccello, served their apprenticeships in his workshop, so his influence on future generations was very large.

One probable graduate of Ghiberti’s workshop was Antonio Averlino (c. 1400–c. 1469) known as Filarete, a sculptor and architect. 



Filarete, Self-portrait medal, obverse, c. 1460, bronze. London, V & A

 Between 1461 and 1464, he wrote a vernacular volume on architecture in twenty-five books, his illustrated Trattato di Architettura, which circulated widely in manuscript. Central to his theory of architecture was the Vitruvian ideal of practice combined with theory. The most significant part of his book was his design for Sforzinda an ideal city named after his patron Francesco Sforza (1401–1466). This was the first of several ideal cities, which became a feature of the Renaissance. It is thought that his inspiration came from the works of Plato and his knowledge of this came from his friend at the Sforza court, the humanist scholar and philologist Francesco da Tolentino (1398–1481) known as Filelfo. Once again, we have, as in the last episode, a cooperation across the old boundaries between a scholar and an artisan.

Filarete Sforzinda

Filippo Brunelleschi poses a different problem. Like Ghiberti trained as a goldsmith, he went on to become the epitome of a Renaissance Vitruvian architect. However, there is no direct evidence that connects him with De architectura or its author. There is no direct evidence that connects him with anything except for the products of his life’s work, most notably the dome of the Santa Maria del Fiori cathedral in Florence. He is also renowned as the inventor or discoverer of the mathematical principles of linear perspective, as explained in episode seven of this series. This links him indirectly to Vitruvius, as some authors insist that he only rediscovered linear perspective, quoting Book 7 of De architectura, where Vitruvius describes the use of some form of perspective on the ancient Greek theatre flats. 

Filippo Brunelleschi in an anonymous portrait of the 2nd half of the 15th century (Louvre, Paris) Source: Wikimedia Commons

More importantly, Brunelleschi, as an architect, not only designed and supervised the construction of the buildings that he was commissioned to build but also devised and constructed the machines that he needed on his building sites to facilitate those constructions. For his work on the Santa Maria dome, for example he designed a crane to lift the building materials up to the top of the cathedral.

Brunelleschi’s revolving crane

A drawing of that crane can be found in Leonardo’s manuscripts. He was also granted a patent by the ruling council of Florence for the design of a ship to transport heavy loads of stone on rivers and canals.

Reproduction of Brunelleschi’s patent boat Source: Wikimedia Commons

Brunelleschi was also like, Vitruvius, a successful hydraulic engineer. It is hard to believe that he wasn’t influenced by De architectura.

There is no doubt about the Vitruvian influence of our next artist-engineer, Mariano di Jacopo (1382–c. 1453) known as Taccola (the jackdaw), who, as I explained in an earlier post on that Renaissance iconic figure, included a Vitruvian Man in his drawings. Taccola, who is known to have worked as a sculptor, superintendent of roads and hydraulic engineer, was from Sienna. He met and talked with Brunelleschi, one of the few people known to have done so. 

Taccola produced two annotated manuscripts the four books of De ingeneis, written between 1419 and 1433, and De machnis issued in 1449, which was partially an improved version of his De ingeneis.


ResearchGate
Jacopo Mariano Taccola, De ingeneis, Book I. Codex Latinus 197,..

Both manuscripts contain numerous illustrations of machines for hydraulic engineering, milling (and mills were one of the most important types of machines in medieval and Renaissance culture), construction and military machinery, all topics covered by Vitruvius.

First European depiction of a piston pump by Taccola, c.1450 Source: Wikimedia Commons

His manuscripts also some of Brunelleschi’s construction machines. Taccola is in one sense a transitional figure as his representations, of three-dimensional machines, often use medieval drawing conventions rather than Brunelleschi’s recently discovered linear perspective. 

Taccola’s works were never printed but copies of his manuscripts are known to have circulated widely during his lifetime and to have been highly influential. After his death his influence waned as his work was superceded by the more advance work of Francesco di Giorgio Martini and Leonardo da Vinci both of whom were heavily influenced by Taccola.

Francesco di Giorgio Martini (1439–1501) was, like Taccola, from Siena and was an architect, engineer, painter, sculptor, and writer.

His Vitruvian influence is very obvious in his work, as also the influence of Taccola. Francesco worked for much of his life on an Italian translation of Vitruvius’ De architectura, which he never published. Like Filarete he wrote an architectural treatise Trattato di archtettura, ingegneria e arte militare, worked on over decades and finished sometime after 1482. Many of his machines are taken from Taccola’s manuscripts. As can be seen from the title, it continues the Vitruvian tradition. Like Filarete’s volume it contains a design for an ideal town. Probably inspired by Sulpizio’s first printed edition of De architectura and Alberti’s De re aedificatoria, he produced a new edition of his own book known as Trattato II. 

Edificij et machine, Martini, Francesco di Giorgio, 1439-1501, brown ink and wash, ca. 1475-ca. 1480, The volume comprises 103 drawings by Francesco di Giorgio Martini and his assistants, featuring machines and devices for lifting columns and other heavy weights, schemes for transporting water, and mechanisms for milling and moving boats. There are also a few drawings showing how people could walk or float on water standing on inflatable containers and using an oar to propel themselves. PUBLICATIONxINxGERxSUIxAUTxONLY Copyright: LCD2_180906_23583

Both Taccola and Francesco are known to have influenced the most famous of the Renaissance artist-engineers, Leonardo da Vinci. As well as the obvious direct influence of Vitruvius, many of the machines illustrated in Leonardo’s manuscripts are taken from the work of Brunelleschi, Taccola and Francesco di Giorgio. As an apprentice, Leonardo had worked on the final phase of Brunelleschi’s dome for the Santa Maria Cathedral, and he took the opportunity to study Brunelleschi’s building site machines and scaffolding. He owned copies of the manuscripts of both Taccola and Francesco, the latter of which he annotated heavily. Leonardo, as is well known, wrote reams of annotated manuscripts on his machines but never published any of them.

Watter wheel, just one of Leonardo’s hundreds of drawings of machines Source

All of the artist-engineers that I have briefly sketched here are examples of artisans who crossed over or better dissolved the boundaries between theoretical and practical knowledge. They are also, so to speak, the stars of a much larger and widespread group of Renaissance artist-engineers, whose influence spread throughout the Renaissance, changing and elevating the status of the skilled artisan.  

3 Comments

Filed under Book History, History of Technology, Renaissance Science

Renaissance Science – VII

In the last post we looked at the European re-invention of moveable-type and the advent of the printed book, which played a highly significant role in the history of science in general and in Renaissance science in particular. I also emphasised the various print technologies developed for reproducing images, because they played a very important role in various areas of the sciences during the Renaissance, as we shall see in later posts in this series. Parallel to these technological developments there were two major developments in the arts, which would have a very major impact on the illustration in Renaissance science publications, the (re?)-discovery of linear perspective and the development of naturalism.

Linear perspective is the geometrical method required to reproduce three-dimensional objects realistically on a two-dimensional surface; the discovery or invention of linear perspective is usually attributed to the Renaissance artist-engineer and architect, Filippo Brunelleschi (1377–1446), about whom more below, but already in the Renaissance it was often referred to as a re-discovery. This Renaissance re-discovery trope was very much in line with the general Renaissance concept of a rebirth of classical knowledge. Here the belief that linear perspective was a re-discovery is based on the concept of skenographia in ancient Greek theatre, which consists of using painted flat panels on a stage to give the illusion of depth. This is mentioned in Aristotle’s Poetics (c. 335 BCE) a general work on drama. More importantly, from a Renaissance perspective, it is briefly described in Vitruvius’ De Architectura libri dicem (Ten Books on Architecture) from the first century BCE. Once again, as we shall see later, Vitruvius’ De Architectura played a central role in Renaissance thought. In his Book 7 On Finishing, Vitruvius wrote in the preface:

In Athens, when Aechylus was producing tragedies, Agathachus was the first to work for the theatre and wrote a treatise about it. Learning from this, Democritus and Anaxagoras wrote on the same subject, namely how the extension of rays from a certain established centre point ought to correspond in a natural ration to the eyes’ line of sight, so that they could represent the appearance of buildings in scene painting, no longer by some uncertain method, but precisely, both the surfaces that were depicted frontally, and those that seemed either to be receding or projecting[1].

Of course, ancient Greek theatre flats no longer exist, but some Greek and many more Roman wall paintings have survived, which very obviously display some degree of perspective. However, closer analysis of these paintings has shown that while they are in fact constructed on some sort of perspective scheme it is not the linear perspective that was developed in the Renaissance.

roman-villa

Villa of P. Fannius Synistor Cubiculum M alcove Panel with temple at east end of the alcove, the north end of the east wall Middle of the first century B.C. Boscoreale (Pompeii), Italy Source:

Although linear perspective was not strictly a re-discovery, it also didn’t emerge at the beginning of the fifteenth century out of thin air. Already, more than a century earlier the so-called proto-Renaissance artists, in particular Giotto (1267–1337), were producing paintings that displayed depth based on a mathematical model, when not quite that of linear perspective and not consistent.

perspective2_large

‘Jesus Before the Caïf’, by Giotto (1305). The ceiling rafters show the Giotto’s introduction of convergent perspective. B. Detailed analysis, however, reveals that the ceiling has an inconsistent vanishing point and that the Caïf’s dais is in parallel perspective, with no vanishing point. Source

At the beginning of the fifteenth century, the Renaissance sculptor Lorenzo Ghiberti (1378–1455) used linear perspective in the panels of the second set of bronze doors he was commissioned to produce for the Florence Baptistry, dubbed the Gates of Paradise by Michelangelo.

AdamEveGhiberti

A panel of Adam and Eve in Ghiberti’s “Gate’s of Paradise”. Photo by Thermos.Source: Wikimedia Commons

As already stated, Brunelleschi is credited with having invented linear perspective according to his biographer Antonio di Tuccio Manetti (1423–1497), he compared the reality of his painting using linear perspective of the Florence Baptistery with the building itself using mirrors.

Cinque_maestri_del_rinascimento_fiorentino,_XVI_sec,_Filippo_Brunelleschi

Filippo Brunelleschi in an anonymous portrait of the 2nd half of the 15th century (Louvre, Paris) via Wikimedia Commons

According to Manetti, he used a grid or set of crosshairs to copy the exact scene square by square and produced a reverse image. The results were compositions with accurate perspective, as seen through a mirror. To compare the accuracy of his image with the real object, he made a small hole in his painting, and had an observer look through the back of his painting to observe the scene. A mirror was then raised, reflecting Brunelleschi’s composition, and the observer saw the striking similarity between the reality and painting. Both panels have since been lost. (Wikipedia)

e649d6b9fa90268c63af58e79f49237b

Brunelleschi left no written account of how he constructed his painting and the first written account we have of the geometry of linear perspective is from another Renaissance humanist artist and architect, Leon Battista Alberti (1404–1472) in his book On painting, published in Tuscan dialect as Della Pittura in 1436/6 and in Latin as De pictura first in 1450, although the Latin edition was also written in 1435. The book contains a comparatively simple account of the geometrical rudiments of linear perspective.

CdM,_presunto_autoritratto_di_leon_battista_alberti,_white_ground

Presumed self-portrait of Leon Battista Alberti Source: Wikimedia Commons

Della_Pittura_Alberti_perspective_vanishing_point

Figure from the 1804 edition of Della pittura showing the vanishing point Source: Wikimedia Commons

A much fuller written account of the mathematics of linear perspective was produced in manuscript by the painter Piero della Francesca (c. 1415–1492), De Prospectiva pingendi (On the Perspective of painting), around 1470-80.

De_la_perspective_en_peinture

An icosahedron in perspective from De Prospectiva pingendi Source: Wikimedia Commons

He never published this work, but his ideas on perspective were incorporated in his book Divina proportione by the mathematician Luca Pacioli (c. 1447–1517), written around 1498 but first published in 1509. Pacioli’s book also plagiarised another manuscript of della Francesca’s on perspective, his De quinque corporibus regularibus (The Five Regular Solids).

Vasari_-_Piero_della_Francesca

Piero della Francesca by Giorgio Vasari Source: Wikimedia Commons

Mathematicians and artists continued over the centuries to write books describing and investigating the geometrical principles of linear perspective the most notable of, which during the Renaissance was Albrecht Dürer’s Underweysung der Messung mit dem Zirckel und Richtscheyt (Instructions for Measuring with Compass and Ruler) published in 1525, which contains the first account of two point perspective. Dürer is credited with introducing linear perspective into the Northern Renaissance.

main-image

Dürer, draughtsman Making a Perspective Drawing of a Reclining Woman

Naturalism is, as its name would suggest, the development in art to depict things naturally i.e., as we see them with our own eyes. Linear perspective is actually one aspect of naturalism. In her The Body of the Artisan, Pamala H. Smith writes the following:

It is difficult to know where to begin a discussion of naturalism (which can encompass the striving for “verisimilitude,” “illusionism,” “realism,” and the “imitation of nature”) in the early modern period, for the secondary literature in art history alone is vast. David Summers has defined naturalism as the attempt to make the elements of the artwork (in his account primarily painting) coincide with the elements of the optical experience[2]. (Her endnote: Summers, The Judgement of Sense, p. 3)

Smith also quotes in this context Alberti, “[He] put it in about 1435, making a picture that was an “open window” through which the world was seen.[3]” There is no neat timeline of events for Naturalism, as I have recreated above for linear perspective. Smith gives as her first historical example of Naturalism the so-called Carrara Herbal produced in Padua around 1400, with till then unknown, for this type of literature, unprecedented naturalism in its illustrations.[4]

Violet_plant_-_Carrara_Herbal_(c.1400),_f.94_-_BL_Egerton_MS_2020

Violet plant – Carrara Herbal (c.1400), f.94 – BL Egerton MS 2020.jpg Source: Wikimedia Commons

As we will see in a later blog post it was in natural history, in particular in botany, that naturalism made a major impact in printed scientific illustrations.

Although, they still hadn’t really adopted the techniques of linear perspective it was the artists of the Northern Renaissance, rather than their Southern brethren, who first extensively adopted Naturalism, most notably Jan van Eyck (before 1390 – 1441). An attribute of the Naturalism of these painters was the use of mirrors in their paintings to symbolise the reflection of nature or reality.

Jan_van_Eyck_-_Portrait_of_Giovanni_Arnolfini_and_his_Wife_(detail)_-_WGA7695

Jan van Eyck Detail with mirror and signature; Arnolfini Portrait, 1434 Source: Wikimedia Commons

Once again, we meet here Albrecht Dürer, who is justifiably renowned for his lifelike reproduction of various aspects of nature in his artwork.

Albrecht_Dürer_-_Hare,_1502_-_Google_Art_Project

Albrecht Dürer Young Hare, (1502), Source: Wikimedia Commons

1920px-Albrecht_Dürer_-_The_Large_Piece_of_Turf,_1503_-_Google_Art_Project

Albrecht Dürer Great Piece of Turf, 1503 Source: Wikimedia commons

It is important to note here that although this picture looks very realistic, when first viewed, it is actually an example of illusion or hyperrealism. There are none of the old or withered plants that such a scene in nature would inevitably have. Also none of the plants obscure other plants with their shadows, as they would in reality. What Dürer delivers up here is an idealised naturalism, almost a contradiction in terms. This conflict between real naturalism and the demands of clear to interpret illustrations would play a significant role in the illustrations of Renaissance books on natural history.

However, as we shall see in later posts both linear perspective and Naturalism made a massive impact on the scientific and technological book illustrations that were produced during the Renaissance.

[1] Vitruvius, Ten Books on Architecture, Eds. Ingrid D. Rowland & Thomas Noble Howe, CUP, 1999 p. 86

[2] Pamala H. Smith, The Body of the Artisan: Art and Experience in the Scientific Revolution, University of Chicago Press, 2004 p. 9

[3] Smith, p. 33

[4] Smith p. 33

3 Comments

Filed under Book History, History of science, Renaissance Science

Renaissance Science – VI

There is no doubt that the fifteenth and sixteenth century introduction of print technologies in Europe, making possible the advent of the printed book, was one of the most important developments in the history of not just Renaissance science, but the history of science in general. Many people go much further and list the invention of movable-type, as one of the most important or significant inventions in the whole of human history. The ‘in Europe’ is important, because two of those technologies, moveable-type and woodblock printing, were both known and used in Asia long before their introduction in Europe. It is also important to note that despite extensive research no evidence has ever been found of a technology transfer of moveable-type printing from Asia to Europe and the introduction into Europe appears to be a genuinely independent reinvention.

The Chinese artisan Bì Shēng (972–1051) invented the earliest systems of moveable-type around 1040 CE, one in ceramic materials the other using wood. Another wood-based system was invented by the mechanical engineer, Wang Zhen (fl. 1290–1333), in the fourteenth century. Metal moveable-type, made of bronze, definitely existed in China in the thirteenth century. Bronze moveable-type was also in use in Korea in the thirteenth century.

Chinese_movable_type_1313-ce

A revolving table typecase with individual movable type characters arranged primarily by rhyming scheme, from Wang Zhen’s Nong Shu, published 1313. Source: Wikimedia Commons

As already stated, there is no evidence of a technology transfer and moveable-type was independently invented in Europe in the fifteenth century. There were tentative experiments with moveable-type early in in the century that came to nothing and the European invention is generally attributed to Johannes Gensfleisch zur Laden zum Gutenberg (c.1400–1468), who is usually known simply as Johannes Gutenberg.

Gutenberg-Denkmal_in_Strassburg-2

Gutenberg-Statue in Straßburg No portraits of the man are known to exist Source: Wikimedia Commons

Gutenberg was born sometime around 1400 in the city of Mainz, the youngest son of the patrician merchant Friele Gensfleisch zur Laden. Almost nothing is known about his early life, but he turns up living in Strasbourg working as a gold smith in 1434. He moved back to Mainz at some point. He was involved in various, possibly dubious, schemes to make money and it’s not really known how or why he developed his system of moveable-type printing. He supposedly announced his system of printing in 1440 but it wasn’t until around 1450 that his printing press was in operation.

Gutenberg’s real claim to fame is not just that he developed a system of metal moveable-type but that he created a complete system of mechanical printing. As well as the metal type, he modified a wine press to produce a printing press and developed a printing ink. Normal ink is too fluid to be used effectively in a printing press, so Gutenberg developed a more viscous, oil-based ink which stuck to the type, rather than running off.

Printer_in_1568-ce

In this woodblock from 1568, the printer at left is removing a page from the press while the one at right inks the text-blocks Source: Wikimedia Commons

For his press Gutenberg’s business partner was Johann Furst Fust, who lent Gutenberg 800 guilders for the enterprise. Also involved was Furst’s future son-in-law Peter Schöffler. Having conceived his legendary Bible project around 1451, Gutenberg borrowed another 800 guilders from Furst Fust, and printing began in 1452. The Bible began to appear around 1455. In 1456 Furst Fust sued Gutenberg for misappropriation of funds and Gutenberg Europe’s first printer-publisher became Europe’s first bankrupt printer-publisher. Furst Fust and Schöffler took over the publishing house.

Between the 1460s and 1470s Gutenberg’s invention spread rapidly, first throughout Germany and then over the borders into other European countries.

ExHtERiWQAIcUOr

The rapid spread of moveable-type printing throughout Europe in the first fifty years Source: Wikimedia Commons

Gutenberg had nothing to do with the humanist Renaissance, although one of his first printed products was a wall calendar, which as we will see later was an integral part of Renaissance science. However, as his invention crossed the border into Italy it quickly became part of the humanist movement.

The first printer-publishers in Italy were Arnold Pannartz and Conrad Sweynheym, who set up a press in the Benedictine abbey of Subiaco in 1464. Their output was from the beginning humanist orientated. Their first book was by Aelius Donatus a Roman grammarian of which no copied survived. Next, they printed Cicero’s De oratore followed by religious books by Lactantius and Augustinus.

An important innovation was their typeface. German printers following Gutenberg used Blackletter or Gothic typefaces. The humanists had developed a new hand script based on capital Roman letters and Carolingian miniscule, which they mistakenly thought was original antique Latin script. This was modified to make the two different scripts compatible becoming Roman or Antiqua script. The Pannartz-Sweynheym type face was halfway between the German Blackletter typefaces and the humanist Roman script, as was expected from the humanists.

Roman_typeface_Sweynheym_and_Pannartz_1465-2

Specimen of a typeface by Pannartz and Sweinheim, considered to be the earliest form of Roman type, c. 1465. Source: Wikimedia Commons

n 1467 Pannartz & Sweynheym left Subiaco and set up a publishing house in Rome, where they continued to publish religious and humanist texts until 1472 when they, like Gutenberg before them, went bankrupt.

Very early, Venice established itself the centre of book printing in Italy and the Venetian printer-publishers, created full blown Roman or Antique type faces to print humanist literature. Most notable in this development were the type designer Nicholas Jensen (c. 1420–1480) and humanist scholar and publisher Aldus Manutius (c.1450–1515), who founded the Aldine Press, which specialised in printing classical Greek and Latin texts.

Vita_di_Aldo_Pio_Manuzio_-_portrait
Aldus Pius Manutius, illustration in Vita di Aldo Pio Manuzio (1759) Source: Wikimedia Commons

 

Virgil_1501_Aldus_Manutius

The John Rylands Library copy of the Aldine Vergil of 1501, printed on vellum and hand-coloured Source: Wikimedia Commons

Johannes Regiomontanus (1436–1476), also a humanist scholar about whom we will have more to say later, and who established the worlds first scientific publishing house in Nürnberg in 1471, is credited with being the first printer-publisher to bring the Antiqua type faces back over the border into Germany.

Another humanist scholar Niccolò de’Niccoli (1364–1437) dissatisfied with the Roman script for writing humanist manuscripts developed the more flowing Italic script, which in turn generated the Italic type face.

Niccolo_de_Niccoli_italic_handwriting

Sample of Niccoli’s cursive script, which developed into Italic type. Source: Wikimedia Commons

Whilst the invention of moveable-type played the major role in the creation of the printed book, it is important to recognise that the possibility of generating reproduceable illustrations in printed books played a very major role in the production of science books, in particular in several areas of Renaissance knowledge, as we shall see later. Image reproduction was made possible by three different print technologies, woodblock printing, engraving and etching, and we will now take a brief look at the histories of each of these.

Woodblock printing was by a long way the oldest of these technologies and was in the early days of printed book productions the most frequently used method of illustration reproduction. In woodblock or woodcut printing the image to be printed in cut into the prepared flat surface of a block of wood, inked and then pressed onto the surface to be printed. It originated in China as a method of printing on textiles and later also to printing on paper, The earliest surviving examples of woodblock printing date to before 220 CE. The method spread throughout East Asia from China. Interestingly, despite its widespread use throughout Asia, it didn’t arrive in Europe until around the early of fourteenth century, when it was used to print textiles. Woodblock printing on paper began in Europe around the beginning of the fifteenth century with religious images and playing cards. During the first half of the fifteenth century woodblock prints became quite popular, but the quality of the prints declined steeply. With the advent of the printed book and the demand for woodblock illustrations grew the quality began to improve with, for example the painter and illustrator Michael Wolgemut (1434–1519) setting standards. Wolgemut’s most famous apprentice, Albrecht Dürer (1471–1528), became possibly the greatest ever creator of woodblock prints. A woodcut is usually produced by two craftsmen, the illustrator or artist, who draws the image on the block and the block cutter, who actually cuts it.

Formschneider

Block Cutter at Work woodcut by Jost Amman, 1568 Source: Wikimedia Commons

The oldest known printed book, the Chinese Dunhuang Diamond Sūtra dated to 868 CE, was entirely printed using woodcuts and not moveable-type.

Jingangjing

The Chinese Diamond Sutra (868), the oldest existent woodblock printed book in the world. Source: Wikimedia Commons

The Buddhists were very fond of woodblock printing because they believed that objects with texts of the Buddha’s words are talismanic, so they mass produced leaflets with such texts using woodcuts to print them. A book like the Dunhuang Diamond Sūtra is known as a block-book. There was a brief period in the fifteenth century, mainly around 1460, 1470, when block-books were produced in Europe, usually with religious themes. Strangely it appears that none of the known surviving block-books predates the invention of moveable-type printing. It seems that they were offered as a cheaper alternative to moveable-type printed books but never really caught on.

The next technology for producing illustrations in printed books is engraving. Engraving is very similar to woodcut printing, but the image is cut, scratched or engraved into the surface of a sheet of metal, usually copper, rather than a block of wood. The earliest known printed objects produced in Europe using engraving are some German playing cards probably dating from the late 1430s. Engraving had long been used by gold and silver smiths to decorate metalwork, including amour musical instruments, jewellery etc. It is thought that the idea to use engraving as a print technology developed out of the process whereby goldsmiths filled the groves of an engraved pattern with chalk or similar to make an impression on paper, as a record of their work. It was also common practice when making an elaborate engraved breastplate, for example, to engrave one half of the pattern, left or right, then to make an impression to use to make the other half, thereby ensuring that the pattern was truly symmetrical.

The German artist Martin Schongauer (c.1450–1491) made the greatest early development in the art of producing engraved prints.

27.54.5

Martin Schongauer (German, Colmar ca. 1435/50–1491 Breisach) Griffin, 15th century German, Engraving; The Metropolitan Museum of Art, New York, Harris Brisbane Dick Fund, 1927 (27.54.5) via Wikimedia Commons http://www.metmuseum.org/Collections/search-the-collections/336196

Of course, it was, once again, Albrecht Dürer, who became the great master of producing engraved prints. Although engraving allows the reproduction of much finer lines that woodcuts and so more delicate and accurate images, it is also more expensive that woodcuts and more difficult to integrate with moveable-type when printing. These factors led to a dominance from woodcuts over engraving in the early book production.

Dürer-Hieronymus-im-Gehäus

St. Jerome in His Study (1514), an engraving by Northern Renaissance master Albrecht Dürer Source: Wikimedia Commons

The final print technology for producing illustration is etching. Like engraving, etching uses metal sheets to hold the images to be reproduced but instead of the images being cut into the surface with a tool it is burnt in using acid. The basic technology of etching goes back into antiquity and was used, for example, to decorate jewellery. The earliest examples from the Indus valley date back to the third millennium BCE. Etching used by gold and silver smiths to decorate guns, armour and other metal objects was well-known in Europe in the Middle Ages. The application of etching to printing is thought to have been the work of the German artist and metalworker Daniel Hopfer (c. 1470–1536), who produced etched prints using iron plates.

2880px-Daniel_Hopfer,_Three_German_Soldiers_Armed_with_Halberds,_c._1510,_NGA_159581

Daniel Hopfer Three German Soldiers Armed with Halberds, c. 1510. An original etched iron plate from which prints would be made. National Gallery of Art via Wikimedia Commons

The oldest dated etching is by Albrecht Dürer from 1515. Dürer only produced six etchings before returning to engraving as his preferred technique. The move from iron to copper etching plates is thought to have been made by the Italians, once a suitable chemical agent had been found.

As a technology for printing illustrations in books, etching didn’t really become established until the eighteenth century. One major problem was the production of the etching fluids. These were often of very poor quality and contained contaminates, which cause damage during the etching process. In the first couple of centuries of book production, it was woodcuts that dominated illustration reproduction only very gradually being replaced by engraving.

As we shall see in later posts the printed book and especially the illustrated book played a very central role in the development of various areas of Renaissance knowledge. The ability to mechanically reproduce illustrations in large quantities playing a very central role. Before this, however, as I have briefly indicated above the early literary humanists were quick to adopt the new medium, creating their own distinctive typefaces to give themselves a clear identity in print and also from the beginning producing printed editions of the works of their classical role models such as Cicero and Quintillion, as well as printed editions of the first humanist scholars such as Plutarch.

 

6 Comments

Filed under Book History

Renaissance Science – II

The so-called Scientific Renaissance at the beginning of the High Middle Ages was truly a renaissance in the sense of the rediscovery or re-emergence of the, predominantly Greek, intellectual culture of antiquity albeit, much of it in this case, filtered through the medium of the Islamic intellectual culture. This latter point would play an important role in the later emergence of the Humanist Renaissance.

The initial Islamic Empire dates its beginning to Muhammed’s flight from Mecca to Medina in 622 CE. It expanded incredibly rapidly absorbing more and more territory.

Masjid_al-Quba

Muhammad built the Masjid Qubā’ upon his arrival at Medina Source: Wikimedia Commons

By the middle of the eighth century the Abbasid Caliphate covered most of the Middle East and a large part of Northern Africa. According to the legend a delegation from India came to the Abbasid capital in 750 CE and the Muslims became aware that their visitors were intellectually far more advanced than themselves and this awareness triggered the Islamic translation movement. With scholars actively seeking out manuscripts of Greek, Persian and Indian knowledge and translating them into Arabic. No such legend exists for the acquisition and appropriation of that knowledge from the Islamic culture by the European Christians at the beginning of the High Middle ages.

2880px-Abbasid_Caliphate_891-892

Map of the fragmented Abbasid empire, with areas still under direct control of the Abbasid central government (dark green) and under autonomous rulers (light green) adhering to nominal Abbasid suzerainty, c. 892 Source: Wikimedia Commons

Western Europe went into decline around the fifth or sixth century CE following the collapse of the Western Roman Empire, the urban culture largely disappeared to be replaced by a rural culture. A bare minimum of the scientific culture of antiquity in the works of Boethius (477–524), Macrobius (fl. c. 400), Martianus Capella (fl. c. 410–420), Cassiodorus (c. 485 – c. 585) and Isidore of Seville (c. 560–636) was maintained largely in the monasteries and other church institutions. Following the Carolingian unification of Europe, the situation in Europe began to improve and slowly a new urban culture began to develop. With this social and economic evolution, a thirst for knowledge also developed.

2880px-Frankish_Empire_481_to_814-en.svg

Map of the rise of Frankish Empire, from 481 to 814.Source: Wikimedia Commons

There is a popular image of perpetual war between Muslims and Christians during the Middle Ages but in fact there was much exchange on many levels between the two cultures. Although the Carolingian kings did battle the Umayyad Caliphate in Spain, Karl der Große (742–814) (known as Charlemagne in English) maintained diplomatic relations with Harun al-Rashid (763–809), the fifth Abbasid Caliph, and the two empires carried out economic and technological exchanges.

Through trade and other contacts, the European Christian scholars gradually became aware of the superiority of the scientific knowledge of their Islamic neighbours, who they encountered along the borders of the two cultures, in particular in Southern Italy and in Spain. Gerbert of Aurillac’s acquisition of some astronomical and mathematical knowledge in Spain in the tenth century was a precursor to the translators, who kicked off the translation movement at the end of the eleventh century.

The earliest, substantial translations from Arabic were made by Constantinus Africanus (died before 1098), a North African Muslim, living in Monte Cassino in Southern Italy. Constantinus translated a substantial body of Arabic medical treatises based on Hippocratic and Galenic concepts.

Konstantinderafrikaner

Constantinus Africanus Source: Wikimedia Commons

Sicily, which had been part of the Byzantine Empire until 878 and then under divided Byzantine and Islamic rule from 878 to 965. Pure Islamic rule lasted until 1091 although the Byzantines, with the assistance of Norman mercenaries reinvaded in 1038. The Normans finally achieved total control of the island in 1091, which they maintained until 1198, when the island passed through marriage into the possession of the Hohenstaufen Dynasty. This constant change of ruling cultures led to the trilingual culture, almost predestined for translations. Here Ptolemaeus’ Mathēmatikē Syntaxisand texts from Plato and Euclid were translated directly from Greek into Latin. Other important works such as Ptolemaeus’ Optics and various medical works, including Avicenna’s (Ibn Sina) The Canon of Medicine, which became a standard work in Europe were translated from Arabic. Translations of individual works into Latin from Greek and Arabic continued in Italy well into the thirteenth century.

Sicily_by_Piri_Reis

Historic map of Sicily by Piri Reis 15th century Source: Wikimedia Commons

Although Italy in general and Sicily in particular produced many important translations into Latin, it was Spain that became the major centre for the translation movement and here the translations were from Arabic into Latin. Here works across the entire academic spectrum from Greek, Arabic and Indian sources found there way into medieval, Latin Europe.

The most notable centre for translations was Toledo and by far and away the most notable translator was Gerard of Cremona (1114–1187). Gerard originally travelled to Spain in search of Ptolemaeus’ Mathēmatikē Syntaxis, which he translated from Arabic into Latin, in about 1175 1150 (see comment from CPE Nothaft). He was unaware of the earlier translation direct from the Greek made in Sicily and It was his translation that became the standard work in medieval Europe not the Sicilian one (see comment from CPE Nothaft). Gerard stayed in Toledo and is reputed to have translated a total of eighty-seven works from Arabic into Latin, including many important mathematical works such as Euclid’s Elements, Archimedes On the Measurement of the Circle, and al-Khwarizmi’s On Algebra.

Theorica_Platenarum_by_Gerard_of_Cremona_13th_century

Theorica Planetarum by Gerard of Cremona, 13th century.Source: Wikimedia Commons

Some translators actually travelled to Islamic lands outside of Europe, such as Adelard of Bath (c. 1080–c. 1152), who is thought to have travelled extensively throughout Southern Europe but also West Asia and possibly Palestine. Adelard’s interests were mostly philosophical but he produced the first Latin translation of Euclid’s Elements and the first translation of al-Khwarizmi’s astronomical tables.

Woman_teaching_geometry

Detail of a scene in the bowl of the letter ‘P’ with a woman with a set-square and dividers; using a compass to measure distances on a diagram. In her left hand she holds a square, an implement for testing or drawing right angles. She is watched by a group of students. In the Middle Ages, it is unusual to see women represented as teachers, in particular when the students appear to be monks. She is most likely the personification of Geometry, based on Martianus Capella’s famous book De Nuptiis Philologiae et Mercurii, [5th c.] a standard source for allegorical imagery of the seven liberal arts. Illustration at the beginning of Euclid’s Elementa, in the translation attributed to Adelard of Bath. Source: Wikimedia Commons

A notable later translator was William of Moerbeke (c. 1220–c. 1286), who made substantial translations from Greek into Latin in the thirteenth century, most notably the works of Aristotle, which became the bedrock of European, medieval university education.

Aristotle,_De_anima,_Vaticanus_Palatinus_latinus_1033

The beginning of Aristotle’s De anima in the Latin translation by William of Moerbek.. Manuscript Rome, Biblioteca Apostolica Vaticana, Vaticanus Palatinus lat. 1033, fol. 113r (Anfang des 14. Jahrhunderts) Source: Wikimedia Commons

Something that is often sort of half ignored is that the translation movement also brought a lot of literature of the so-called occult sciences into Europe. There was major interest in both Greek and Arabic astrology texts and Robert of Chester (fl. 1140) introduced medieval Europe to alchemy with his translation of Liber de compositione alchemiae (The Book of the Composition of Alchemy). Robert also made the first Latin translation of al-Khwarizmi’s Kitāb al-Mukhtaṣar fī Ḥisāb al-Jabr wal-Muqābalah (The Compendious Book on Calculation by Completion and Balancing).

Image-Al-Kitāb_al-muḫtaṣar_fī_ḥisāb_al-ğabr_wa-l-muqābala

al-Khwarizmi al-Kitāb al-Mukhtaṣar fī Ḥisāb al-Jabr wal-Muqābalah title page 9th century Source: Wikimedia Commons

This is only a very brief sketch of what was a vast movement involving many scholars over a period of more than two centuries. It is important to note, as far as the translations from Arabic as concerned, that very few of the translators actually spoke Arabic. The work was carried out by groups or teams, who first translated the Arabic into a vernacular language and from there into Latin. The intermediary translators were very often Spanish Jews, who spoke Arabic. This meant that some of the original Greek works had been translated from Greek into Syriac, from Syriac into Arabic, From Arabic into an intermediary language, and then from the intermediary language into Latin. Add to this the normal copying errors from several generation old, handwritten manuscripts and the texts that finally arrived in Europe were often very corrupt and confusing. Add to this the fact that with scientific texts, each new language often lacked the necessary scientific terminology and the translator had to invent new terms and concepts in his own language making for a high level of incomprehension by the time the text had finally been translated into Latin. These high levels of text corruption and incomprehension would play a major role in motivating the Humanist Renaissance.

Another factor that needs to be taken into considerations is that, although the translators made a vast amount of the Greek, Arabic, Persian and Indian scientific texts available to the European scholars in the High Middle Ages, quite a few important texts remained untranslated and unknown. Examples are Ptolemaeus’ Geographia, which although known to the Arabs remained unknown in Europe until the fifteenth century or although many of Galen’s works were translated into Latin, some of his principal anatomical works also remained unknown until the fifteenth century.

A final note is that although many technical works became available fairy early on, medieval Europe lacked the knowledge background to truly comprehend or utilise them. A good example is Ptolemaeus’ Mathēmatikē Syntaxis, which became available, relatively early, in two separate translations from the Greek and from Arabic. However, almost no one in Europe possessed the necessary mathematical or astronomical knowledge to truly comprehend or utilise it. Instead, European astronomers universities relied, for teaching, on translations of Arabic astronomical tables and on Sacrobosco’s very simple introductory textbook De sphaera mundi, based not directly on Ptolemaeus but on two much simpler Arabic texts.

Europe was not yet ready to enjoy the fruits of all the treasures that the translation movement brought, and it would take a couple of centuries of further development before that was truly the case.

7 Comments

Filed under Book History, Renaissance Science

The man who printed the world of plants

Abraham Ortelius (1527–1598) is justifiably famous for having produced the world’s first modern atlas, that is a bound, printed, uniform collection of maps, his Theatrum Orbis Terrarum. Ortelius was a wealthy businessman and paid for the publication of his Theatrum out of his own pocket, but he was not a printer and had to employ others to print it for him.

1920px-Abraham_Ortelius_by_Peter_Paul_Rubens

Abraham Ortelius by Peter Paul Rubens , Museum Plantin-Moretus via Wikimedia Commons

A man who printed, not the first 1570 editions, but the important expanded 1579 Latin edition, with its bibliography (Catalogus Auctorum), index (Index Tabularum), the maps with text on the back, followed by a register of place names in ancient times (Nomenclator), and who also played a major role in marketing the book, was Ortelius’ friend and colleague the Antwerp publisher, printer and bookseller Christophe Plantin (c. 1520–1589).

29616

Plantin also published Ortelius’ Synonymia geographica (1578), his critical treatment of ancient geography, later republished in expanded form as Thesaurus geographicus (1587) and expanded once again in 1596, in which Ortelius first present his theory of continental drift.

243325_1m

Plantin’s was the leading publishing house in Europe in the second half of the sixteenth century, which over a period of 34 years issued 2,450 titles. Although much of Plantin’s work was of religious nature, as indeed most European publishers of the period, he also published many important academic works.

Before we look in more detail at Plantin’s life and work, we need to look at an aspect of his relationship with Ortelius, something which played an important role in both his private and business life. Both Christophe Plantin and Abraham Ortelius were members of a relatively small religious cult or sect the Famillia Caritatis (English: Family of Love), Dutch Huis der Leifde (English: House of Love), whose members were also known as Familists.

This secret sect was similar in many aspects to the Anabaptists and was founded and led by the prosperous merchant from Münster, Hendrik Niclaes (c. 1501–c. 1580). Niclaes was charged with heresy and imprisoned at the age of twenty-seven. About 1530 he moved to Amsterdam where his was once again imprisoned, this time on a charge of complicity in the Münster Rebellion of 1534–35. Around 1539 he felt himself called to found his Famillia Caritatis and in 1540 he moved to Emden, where he lived for the next twenty years and prospered as a businessman. He travelled much throughout the Netherlands, England and other countries combining his commercial and missionary activities. He is thought to have died around 1580 in Cologne where he was living at the time.

RP-P-1907-3375-e1605915021407-1480x2048

Niclaes wrote vast numbers of pamphlets and books outlining his religious views and I will only give a very brief outline of the main points here. Familists were basically quietists like the Quakers, who reject force and the carrying of weapons. Their ideal was a quite life of study, spiritualist piety, contemplation, withdrawn from the turmoil of the world around them. The sect was apocalyptic and believed in a rapidly approaching end of the world. Hendrik Niclaes saw his mission in instructing mankind in the principal dogma of love and charity. He believed he had been sent by God and signed all his published writings H. N. a Hillige Nature (Holy Creature). The apocalyptic element of their belief meant that adherents could live the life of honest, law abiding citizens even as members of religious communities because all religions and authorities would be irrelevant come the end of times. Niclaes managed to convert a surprisingly large group of successful and wealthy merchants and seems to have appealed to an intellectual cliental as well. Apart from Ortelius and Plantin, the great Dutch philologist, humanist and philosopher Justus Lipsius (1574–1606) was a member, as was Charles de l’Escluse (1526–1609), better known as Carolus Clusius, physician and the leading botanist in Europe in the second half of the sixteenth century. The humanist Andreas Masius (1514–1573) an early syriacist (one who studies Syriac, an Aramaic language) was a member, as was Benito Arias Monato (1527–1598) a Spanish orientalist. Emanuel van Meteren (1535–1612) a Flemish historian and nephew of Ortelius was probably also Familist. The noted Flemish miniature painter and illustrator, Joris Hoefnagel (1542–1601), was a member as was his father a successful diamond dealer. Last but by no means least Pieter Bruegel the Elder (c. 1525– 1569) was also a Familist. As we shall see the Family of Love and its members played a significant role in Plantin’s life and work.

1920px-Peter_Paul_Rubens_-_Christoffel_Plantin_-_WGA20356

Christophe Plantin by Peter Paul Rubens Museum Platin-Moretus  via Wikimedia Commons Antwerp in the time of Plantin was a major centre for artists and engravers and Peter Paul Rubins was the Plantin house portrait painter.

Christophe Plantin was born in Saint-Avertin near Tours in France around 1520. He was apprenticed to Robert II Macé in Caen, Normandy from whom he learnt bookbinding and printing. In Caen he met and married Jeanne Rivière (c. 1521–1596) in around 1545.

462px-Portret_van_Jeanne_Rivière,_onbekend,_schilderij,_Museum_Plantin-Moretus_(Antwerpen)_-_MPM_V_IV_069

Jeanne Rivière School of Rubens Museum Plantin-Moretus via Wikimedia Commons

They had five daughters, who survived Plantin and a son who died in infancy. Initially, they set up business in Paris but shortly before 1550 they moved to the city of Antwerp in the Spanish Netherlands, then one of Europe’s most important commercial centres. Plantin became a burgher of the city and a member of the Guild of St Luke, the guild of painter, sculptors, engravers and printers. He initially set up as a bookbinder and leather worker but in 1555 he set up his printing office, which was most probably initially financed by the Family of Love. There is some disagreement amongst the historians of the Family as to how much of Niclaes output of illegal religious writings Plantin printed. But there is agreement that he probably printed Niclaes’ major work, De Spiegel der Gerechtigheid (Mirror of Justice, around 1556). If not the house printer for the Family of Love, Plantin was certainly one of their printers.

The earliest book known to have been printed by Plantin was La Institutione di una fanciulla nata nobilmente, by Giovanni Michele Bruto, with a French translation in 1555, By 1570 the publishing house had grown to become the largest in Europe, printing and publishing a wide range of books, noted for their quality and in particular the high quality of their engravings. Ironically, in 1562 his presses and goods were impounded because his workmen had printed a heretical, not Familist, pamphlet. At the time Plantin was away on a business trip in Paris and he remained there for eighteen months until his name was cleared. When he returned to Antwerp local rich, Calvinist merchants helped him to re-establish his printing office. In 1567, he moved his business into a house in Hoogstraat, which he named De Gulden Passer (The Golden Compasses). He adopted a printer’s mark, which appeared on the title page of all his future publications, a pair of compasses encircled by his moto, Labore et Constantia (By Labour and Constancy).

Emblema_de_Christophe_Plantin_(1558)

Christophe Plantin’s printers mark, Source: Wikimedia Commons

220px-Plantin_(after_Goltzius)

Engraving of Plantin with his printing mark after Goltzius Source: Wikimedia Commons

Encouraged by King Philip II of Spain, Plantin produced his most famous publication the Biblia Polyglotta (The Polyglot Bible), for which Benito Arias Monato (1527–1598) came to Antwerp from Spain, as one of the editors. With parallel texts in Latin, Greek, Syriac, Aramaic and Hebrew the production took four years (1568–1572). The French type designer Claude Garamond (c. 1510–1561) cut the punches for the different type faces required for each of the languages. The project was incredibly expensive and Plantin had to mortgage his business to cover the production costs. The Bible was not a financial success, but it brought it desired reward when Philip appointed Plantin Architypographus Regii, with the exclusive privilege to print all Roman Catholic liturgical books for Philip’s empire.

image_plantin_polyglot

THE BIBLIA SACRA POLYGLOTTA, CHRISOPHER PLANTIN’S MASTERPIECE. IMAGE Chetham’s Library

In 1576, the Spanish troops burned and plundered Antwerp and Plantin was forced to pay a large bribe to protect his business. In the same year he established a branch of his printing office in Paris, which was managed by his daughter Magdalena (1557–1599) and her husband Gilles Beys (1540–1595). In 1578, Plantin was appointed official printer to the States General of the Netherlands. 1583, Antwerp now in decline, Plantin went to Leiden to establish a new branch of his business, leaving the house of The Golden Compasses under the management of his son-in-law, Jan Moretus (1543–1610), who had married his daughter Martine (1550–16126). Plantin was house publisher to Justus Lipsius, the most important Dutch humanist after Erasmus nearly all of whose books he printed and published. Lipsius even had his own office in the printing works, where he could work and also correct the proofs of his books. In Leiden when the university was looking for a printer Lipsius recommended Plantin, who was duly appointed official university printer. In 1585, he returned to Antwerp, leaving his business in Leiden in the hands of another son-in-law, Franciscus Raphelengius (1539–1597), who had married Margaretha Plantin (1547–1594). Plantin continued to work in Antwerp until his death in 1589.

unnamed

Source: Museum Plantin-Moretus

After this very long introduction to the life and work of Christophe Plantin, we want to take a look at his activities as a printer/publisher of science. As we saw in the introduction he was closely associated with Abraham Ortelius, in fact their relationship began before Ortelius wrote his Theatrum. One of Ortelius’ business activities was that he worked as a map colourer, printed maps were still coloured by hand, and Plantin was one of the printers that he worked for. In cartography Plantin also published Lodovico Guicciardini’s (1521–1589) Descrittione di Lodovico Guicciardini patritio fiorentino di tutti i Paesi Bassi altrimenti detti Germania inferiore (Description of the Low Countries) (1567),

Portret_van_Lodovico_Guicciardini_Portretten_van_beroemde_Italianen_met_wapenschild_in_ondermarge_(serietitel),_RP-P-1909-4638

Source: Wikimedia Commons

which included maps of the various Netherlands’ cities.

Guicciardini_Map_of_Antwerp

Engraved and colored map of the city of Antwerp Source: Wikimedia Commons

Plantin contributed, however, to the printing and publication of books in other branches of the sciences.

Plantin’s biggest contribution to the history of science was in botany.  A combination of the invention of printing with movable type, the development of both printing with woodcut and engraving, as well as the invention of linear perspective and the development of naturalism in art led to production spectacular plant books and herbals in the Early Modern Period. By the second half of the sixteenth century the Netherlands had become a major centre for such publications. The big three botanical authors in the Netherlands were Carolus Clusius (1526–1609), Rembert Dodoens (1517–1585) and Matthaeus Loblius (1538–1616), who were all at one time clients of Plantin.

Matthaeus Loblius was a physician and botanist, who worked extensively in both England and the Netherlands.

NPG D25673,Matthias de Lobel (Lobelius),by Francis Delaram

Matthias de Lobel (Lobelius),by Francis Delaramprint, 1615 Source: Wikimedia Commons

His Stirpium aduersaria noua… (A new notebook of plants) was originally published in London in 1571, but a much-extended edition, Plantarum seu stirpium historia…, with 1, 486 engravings in two volumes was printed and published by Plantin in 1576. In 1581 Plantin also published his Dutch herbal, Kruydtboek oft beschrÿuinghe van allerleye ghewassen….

Plantarum,_seu,_Stirpium_historia_(Title_page)

Source: Wikimedia Commons

There is also an anonymous Stirpium seu Plantarum Icones (images of plants) published by Plantin in 1581, with a second edition in 1591, that has been attributed to Loblius but is now thought to have been together by Plantin himself from his extensive stock of plant engravings.

Carolus Clusius also a physician and botanist was the leading scientific horticulturist of the period, who stood in contact with other botanist literally all over the worlds, exchanging information, seeds, dried plants and even living ones.

Carolus_Clusius00

Portrait of Carolus Clusius painted in 1585 Attributed to Jacob de Monte – Hoogleraren Universiteit Leiden via Wikimedia Commons

His first publication, not however by Plantin, was a translation into French of Dodoens’ herbal of which more in a minute. This was followed by a Latin translation from the Portuguese of Garcia de Orta’s Colóquios dos simples e Drogas da India, Aromatum et simplicium aliquot medicamentorum apud Indios nascentium historia (1567) and a Latin translation from Spanish of Nicolás Monardes’  Historia medicinal delas cosas que se traen de nuestras Indias Occidentales que sirven al uso de la medicina, , De simplicibus medicamentis ex occidentali India delatis quorum in medicina usus est (1574), with a second edition (1579), both published by Plantin.His own  Rariorum alioquot stirpium per Hispanias observatarum historia: libris duobus expressas (1576) and Rariorum aliquot stirpium, per Pannoniam, Austriam, & vicinas quasdam provincias observatarum historia, quatuor libris expressa … (1583) followed from Plantin’s presses. His Rariorum plantarum historia: quae accesserint, proxima pagina docebit (1601) was published by Plantin’s son-in-law Jan Moretus, who inherited the Antwerp printing house.

473802-1408461739

Our third physician-botanist, Rembert Dodoens, his first publication with Plantin was his Historia frumentorum, leguminum, palustrium et aquatilium herbarum acceorum, quae eo pertinent (1566) followed by the second Latin edition of his  Purgantium aliarumque eo facientium, tam et radicum, convolvulorum ac deletariarum herbarum historiae libri IIII…. Accessit appendix variarum et quidem rarissimarum nonnullarum stirpium, ac florum quorumdam peregrinorum elegantissimorumque icones omnino novas nec antea editas, singulorumque breves descriptiones continens… (1576) as well as other medical books.

Rembert_Dodoens00-2

Rembert Dodoens Theodor de Bry – University of Mannheim via Wikimedia Commons

His most well known and important work was his herbal originally published in Dutch, his Cruydeboeck, translated into French by Clusius as already stated above.

Title_page_of_Cruydt-Boeck,_1618_edition

Title page of Cruydt-Boeck,1618 edition Source: Wikimedia Commons

Plantin published an extensively revised Latin edition Stirpium historiae pemptades sex sive libri XXXs in 1593.

942506_1596201883-563x367_width_50

This was largely plagiarised together with work from Loblius and Clusius by John Gerrard (c. 1545–1612)

Gerard_John_1545-1612

John Gerard Source: Wikimedia Commons

in his English herbal, Great Herball Or Generall Historie of Plantes (1597), which despite being full of errors became a standard reference work in English.

The Herball, or, Generall historie of plantes / by John Gerarde

Platin also published a successful edition of Juan Valverde de Amusco’s Historia de la composicion del cuerpo humano (1568), which had been first published in Rome in 1556. This was to a large extent a plagiarism of Vesalius’ De humani corporis fabrica (1543).

topimage

Another area where Platin made a publishing impact was with the works of the highly influential Dutch engineer, mathematician and physicist Simon Stevin (1548-1620). The Plantin printing office published almost 90% of Stevin’s work, eleven books altogether, including his introduction into Europe of decimal fractions De Thiende (1585),

stev001thie01_01_scan0000

Source: Wikimedia Commons

his important physics book De Beghinselen der Weeghconst (The Principles of Statics, lit. The Principles of the Art of Weighing) (1586),

Simon_Stevin_-_Voorblad_van_De_Beghinselen_der_Weeghconst,_1586-2

Source: Wikimedia Commons

his Beghinselen des Waterwichts (Principles of hydrodynamics) (1586) and his book on navigation De Havenvinding (1599).

Following his death, the families of his sons-in-law continued the work of his various printing offices, Christophe Beys (1575–1647), the son of Magdalena and Gilles, continued the Paris branch of the business until he lost his status as a sworn printer in 1601. The family of Franciscus Raphelengius continued printing in Leiden for another two generations, until 1619. When Lipsius retired from the University of Leiden in 1590, Joseph Justus Scaliger (1540-1609) was invited to follow him at the university. He initially declined the offer but, in the end, when offered a position without obligations he accepted and moved to Leiden in 1593. It appears that the quality of the publications of the Plantin publishing office in Leiden helped him to make his decision.  In 1685, a great-granddaughter of the last printer in the Raphelengius family married Jordaen Luchtmans (1652 –1708), who had founded the Brill publishing company in 1683.

The original publishing house in Antwerp survived the longest. Beginning with Jan it passed through the hands of twelve generations of the Moretus family down to Eduardus Josephus Hyacinthus Moretus (1804–1880), who printed the last book in 1866 before he sold the printing office to the City of Antwerp in 1876. Today the building with all of the companies records and equipment is the Museum Plantin-Moretus, the world’s most spectacular museum of printing.

9cbfec84-cdd5-4563-95de-43ca81aee143_tcm34-132335

2-021 Museum Plantin Moretus

There is one last fascinating fact thrown up by this monument to printing history. Lodewijk Elzevir (c. 1540–1617), who founded the House of Elzevir in Leiden in 1583, which published both Galileo’s Discorsi e dimostrazioni matematiche intorno a due nuove scienze in 1638 and Descartes’ Discours de la Méthode Pour bien conduire sa raison, et chercher la vérité dans les sciences in 1637, worked for Plantin as a bookbinder in the 1560s.

Nikolaes_Heinsius_the_Elder,_Poemata_(Elzevier_1653),_Druckermarke

Nikolaes Heinsius the Elder, Poemata (Elzevier 1653), Druckermarke Source: Wikimedia Commons

The House of Elzevir ceased publishing in 1712 and is not connected to Elsevier the modern publishing company, which was founded in 1880 and merely borrowed the name of their famous predecessor.

The Platntin-Moretus publishing house played a significant role in the intellectual history of Europe over many decades.

 

 

4 Comments

Filed under Book History, History of Mathematics, History of medicine, History of Physics, History of science, Renaissance Science