Category Archives: Book History

Renaissance Science – VII

In the last post we looked at the European re-invention of moveable-type and the advent of the printed book, which played a highly significant role in the history of science in general and in Renaissance science in particular. I also emphasised the various print technologies developed for reproducing images, because they played a very important role in various areas of the sciences during the Renaissance, as we shall see in later posts in this series. Parallel to these technological developments there were two major developments in the arts, which would have a very major impact on the illustration in Renaissance science publications, the (re?)-discovery of linear perspective and the development of naturalism.

Linear perspective is the geometrical method required to reproduce three-dimensional objects realistically on a two-dimensional surface; the discovery or invention of linear perspective is usually attributed to the Renaissance artist-engineer and architect, Filippo Brunelleschi (1377–1446), about whom more below, but already in the Renaissance it was often referred to as a re-discovery. This Renaissance re-discovery trope was very much in line with the general Renaissance concept of a rebirth of classical knowledge. Here the belief that linear perspective was a re-discovery is based on the concept of skenographia in ancient Greek theatre, which consists of using painted flat panels on a stage to give the illusion of depth. This is mentioned in Aristotle’s Poetics (c. 335 BCE) a general work on drama. More importantly, from a Renaissance perspective, it is briefly described in Vitruvius’ De Architectura libri dicem (Ten Books on Architecture) from the first century BCE. Once again, as we shall see later, Vitruvius’ De Architectura played a central role in Renaissance thought. In his Book 7 On Finishing, Vitruvius wrote in the preface:

In Athens, when Aechylus was producing tragedies, Agathachus was the first to work for the theatre and wrote a treatise about it. Learning from this, Democritus and Anaxagoras wrote on the same subject, namely how the extension of rays from a certain established centre point ought to correspond in a natural ration to the eyes’ line of sight, so that they could represent the appearance of buildings in scene painting, no longer by some uncertain method, but precisely, both the surfaces that were depicted frontally, and those that seemed either to be receding or projecting[1].

Of course, ancient Greek theatre flats no longer exist, but some Greek and many more Roman wall paintings have survived, which very obviously display some degree of perspective. However, closer analysis of these paintings has shown that while they are in fact constructed on some sort of perspective scheme it is not the linear perspective that was developed in the Renaissance.


Villa of P. Fannius Synistor Cubiculum M alcove Panel with temple at east end of the alcove, the north end of the east wall Middle of the first century B.C. Boscoreale (Pompeii), Italy Source:

Although linear perspective was not strictly a re-discovery, it also didn’t emerge at the beginning of the fifteenth century out of thin air. Already, more than a century earlier the so-called proto-Renaissance artists, in particular Giotto (1267–1337), were producing paintings that displayed depth based on a mathematical model, when not quite that of linear perspective and not consistent.


‘Jesus Before the Caïf’, by Giotto (1305). The ceiling rafters show the Giotto’s introduction of convergent perspective. B. Detailed analysis, however, reveals that the ceiling has an inconsistent vanishing point and that the Caïf’s dais is in parallel perspective, with no vanishing point. Source

At the beginning of the fifteenth century, the Renaissance sculptor Lorenzo Ghiberti (1378–1455) used linear perspective in the panels of the second set of bronze doors he was commissioned to produce for the Florence Baptistry, dubbed the Gates of Paradise by Michelangelo.


A panel of Adam and Eve in Ghiberti’s “Gate’s of Paradise”. Photo by Thermos.Source: Wikimedia Commons

As already stated, Brunelleschi is credited with having invented linear perspective according to his biographer Antonio di Tuccio Manetti (1423–1497), he compared the reality of his painting using linear perspective of the Florence Baptistery with the building itself using mirrors.


Filippo Brunelleschi in an anonymous portrait of the 2nd half of the 15th century (Louvre, Paris) via Wikimedia Commons

According to Manetti, he used a grid or set of crosshairs to copy the exact scene square by square and produced a reverse image. The results were compositions with accurate perspective, as seen through a mirror. To compare the accuracy of his image with the real object, he made a small hole in his painting, and had an observer look through the back of his painting to observe the scene. A mirror was then raised, reflecting Brunelleschi’s composition, and the observer saw the striking similarity between the reality and painting. Both panels have since been lost. (Wikipedia)


Brunelleschi left no written account of how he constructed his painting and the first written account we have of the geometry of linear perspective is from another Renaissance humanist artist and architect, Leon Battista Alberti (1404–1472) in his book On painting, published in Tuscan dialect as Della Pittura in 1436/6 and in Latin as De pictura first in 1450, although the Latin edition was also written in 1435. The book contains a comparatively simple account of the geometrical rudiments of linear perspective.


Presumed self-portrait of Leon Battista Alberti Source: Wikimedia Commons


Figure from the 1804 edition of Della pittura showing the vanishing point Source: Wikimedia Commons

A much fuller written account of the mathematics of linear perspective was produced in manuscript by the painter Piero della Francesca (c. 1415–1492), De Prospectiva pingendi (On the Perspective of painting), around 1470-80.


An icosahedron in perspective from De Prospectiva pingendi Source: Wikimedia Commons

He never published this work, but his ideas on perspective were incorporated in his book Divina proportione by the mathematician Luca Pacioli (c. 1447–1517), written around 1498 but first published in 1509. Pacioli’s book also plagiarised another manuscript of della Francesca’s on perspective, his De quinque corporibus regularibus (The Five Regular Solids).


Piero della Francesca by Giorgio Vasari Source: Wikimedia Commons

Mathematicians and artists continued over the centuries to write books describing and investigating the geometrical principles of linear perspective the most notable of, which during the Renaissance was Albrecht Dürer’s Underweysung der Messung mit dem Zirckel und Richtscheyt (Instructions for Measuring with Compass and Ruler) published in 1525, which contains the first account of two point perspective. Dürer is credited with introducing linear perspective into the Northern Renaissance.


Dürer, draughtsman Making a Perspective Drawing of a Reclining Woman

Naturalism is, as its name would suggest, the development in art to depict things naturally i.e., as we see them with our own eyes. Linear perspective is actually one aspect of naturalism. In her The Body of the Artisan, Pamala H. Smith writes the following:

It is difficult to know where to begin a discussion of naturalism (which can encompass the striving for “verisimilitude,” “illusionism,” “realism,” and the “imitation of nature”) in the early modern period, for the secondary literature in art history alone is vast. David Summers has defined naturalism as the attempt to make the elements of the artwork (in his account primarily painting) coincide with the elements of the optical experience[2]. (Her endnote: Summers, The Judgement of Sense, p. 3)

Smith also quotes in this context Alberti, “[He] put it in about 1435, making a picture that was an “open window” through which the world was seen.[3]” There is no neat timeline of events for Naturalism, as I have recreated above for linear perspective. Smith gives as her first historical example of Naturalism the so-called Carrara Herbal produced in Padua around 1400, with till then unknown, for this type of literature, unprecedented naturalism in its illustrations.[4]


Violet plant – Carrara Herbal (c.1400), f.94 – BL Egerton MS 2020.jpg Source: Wikimedia Commons

As we will see in a later blog post it was in natural history, in particular in botany, that naturalism made a major impact in printed scientific illustrations.

Although, they still hadn’t really adopted the techniques of linear perspective it was the artists of the Northern Renaissance, rather than their Southern brethren, who first extensively adopted Naturalism, most notably Jan van Eyck (before 1390 – 1441). An attribute of the Naturalism of these painters was the use of mirrors in their paintings to symbolise the reflection of nature or reality.


Jan van Eyck Detail with mirror and signature; Arnolfini Portrait, 1434 Source: Wikimedia Commons

Once again, we meet here Albrecht Dürer, who is justifiably renowned for his lifelike reproduction of various aspects of nature in his artwork.


Albrecht Dürer Young Hare, (1502), Source: Wikimedia Commons


Albrecht Dürer Great Piece of Turf, 1503 Source: Wikimedia commons

It is important to note here that although this picture looks very realistic, when first viewed, it is actually an example of illusion or hyperrealism. There are none of the old or withered plants that such a scene in nature would inevitably have. Also none of the plants obscure other plants with their shadows, as they would in reality. What Dürer delivers up here is an idealised naturalism, almost a contradiction in terms. This conflict between real naturalism and the demands of clear to interpret illustrations would play a significant role in the illustrations of Renaissance books on natural history.

However, as we shall see in later posts both linear perspective and Naturalism made a massive impact on the scientific and technological book illustrations that were produced during the Renaissance.

[1] Vitruvius, Ten Books on Architecture, Eds. Ingrid D. Rowland & Thomas Noble Howe, CUP, 1999 p. 86

[2] Pamala H. Smith, The Body of the Artisan: Art and Experience in the Scientific Revolution, University of Chicago Press, 2004 p. 9

[3] Smith, p. 33

[4] Smith p. 33

1 Comment

Filed under Book History, History of science, Renaissance Science

Renaissance Science – VI

There is no doubt that the fifteenth and sixteenth century introduction of print technologies in Europe, making possible the advent of the printed book, was one of the most important developments in the history of not just Renaissance science, but the history of science in general. Many people go much further and list the invention of movable-type, as one of the most important or significant inventions in the whole of human history. The ‘in Europe’ is important, because two of those technologies, moveable-type and woodblock printing, were both known and used in Asia long before their introduction in Europe. It is also important to note that despite extensive research no evidence has ever been found of a technology transfer of moveable-type printing from Asia to Europe and the introduction into Europe appears to be a genuinely independent reinvention.

The Chinese artisan Bì Shēng (972–1051) invented the earliest systems of moveable-type around 1040 CE, one in ceramic materials the other using wood. Another wood-based system was invented by the mechanical engineer, Wang Zhen (fl. 1290–1333), in the fourteenth century. Metal moveable-type, made of bronze, definitely existed in China in the thirteenth century. Bronze moveable-type was also in use in Korea in the thirteenth century.


A revolving table typecase with individual movable type characters arranged primarily by rhyming scheme, from Wang Zhen’s Nong Shu, published 1313. Source: Wikimedia Commons

As already stated, there is no evidence of a technology transfer and moveable-type was independently invented in Europe in the fifteenth century. There were tentative experiments with moveable-type early in in the century that came to nothing and the European invention is generally attributed to Johannes Gensfleisch zur Laden zum Gutenberg (c.1400–1468), who is usually known simply as Johannes Gutenberg.


Gutenberg-Statue in Straßburg No portraits of the man are known to exist Source: Wikimedia Commons

Gutenberg was born sometime around 1400 in the city of Mainz, the youngest son of the patrician merchant Friele Gensfleisch zur Laden. Almost nothing is known about his early life, but he turns up living in Strasbourg working as a gold smith in 1434. He moved back to Mainz at some point. He was involved in various, possibly dubious, schemes to make money and it’s not really known how or why he developed his system of moveable-type printing. He supposedly announced his system of printing in 1440 but it wasn’t until around 1450 that his printing press was in operation.

Gutenberg’s real claim to fame is not just that he developed a system of metal moveable-type but that he created a complete system of mechanical printing. As well as the metal type, he modified a wine press to produce a printing press and developed a printing ink. Normal ink is too fluid to be used effectively in a printing press, so Gutenberg developed a more viscous, oil-based ink which stuck to the type, rather than running off.


In this woodblock from 1568, the printer at left is removing a page from the press while the one at right inks the text-blocks Source: Wikimedia Commons

For his press Gutenberg’s business partner was Johann Furst Fust, who lent Gutenberg 800 guilders for the enterprise. Also involved was Furst’s future son-in-law Peter Schöffler. Having conceived his legendary Bible project around 1451, Gutenberg borrowed another 800 guilders from Furst Fust, and printing began in 1452. The Bible began to appear around 1455. In 1456 Furst Fust sued Gutenberg for misappropriation of funds and Gutenberg Europe’s first printer-publisher became Europe’s first bankrupt printer-publisher. Furst Fust and Schöffler took over the publishing house.

Between the 1460s and 1470s Gutenberg’s invention spread rapidly, first throughout Germany and then over the borders into other European countries.


The rapid spread of moveable-type printing throughout Europe in the first fifty years Source: Wikimedia Commons

Gutenberg had nothing to do with the humanist Renaissance, although one of his first printed products was a wall calendar, which as we will see later was an integral part of Renaissance science. However, as his invention crossed the border into Italy it quickly became part of the humanist movement.

The first printer-publishers in Italy were Arnold Pannartz and Conrad Sweynheym, who set up a press in the Benedictine abbey of Subiaco in 1464. Their output was from the beginning humanist orientated. Their first book was by Aelius Donatus a Roman grammarian of which no copied survived. Next, they printed Cicero’s De oratore followed by religious books by Lactantius and Augustinus.

An important innovation was their typeface. German printers following Gutenberg used Blackletter or Gothic typefaces. The humanists had developed a new hand script based on capital Roman letters and Carolingian miniscule, which they mistakenly thought was original antique Latin script. This was modified to make the two different scripts compatible becoming Roman or Antiqua script. The Pannartz-Sweynheym type face was halfway between the German Blackletter typefaces and the humanist Roman script, as was expected from the humanists.


Specimen of a typeface by Pannartz and Sweinheim, considered to be the earliest form of Roman type, c. 1465. Source: Wikimedia Commons

n 1467 Pannartz & Sweynheym left Subiaco and set up a publishing house in Rome, where they continued to publish religious and humanist texts until 1472 when they, like Gutenberg before them, went bankrupt.

Very early, Venice established itself the centre of book printing in Italy and the Venetian printer-publishers, created full blown Roman or Antique type faces to print humanist literature. Most notable in this development were the type designer Nicholas Jensen (c. 1420–1480) and humanist scholar and publisher Aldus Manutius (c.1450–1515), who founded the Aldine Press, which specialised in printing classical Greek and Latin texts.

Aldus Pius Manutius, illustration in Vita di Aldo Pio Manuzio (1759) Source: Wikimedia Commons



The John Rylands Library copy of the Aldine Vergil of 1501, printed on vellum and hand-coloured Source: Wikimedia Commons

Johannes Regiomontanus (1436–1476), also a humanist scholar about whom we will have more to say later, and who established the worlds first scientific publishing house in Nürnberg in 1471, is credited with being the first printer-publisher to bring the Antiqua type faces back over the border into Germany.

Another humanist scholar Niccolò de’Niccoli (1364–1437) dissatisfied with the Roman script for writing humanist manuscripts developed the more flowing Italic script, which in turn generated the Italic type face.


Sample of Niccoli’s cursive script, which developed into Italic type. Source: Wikimedia Commons

Whilst the invention of moveable-type played the major role in the creation of the printed book, it is important to recognise that the possibility of generating reproduceable illustrations in printed books played a very major role in the production of science books, in particular in several areas of Renaissance knowledge, as we shall see later. Image reproduction was made possible by three different print technologies, woodblock printing, engraving and etching, and we will now take a brief look at the histories of each of these.

Woodblock printing was by a long way the oldest of these technologies and was in the early days of printed book productions the most frequently used method of illustration reproduction. In woodblock or woodcut printing the image to be printed in cut into the prepared flat surface of a block of wood, inked and then pressed onto the surface to be printed. It originated in China as a method of printing on textiles and later also to printing on paper, The earliest surviving examples of woodblock printing date to before 220 CE. The method spread throughout East Asia from China. Interestingly, despite its widespread use throughout Asia, it didn’t arrive in Europe until around the early of fourteenth century, when it was used to print textiles. Woodblock printing on paper began in Europe around the beginning of the fifteenth century with religious images and playing cards. During the first half of the fifteenth century woodblock prints became quite popular, but the quality of the prints declined steeply. With the advent of the printed book and the demand for woodblock illustrations grew the quality began to improve with, for example the painter and illustrator Michael Wolgemut (1434–1519) setting standards. Wolgemut’s most famous apprentice, Albrecht Dürer (1471–1528), became possibly the greatest ever creator of woodblock prints. A woodcut is usually produced by two craftsmen, the illustrator or artist, who draws the image on the block and the block cutter, who actually cuts it.


Block Cutter at Work woodcut by Jost Amman, 1568 Source: Wikimedia Commons

The oldest known printed book, the Chinese Dunhuang Diamond Sūtra dated to 868 CE, was entirely printed using woodcuts and not moveable-type.


The Chinese Diamond Sutra (868), the oldest existent woodblock printed book in the world. Source: Wikimedia Commons

The Buddhists were very fond of woodblock printing because they believed that objects with texts of the Buddha’s words are talismanic, so they mass produced leaflets with such texts using woodcuts to print them. A book like the Dunhuang Diamond Sūtra is known as a block-book. There was a brief period in the fifteenth century, mainly around 1460, 1470, when block-books were produced in Europe, usually with religious themes. Strangely it appears that none of the known surviving block-books predates the invention of moveable-type printing. It seems that they were offered as a cheaper alternative to moveable-type printed books but never really caught on.

The next technology for producing illustrations in printed books is engraving. Engraving is very similar to woodcut printing, but the image is cut, scratched or engraved into the surface of a sheet of metal, usually copper, rather than a block of wood. The earliest known printed objects produced in Europe using engraving are some German playing cards probably dating from the late 1430s. Engraving had long been used by gold and silver smiths to decorate metalwork, including amour musical instruments, jewellery etc. It is thought that the idea to use engraving as a print technology developed out of the process whereby goldsmiths filled the groves of an engraved pattern with chalk or similar to make an impression on paper, as a record of their work. It was also common practice when making an elaborate engraved breastplate, for example, to engrave one half of the pattern, left or right, then to make an impression to use to make the other half, thereby ensuring that the pattern was truly symmetrical.

The German artist Martin Schongauer (c.1450–1491) made the greatest early development in the art of producing engraved prints.


Martin Schongauer (German, Colmar ca. 1435/50–1491 Breisach) Griffin, 15th century German, Engraving; The Metropolitan Museum of Art, New York, Harris Brisbane Dick Fund, 1927 (27.54.5) via Wikimedia Commons

Of course, it was, once again, Albrecht Dürer, who became the great master of producing engraved prints. Although engraving allows the reproduction of much finer lines that woodcuts and so more delicate and accurate images, it is also more expensive that woodcuts and more difficult to integrate with moveable-type when printing. These factors led to a dominance from woodcuts over engraving in the early book production.


St. Jerome in His Study (1514), an engraving by Northern Renaissance master Albrecht Dürer Source: Wikimedia Commons

The final print technology for producing illustration is etching. Like engraving, etching uses metal sheets to hold the images to be reproduced but instead of the images being cut into the surface with a tool it is burnt in using acid. The basic technology of etching goes back into antiquity and was used, for example, to decorate jewellery. The earliest examples from the Indus valley date back to the third millennium BCE. Etching used by gold and silver smiths to decorate guns, armour and other metal objects was well-known in Europe in the Middle Ages. The application of etching to printing is thought to have been the work of the German artist and metalworker Daniel Hopfer (c. 1470–1536), who produced etched prints using iron plates.


Daniel Hopfer Three German Soldiers Armed with Halberds, c. 1510. An original etched iron plate from which prints would be made. National Gallery of Art via Wikimedia Commons

The oldest dated etching is by Albrecht Dürer from 1515. Dürer only produced six etchings before returning to engraving as his preferred technique. The move from iron to copper etching plates is thought to have been made by the Italians, once a suitable chemical agent had been found.

As a technology for printing illustrations in books, etching didn’t really become established until the eighteenth century. One major problem was the production of the etching fluids. These were often of very poor quality and contained contaminates, which cause damage during the etching process. In the first couple of centuries of book production, it was woodcuts that dominated illustration reproduction only very gradually being replaced by engraving.

As we shall see in later posts the printed book and especially the illustrated book played a very central role in the development of various areas of Renaissance knowledge. The ability to mechanically reproduce illustrations in large quantities playing a very central role. Before this, however, as I have briefly indicated above the early literary humanists were quick to adopt the new medium, creating their own distinctive typefaces to give themselves a clear identity in print and also from the beginning producing printed editions of the works of their classical role models such as Cicero and Quintillion, as well as printed editions of the first humanist scholars such as Plutarch.



Filed under Book History

Renaissance Science – II

The so-called Scientific Renaissance at the beginning of the High Middle Ages was truly a renaissance in the sense of the rediscovery or re-emergence of the, predominantly Greek, intellectual culture of antiquity albeit, much of it in this case, filtered through the medium of the Islamic intellectual culture. This latter point would play an important role in the later emergence of the Humanist Renaissance.

The initial Islamic Empire dates its beginning to Muhammed’s flight from Mecca to Medina in 622 CE. It expanded incredibly rapidly absorbing more and more territory.


Muhammad built the Masjid Qubā’ upon his arrival at Medina Source: Wikimedia Commons

By the middle of the eighth century the Abbasid Caliphate covered most of the Middle East and a large part of Northern Africa. According to the legend a delegation from India came to the Abbasid capital in 750 CE and the Muslims became aware that their visitors were intellectually far more advanced than themselves and this awareness triggered the Islamic translation movement. With scholars actively seeking out manuscripts of Greek, Persian and Indian knowledge and translating them into Arabic. No such legend exists for the acquisition and appropriation of that knowledge from the Islamic culture by the European Christians at the beginning of the High Middle ages.


Map of the fragmented Abbasid empire, with areas still under direct control of the Abbasid central government (dark green) and under autonomous rulers (light green) adhering to nominal Abbasid suzerainty, c. 892 Source: Wikimedia Commons

Western Europe went into decline around the fifth or sixth century CE following the collapse of the Western Roman Empire, the urban culture largely disappeared to be replaced by a rural culture. A bare minimum of the scientific culture of antiquity in the works of Boethius (477–524), Macrobius (fl. c. 400), Martianus Capella (fl. c. 410–420), Cassiodorus (c. 485 – c. 585) and Isidore of Seville (c. 560–636) was maintained largely in the monasteries and other church institutions. Following the Carolingian unification of Europe, the situation in Europe began to improve and slowly a new urban culture began to develop. With this social and economic evolution, a thirst for knowledge also developed.


Map of the rise of Frankish Empire, from 481 to 814.Source: Wikimedia Commons

There is a popular image of perpetual war between Muslims and Christians during the Middle Ages but in fact there was much exchange on many levels between the two cultures. Although the Carolingian kings did battle the Umayyad Caliphate in Spain, Karl der Große (742–814) (known as Charlemagne in English) maintained diplomatic relations with Harun al-Rashid (763–809), the fifth Abbasid Caliph, and the two empires carried out economic and technological exchanges.

Through trade and other contacts, the European Christian scholars gradually became aware of the superiority of the scientific knowledge of their Islamic neighbours, who they encountered along the borders of the two cultures, in particular in Southern Italy and in Spain. Gerbert of Aurillac’s acquisition of some astronomical and mathematical knowledge in Spain in the tenth century was a precursor to the translators, who kicked off the translation movement at the end of the eleventh century.

The earliest, substantial translations from Arabic were made by Constantinus Africanus (died before 1098), a North African Muslim, living in Monte Cassino in Southern Italy. Constantinus translated a substantial body of Arabic medical treatises based on Hippocratic and Galenic concepts.


Constantinus Africanus Source: Wikimedia Commons

Sicily, which had been part of the Byzantine Empire until 878 and then under divided Byzantine and Islamic rule from 878 to 965. Pure Islamic rule lasted until 1091 although the Byzantines, with the assistance of Norman mercenaries reinvaded in 1038. The Normans finally achieved total control of the island in 1091, which they maintained until 1198, when the island passed through marriage into the possession of the Hohenstaufen Dynasty. This constant change of ruling cultures led to the trilingual culture, almost predestined for translations. Here Ptolemaeus’ Mathēmatikē Syntaxisand texts from Plato and Euclid were translated directly from Greek into Latin. Other important works such as Ptolemaeus’ Optics and various medical works, including Avicenna’s (Ibn Sina) The Canon of Medicine, which became a standard work in Europe were translated from Arabic. Translations of individual works into Latin from Greek and Arabic continued in Italy well into the thirteenth century.


Historic map of Sicily by Piri Reis 15th century Source: Wikimedia Commons

Although Italy in general and Sicily in particular produced many important translations into Latin, it was Spain that became the major centre for the translation movement and here the translations were from Arabic into Latin. Here works across the entire academic spectrum from Greek, Arabic and Indian sources found there way into medieval, Latin Europe.

The most notable centre for translations was Toledo and by far and away the most notable translator was Gerard of Cremona (1114–1187). Gerard originally travelled to Spain in search of Ptolemaeus’ Mathēmatikē Syntaxis, which he translated from Arabic into Latin, in about 1175 1150 (see comment from CPE Nothaft). He was unaware of the earlier translation direct from the Greek made in Sicily and It was his translation that became the standard work in medieval Europe not the Sicilian one (see comment from CPE Nothaft). Gerard stayed in Toledo and is reputed to have translated a total of eighty-seven works from Arabic into Latin, including many important mathematical works such as Euclid’s Elements, Archimedes On the Measurement of the Circle, and al-Khwarizmi’s On Algebra.


Theorica Planetarum by Gerard of Cremona, 13th century.Source: Wikimedia Commons

Some translators actually travelled to Islamic lands outside of Europe, such as Adelard of Bath (c. 1080–c. 1152), who is thought to have travelled extensively throughout Southern Europe but also West Asia and possibly Palestine. Adelard’s interests were mostly philosophical but he produced the first Latin translation of Euclid’s Elements and the first translation of al-Khwarizmi’s astronomical tables.


Detail of a scene in the bowl of the letter ‘P’ with a woman with a set-square and dividers; using a compass to measure distances on a diagram. In her left hand she holds a square, an implement for testing or drawing right angles. She is watched by a group of students. In the Middle Ages, it is unusual to see women represented as teachers, in particular when the students appear to be monks. She is most likely the personification of Geometry, based on Martianus Capella’s famous book De Nuptiis Philologiae et Mercurii, [5th c.] a standard source for allegorical imagery of the seven liberal arts. Illustration at the beginning of Euclid’s Elementa, in the translation attributed to Adelard of Bath. Source: Wikimedia Commons

A notable later translator was William of Moerbeke (c. 1220–c. 1286), who made substantial translations from Greek into Latin in the thirteenth century, most notably the works of Aristotle, which became the bedrock of European, medieval university education.


The beginning of Aristotle’s De anima in the Latin translation by William of Moerbek.. Manuscript Rome, Biblioteca Apostolica Vaticana, Vaticanus Palatinus lat. 1033, fol. 113r (Anfang des 14. Jahrhunderts) Source: Wikimedia Commons

Something that is often sort of half ignored is that the translation movement also brought a lot of literature of the so-called occult sciences into Europe. There was major interest in both Greek and Arabic astrology texts and Robert of Chester (fl. 1140) introduced medieval Europe to alchemy with his translation of Liber de compositione alchemiae (The Book of the Composition of Alchemy). Robert also made the first Latin translation of al-Khwarizmi’s Kitāb al-Mukhtaṣar fī Ḥisāb al-Jabr wal-Muqābalah (The Compendious Book on Calculation by Completion and Balancing).


al-Khwarizmi al-Kitāb al-Mukhtaṣar fī Ḥisāb al-Jabr wal-Muqābalah title page 9th century Source: Wikimedia Commons

This is only a very brief sketch of what was a vast movement involving many scholars over a period of more than two centuries. It is important to note, as far as the translations from Arabic as concerned, that very few of the translators actually spoke Arabic. The work was carried out by groups or teams, who first translated the Arabic into a vernacular language and from there into Latin. The intermediary translators were very often Spanish Jews, who spoke Arabic. This meant that some of the original Greek works had been translated from Greek into Syriac, from Syriac into Arabic, From Arabic into an intermediary language, and then from the intermediary language into Latin. Add to this the normal copying errors from several generation old, handwritten manuscripts and the texts that finally arrived in Europe were often very corrupt and confusing. Add to this the fact that with scientific texts, each new language often lacked the necessary scientific terminology and the translator had to invent new terms and concepts in his own language making for a high level of incomprehension by the time the text had finally been translated into Latin. These high levels of text corruption and incomprehension would play a major role in motivating the Humanist Renaissance.

Another factor that needs to be taken into considerations is that, although the translators made a vast amount of the Greek, Arabic, Persian and Indian scientific texts available to the European scholars in the High Middle Ages, quite a few important texts remained untranslated and unknown. Examples are Ptolemaeus’ Geographia, which although known to the Arabs remained unknown in Europe until the fifteenth century or although many of Galen’s works were translated into Latin, some of his principal anatomical works also remained unknown until the fifteenth century.

A final note is that although many technical works became available fairy early on, medieval Europe lacked the knowledge background to truly comprehend or utilise them. A good example is Ptolemaeus’ Mathēmatikē Syntaxis, which became available, relatively early, in two separate translations from the Greek and from Arabic. However, almost no one in Europe possessed the necessary mathematical or astronomical knowledge to truly comprehend or utilise it. Instead, European astronomers universities relied, for teaching, on translations of Arabic astronomical tables and on Sacrobosco’s very simple introductory textbook De sphaera mundi, based not directly on Ptolemaeus but on two much simpler Arabic texts.

Europe was not yet ready to enjoy the fruits of all the treasures that the translation movement brought, and it would take a couple of centuries of further development before that was truly the case.


Filed under Book History, Renaissance Science

The man who printed the world of plants

Abraham Ortelius (1527–1598) is justifiably famous for having produced the world’s first modern atlas, that is a bound, printed, uniform collection of maps, his Theatrum Orbis Terrarum. Ortelius was a wealthy businessman and paid for the publication of his Theatrum out of his own pocket, but he was not a printer and had to employ others to print it for him.


Abraham Ortelius by Peter Paul Rubens , Museum Plantin-Moretus via Wikimedia Commons

A man who printed, not the first 1570 editions, but the important expanded 1579 Latin edition, with its bibliography (Catalogus Auctorum), index (Index Tabularum), the maps with text on the back, followed by a register of place names in ancient times (Nomenclator), and who also played a major role in marketing the book, was Ortelius’ friend and colleague the Antwerp publisher, printer and bookseller Christophe Plantin (c. 1520–1589).


Plantin also published Ortelius’ Synonymia geographica (1578), his critical treatment of ancient geography, later republished in expanded form as Thesaurus geographicus (1587) and expanded once again in 1596, in which Ortelius first present his theory of continental drift.


Plantin’s was the leading publishing house in Europe in the second half of the sixteenth century, which over a period of 34 years issued 2,450 titles. Although much of Plantin’s work was of religious nature, as indeed most European publishers of the period, he also published many important academic works.

Before we look in more detail at Plantin’s life and work, we need to look at an aspect of his relationship with Ortelius, something which played an important role in both his private and business life. Both Christophe Plantin and Abraham Ortelius were members of a relatively small religious cult or sect the Famillia Caritatis (English: Family of Love), Dutch Huis der Leifde (English: House of Love), whose members were also known as Familists.

This secret sect was similar in many aspects to the Anabaptists and was founded and led by the prosperous merchant from Münster, Hendrik Niclaes (c. 1501–c. 1580). Niclaes was charged with heresy and imprisoned at the age of twenty-seven. About 1530 he moved to Amsterdam where his was once again imprisoned, this time on a charge of complicity in the Münster Rebellion of 1534–35. Around 1539 he felt himself called to found his Famillia Caritatis and in 1540 he moved to Emden, where he lived for the next twenty years and prospered as a businessman. He travelled much throughout the Netherlands, England and other countries combining his commercial and missionary activities. He is thought to have died around 1580 in Cologne where he was living at the time.


Niclaes wrote vast numbers of pamphlets and books outlining his religious views and I will only give a very brief outline of the main points here. Familists were basically quietists like the Quakers, who reject force and the carrying of weapons. Their ideal was a quite life of study, spiritualist piety, contemplation, withdrawn from the turmoil of the world around them. The sect was apocalyptic and believed in a rapidly approaching end of the world. Hendrik Niclaes saw his mission in instructing mankind in the principal dogma of love and charity. He believed he had been sent by God and signed all his published writings H. N. a Hillige Nature (Holy Creature). The apocalyptic element of their belief meant that adherents could live the life of honest, law abiding citizens even as members of religious communities because all religions and authorities would be irrelevant come the end of times. Niclaes managed to convert a surprisingly large group of successful and wealthy merchants and seems to have appealed to an intellectual cliental as well. Apart from Ortelius and Plantin, the great Dutch philologist, humanist and philosopher Justus Lipsius (1574–1606) was a member, as was Charles de l’Escluse (1526–1609), better known as Carolus Clusius, physician and the leading botanist in Europe in the second half of the sixteenth century. The humanist Andreas Masius (1514–1573) an early syriacist (one who studies Syriac, an Aramaic language) was a member, as was Benito Arias Monato (1527–1598) a Spanish orientalist. Emanuel van Meteren (1535–1612) a Flemish historian and nephew of Ortelius was probably also Familist. The noted Flemish miniature painter and illustrator, Joris Hoefnagel (1542–1601), was a member as was his father a successful diamond dealer. Last but by no means least Pieter Bruegel the Elder (c. 1525– 1569) was also a Familist. As we shall see the Family of Love and its members played a significant role in Plantin’s life and work.


Christophe Plantin by Peter Paul Rubens Museum Platin-Moretus  via Wikimedia Commons Antwerp in the time of Plantin was a major centre for artists and engravers and Peter Paul Rubins was the Plantin house portrait painter.

Christophe Plantin was born in Saint-Avertin near Tours in France around 1520. He was apprenticed to Robert II Macé in Caen, Normandy from whom he learnt bookbinding and printing. In Caen he met and married Jeanne Rivière (c. 1521–1596) in around 1545.


Jeanne Rivière School of Rubens Museum Plantin-Moretus via Wikimedia Commons

They had five daughters, who survived Plantin and a son who died in infancy. Initially, they set up business in Paris but shortly before 1550 they moved to the city of Antwerp in the Spanish Netherlands, then one of Europe’s most important commercial centres. Plantin became a burgher of the city and a member of the Guild of St Luke, the guild of painter, sculptors, engravers and printers. He initially set up as a bookbinder and leather worker but in 1555 he set up his printing office, which was most probably initially financed by the Family of Love. There is some disagreement amongst the historians of the Family as to how much of Niclaes output of illegal religious writings Plantin printed. But there is agreement that he probably printed Niclaes’ major work, De Spiegel der Gerechtigheid (Mirror of Justice, around 1556). If not the house printer for the Family of Love, Plantin was certainly one of their printers.

The earliest book known to have been printed by Plantin was La Institutione di una fanciulla nata nobilmente, by Giovanni Michele Bruto, with a French translation in 1555, By 1570 the publishing house had grown to become the largest in Europe, printing and publishing a wide range of books, noted for their quality and in particular the high quality of their engravings. Ironically, in 1562 his presses and goods were impounded because his workmen had printed a heretical, not Familist, pamphlet. At the time Plantin was away on a business trip in Paris and he remained there for eighteen months until his name was cleared. When he returned to Antwerp local rich, Calvinist merchants helped him to re-establish his printing office. In 1567, he moved his business into a house in Hoogstraat, which he named De Gulden Passer (The Golden Compasses). He adopted a printer’s mark, which appeared on the title page of all his future publications, a pair of compasses encircled by his moto, Labore et Constantia (By Labour and Constancy).


Christophe Plantin’s printers mark, Source: Wikimedia Commons


Engraving of Plantin with his printing mark after Goltzius Source: Wikimedia Commons

Encouraged by King Philip II of Spain, Plantin produced his most famous publication the Biblia Polyglotta (The Polyglot Bible), for which Benito Arias Monato (1527–1598) came to Antwerp from Spain, as one of the editors. With parallel texts in Latin, Greek, Syriac, Aramaic and Hebrew the production took four years (1568–1572). The French type designer Claude Garamond (c. 1510–1561) cut the punches for the different type faces required for each of the languages. The project was incredibly expensive and Plantin had to mortgage his business to cover the production costs. The Bible was not a financial success, but it brought it desired reward when Philip appointed Plantin Architypographus Regii, with the exclusive privilege to print all Roman Catholic liturgical books for Philip’s empire.



In 1576, the Spanish troops burned and plundered Antwerp and Plantin was forced to pay a large bribe to protect his business. In the same year he established a branch of his printing office in Paris, which was managed by his daughter Magdalena (1557–1599) and her husband Gilles Beys (1540–1595). In 1578, Plantin was appointed official printer to the States General of the Netherlands. 1583, Antwerp now in decline, Plantin went to Leiden to establish a new branch of his business, leaving the house of The Golden Compasses under the management of his son-in-law, Jan Moretus (1543–1610), who had married his daughter Martine (1550–16126). Plantin was house publisher to Justus Lipsius, the most important Dutch humanist after Erasmus nearly all of whose books he printed and published. Lipsius even had his own office in the printing works, where he could work and also correct the proofs of his books. In Leiden when the university was looking for a printer Lipsius recommended Plantin, who was duly appointed official university printer. In 1585, he returned to Antwerp, leaving his business in Leiden in the hands of another son-in-law, Franciscus Raphelengius (1539–1597), who had married Margaretha Plantin (1547–1594). Plantin continued to work in Antwerp until his death in 1589.


Source: Museum Plantin-Moretus

After this very long introduction to the life and work of Christophe Plantin, we want to take a look at his activities as a printer/publisher of science. As we saw in the introduction he was closely associated with Abraham Ortelius, in fact their relationship began before Ortelius wrote his Theatrum. One of Ortelius’ business activities was that he worked as a map colourer, printed maps were still coloured by hand, and Plantin was one of the printers that he worked for. In cartography Plantin also published Lodovico Guicciardini’s (1521–1589) Descrittione di Lodovico Guicciardini patritio fiorentino di tutti i Paesi Bassi altrimenti detti Germania inferiore (Description of the Low Countries) (1567),


Source: Wikimedia Commons

which included maps of the various Netherlands’ cities.


Engraved and colored map of the city of Antwerp Source: Wikimedia Commons

Plantin contributed, however, to the printing and publication of books in other branches of the sciences.

Plantin’s biggest contribution to the history of science was in botany.  A combination of the invention of printing with movable type, the development of both printing with woodcut and engraving, as well as the invention of linear perspective and the development of naturalism in art led to production spectacular plant books and herbals in the Early Modern Period. By the second half of the sixteenth century the Netherlands had become a major centre for such publications. The big three botanical authors in the Netherlands were Carolus Clusius (1526–1609), Rembert Dodoens (1517–1585) and Matthaeus Loblius (1538–1616), who were all at one time clients of Plantin.

Matthaeus Loblius was a physician and botanist, who worked extensively in both England and the Netherlands.

NPG D25673,Matthias de Lobel (Lobelius),by Francis Delaram

Matthias de Lobel (Lobelius),by Francis Delaramprint, 1615 Source: Wikimedia Commons

His Stirpium aduersaria noua… (A new notebook of plants) was originally published in London in 1571, but a much-extended edition, Plantarum seu stirpium historia…, with 1, 486 engravings in two volumes was printed and published by Plantin in 1576. In 1581 Plantin also published his Dutch herbal, Kruydtboek oft beschrÿuinghe van allerleye ghewassen….


Source: Wikimedia Commons

There is also an anonymous Stirpium seu Plantarum Icones (images of plants) published by Plantin in 1581, with a second edition in 1591, that has been attributed to Loblius but is now thought to have been together by Plantin himself from his extensive stock of plant engravings.

Carolus Clusius also a physician and botanist was the leading scientific horticulturist of the period, who stood in contact with other botanist literally all over the worlds, exchanging information, seeds, dried plants and even living ones.


Portrait of Carolus Clusius painted in 1585 Attributed to Jacob de Monte – Hoogleraren Universiteit Leiden via Wikimedia Commons

His first publication, not however by Plantin, was a translation into French of Dodoens’ herbal of which more in a minute. This was followed by a Latin translation from the Portuguese of Garcia de Orta’s Colóquios dos simples e Drogas da India, Aromatum et simplicium aliquot medicamentorum apud Indios nascentium historia (1567) and a Latin translation from Spanish of Nicolás Monardes’  Historia medicinal delas cosas que se traen de nuestras Indias Occidentales que sirven al uso de la medicina, , De simplicibus medicamentis ex occidentali India delatis quorum in medicina usus est (1574), with a second edition (1579), both published by Plantin.His own  Rariorum alioquot stirpium per Hispanias observatarum historia: libris duobus expressas (1576) and Rariorum aliquot stirpium, per Pannoniam, Austriam, & vicinas quasdam provincias observatarum historia, quatuor libris expressa … (1583) followed from Plantin’s presses. His Rariorum plantarum historia: quae accesserint, proxima pagina docebit (1601) was published by Plantin’s son-in-law Jan Moretus, who inherited the Antwerp printing house.


Our third physician-botanist, Rembert Dodoens, his first publication with Plantin was his Historia frumentorum, leguminum, palustrium et aquatilium herbarum acceorum, quae eo pertinent (1566) followed by the second Latin edition of his  Purgantium aliarumque eo facientium, tam et radicum, convolvulorum ac deletariarum herbarum historiae libri IIII…. Accessit appendix variarum et quidem rarissimarum nonnullarum stirpium, ac florum quorumdam peregrinorum elegantissimorumque icones omnino novas nec antea editas, singulorumque breves descriptiones continens… (1576) as well as other medical books.


Rembert Dodoens Theodor de Bry – University of Mannheim via Wikimedia Commons

His most well known and important work was his herbal originally published in Dutch, his Cruydeboeck, translated into French by Clusius as already stated above.


Title page of Cruydt-Boeck,1618 edition Source: Wikimedia Commons

Plantin published an extensively revised Latin edition Stirpium historiae pemptades sex sive libri XXXs in 1593.


This was largely plagiarised together with work from Loblius and Clusius by John Gerrard (c. 1545–1612)


John Gerard Source: Wikimedia Commons

in his English herbal, Great Herball Or Generall Historie of Plantes (1597), which despite being full of errors became a standard reference work in English.

The Herball, or, Generall historie of plantes / by John Gerarde

Platin also published a successful edition of Juan Valverde de Amusco’s Historia de la composicion del cuerpo humano (1568), which had been first published in Rome in 1556. This was to a large extent a plagiarism of Vesalius’ De humani corporis fabrica (1543).


Another area where Platin made a publishing impact was with the works of the highly influential Dutch engineer, mathematician and physicist Simon Stevin (1548-1620). The Plantin printing office published almost 90% of Stevin’s work, eleven books altogether, including his introduction into Europe of decimal fractions De Thiende (1585),


Source: Wikimedia Commons

his important physics book De Beghinselen der Weeghconst (The Principles of Statics, lit. The Principles of the Art of Weighing) (1586),


Source: Wikimedia Commons

his Beghinselen des Waterwichts (Principles of hydrodynamics) (1586) and his book on navigation De Havenvinding (1599).

Following his death, the families of his sons-in-law continued the work of his various printing offices, Christophe Beys (1575–1647), the son of Magdalena and Gilles, continued the Paris branch of the business until he lost his status as a sworn printer in 1601. The family of Franciscus Raphelengius continued printing in Leiden for another two generations, until 1619. When Lipsius retired from the University of Leiden in 1590, Joseph Justus Scaliger (1540-1609) was invited to follow him at the university. He initially declined the offer but, in the end, when offered a position without obligations he accepted and moved to Leiden in 1593. It appears that the quality of the publications of the Plantin publishing office in Leiden helped him to make his decision.  In 1685, a great-granddaughter of the last printer in the Raphelengius family married Jordaen Luchtmans (1652 –1708), who had founded the Brill publishing company in 1683.

The original publishing house in Antwerp survived the longest. Beginning with Jan it passed through the hands of twelve generations of the Moretus family down to Eduardus Josephus Hyacinthus Moretus (1804–1880), who printed the last book in 1866 before he sold the printing office to the City of Antwerp in 1876. Today the building with all of the companies records and equipment is the Museum Plantin-Moretus, the world’s most spectacular museum of printing.


2-021 Museum Plantin Moretus

There is one last fascinating fact thrown up by this monument to printing history. Lodewijk Elzevir (c. 1540–1617), who founded the House of Elzevir in Leiden in 1583, which published both Galileo’s Discorsi e dimostrazioni matematiche intorno a due nuove scienze in 1638 and Descartes’ Discours de la Méthode Pour bien conduire sa raison, et chercher la vérité dans les sciences in 1637, worked for Plantin as a bookbinder in the 1560s.


Nikolaes Heinsius the Elder, Poemata (Elzevier 1653), Druckermarke Source: Wikimedia Commons

The House of Elzevir ceased publishing in 1712 and is not connected to Elsevier the modern publishing company, which was founded in 1880 and merely borrowed the name of their famous predecessor.

The Platntin-Moretus publishing house played a significant role in the intellectual history of Europe over many decades.




Filed under Book History, History of Mathematics, History of medicine, History of Physics, History of science, Renaissance Science