Category Archives: Myths of Science

A misleading book title that creates the wrong impression

A new biography of Johannes Kepler has just appeared and although I haven’t even seen it yet, let alone read it, it brings out the HistSci Hulk side of my personality. What really annoys me on David Love’s book, Kepler and the Universe[1], is the title or rather the subtitle, How One Man Revolutionised Astronomy. Now, I for one have for many years conducted a private campaign to persuade people not to claim that we live in a Copernican Cosmos, a standard cliché, but that we live in a Keplerian Cosmos, because it was the very different elliptical system of Kepler that helped heliocentricity to its breakthrough and not the system of Copernicus. However Love’s subtitle immediately evokes the spectre of the lone genius and for all his undoubted brilliance Kepler was not a lone genius and especially not in terms of his cosmology/astronomy.

A 1610 portrait of Johannes Kepler by an unknown artist Source: Wikipedia Commons

A 1610 portrait of Johannes Kepler by an unknown artist
Source: Wikipedia Commons

Even a cursory examination of Kepler’s road to his system will immediately reveal his intellectual debts and his co-conspirators, both willing and unwilling. First off is naturally Copernicus himself. Kepler did not conceive a heliocentric system from scratch but was, on his own admission a glowing admirer or even acolyte of the Ermländer scholar. This admiration is one of the principle reasons that we don’t truly acknowledge Kepler’s achievement but tend to dismiss it as having just dotted the ‘Is’ and crossed the ‘Ts’ in Copernicus’ system, a demonstrably false judgement. Kepler, of course, didn’t help the situation when he titled the most simple and readable version of his system, and the one that together with the Rudolphine Tables had the most influence, the Epitome Astronomiae Copernicanae. Not a smart move! Whatever, we are already at two men who revolutionised astronomy.

Nicolaus Copernicus 1580 portrait (artist unknown) in the Old Town City Hall, Toruń Source: Wikimedia Commons

Nicolaus Copernicus 1580 portrait (artist unknown) in the Old Town City Hall, Toruń
Source: Wikimedia Commons

Kepler did not discover Copernicus himself but was introduced to him by his teacher Michael Maestlin at the University of Tübingen. Usually Maestlin gets mentioned in passing as Kepler’s teacher and then forgotten but he played a very important role in Kepler’s early development. In reality Maestlin was himself one of the leading European astronomers and mathematicians in the latter part of the sixteenth century, as well as being by all accounts an excellent teacher. He was also one of the very few supporters of both Copernican astronomy and cosmology. This meant that he gave Kepler probably the best foundation in the mathematical sciences that he could have found anywhere at the time, as well as awakening his interest in Copernican thought. It was also Maestlin who decided Kepler would be better off becoming a teacher of mathematics and district mathematician rather than training for the priesthood; a decision that Kepler only accepted very, very reluctantly. Even after he had left Tübingen Maestlin continued to support the young Kepler, although he would withdraw from him in later years. Maestlin edited, corrected and polished Kepler’s, so important, first publication, the Mysterium Cosmographicum. In fact Maestlin’s contributions to the finished book were so great he might even be considered a co-author. Some people think that in later life Kepler abandoned the, for us, rather bizarre Renaissance hypothesis of the Cosmographicum, but he remained true to his initial flash of inspiration till the very end, regarding all of his later work as just refinements of that first big idea. Maestlin’s contribution to the Keplerian system was very substantial. And then there were three.

Michael Maestlin Source: Wikimedia Commons

Michael Maestlin
Source: Wikimedia Commons

Tycho! Without Tycho Brahe there would be no Keplerian System. Tycho and Kepler are the Siamese twins of elliptical astronomy joined at the astronomical data. Without Tycho’s data Kepler could never have built his system. This duality is recognised in many history of astronomy texts with the two, so different, giants of Renaissance astronomy being handled together. The popular history of science writer, Kitty Ferguson even wrote a dual biography, Tycho and Kepler, The Unlikely Partnership that Forever Changed our Understanding of the Heavens[2], a title that of course contradicts Love’s One Man. Her original title was The Nobleman and His Housedog, with the rest as a subtitle, but it seems to have been dropped in later editions of the book. The ‘housedog’ is a reference to Kepler characterising himself as such in the horoscope he wrote when he was twenty-five years old.

Portrait of Tycho Brahe (1596) Skokloster Castle Source: Wikimedia Commons

Portrait of Tycho Brahe (1596) Skokloster Castle
Source: Wikimedia Commons

Tycho invited Kepler to come and work with him in Prague when the Counter Reformation made him jobless and homeless. Tycho welcomed him back when Kepler went off in a huff at their first meeting. It was Tycho who assigned him the task of calculating the orbit of Mars that would lead him to discover his first two laws of planetary motion. It has been said that Tycho’s data had just the right level of accuracy to enable Kepler to determine his elliptical orbits. Any less accurate and the slight eccentricities would not have been discernable. Any more accurate and the irregularities in the orbits, thus made visible, would have made the discovery of the elliptical form almost impossible. It has also been said that of all the planets for which Tycho had observation data Mars was the one with the most easily discernable elliptical orbit. Serendipity seems to have also played a role in the discovery of Kepler’s system. The high quality of Tycho’s data also led Kepler to reject an earlier non-elliptical solution for the orbit of Mars, which another astronomer would probably have accepted, with the argument that it was not mathematically accurate enough to do honour to Tycho’s so carefully acquired observational data.

Tycho was anything but a one-man show and his observatory on the island of Hven has quite correctly been described as a research institute. A substantial number of astronomer, mathematicians and instrument maker came and went both on Hven and later in Prague over the almost thirty years that Tycho took to accumulate his data. The number of people who deserve a share in the cake that was Kepler’s system now reaches a point where it become silly to count them individually.

Our list even includes royalty. Rudolph II, Holly Roman Emperor, was the man, who, at Tycho’s request, gave Kepler a position at court, even if he was more than somewhat lax at paying his salary, official to calculate the Rudolphine Tables, a task that would plague Kepler for almost thirty years but would in the end lead to the acceptance of his system by other astronomers. Rudolph also appointed Kepler as Tycho’s successor, as Imperial Mathematicus, after the latter’s untimely death, thus giving him the chance to continue his analysis of Tycho’s data. Rudolph could just as easily have sacked him and sent him on his way. Tycho’s heirs did not assist Kepler in his struggle to maintain access to that all important data, which belonged to them and not the Emperor, causing him much heartache before they finally allowed him to use Tycho’s inheritance. After he had usurped his brother, Rudolph, in 1612, Matthias allowed Kepler to keep his official position and title as Imperial Mathematicus, although sending him away from court, a fact that certainly assisted Kepler in his work. Being Imperial Mathematicus gave him social status and clout.

Rudolph II portrait by Joseph Heinz the Elder Source: Wikimedia Commons

Rudolph II portrait by Joseph Heinz the Elder
Source: Wikimedia Commons

Kepler described his long and weary struggles with the orbit of Mars as a battle, but he did not fight this battle alone. In a long and fascinating correspondence with the astronomer, David Fabricius, Kepler tried out his ideas and results with a convinced supporter of Tycho’s system. Kepler would present his ideas and David Fabricius subjected them to high level and very knowledgeable criticism. Through this procedure Kepler honed, refined and polished his theories to perfection before he submitted them to public gaze in his Astronomia Nova, Knowing that they would now withstand high-level professional criticism. David Fabricius, who never met Kepler, nevertheless took a highly active role in the shaping of the Keplerian system[3].

Monument for David and Johann Fabricius in the Graveyard of Osteel

Monument for David and Johann Fabricius in the Graveyard of Osteel

Even after Kepler’s death the active participation of others in shaping his astronomical system did not cease. Jeremiah Horrocks corrected and extended the calculations of the Rudolphine Tables, enabling him to predict and observe a transit of Venus, an important stepping-stone in the acceptance of the elliptical astronomy. Horrocks also determined that the moon’s orbit was a Keplerian ellipse, something that Kepler had not done.


Stained glass roundel memorial in Much Hoole Church to Jeremiah Horrocks making the first observation and recording of a transit of Venus in 1639. The Latin reads "Ecce gratissimum spectaculum et tot votorum materiem": "oh, most grateful spectacle, the realization of so many ardent desires". It is taken from Horrocks's report of the transit

Stained glass roundel memorial in Much Hoole Church to Jeremiah Horrocks making the first observation and recording of a transit of Venus in 1639. The Latin reads “Ecce gratissimum spectaculum et tot votorum materiem”: “oh, most grateful spectacle, the realization of so many ardent desires”. It is taken from Horrocks’s report of the transit

Cassini, together with Riccioli and Grimaldi, using a heliometer determined that either the orbit of the sun around the earth or the earth around the sun, the method can’t determine which is true, is an ellipse another important empirical stepping-stone on the road to final acceptance for the system.

Giovanni Cassini Source: Wikimedia Commons

Giovanni Cassini
Source: Wikimedia Commons

Nicholas Mercator produced a new mathematical derivation of Kepler’s second law around 1670. Kepler’s own derivation was, as he himself admitted, more than a little suspect, viewed mathematically. The first and third laws had been accepted by the astronomical community fairly easily but the second law was a major bone of contention. Mercator’s new derivation basically laid the dispute to rest.

Cassini in his new role as director of the Paris observatory showed empirically that the satellite systems of both Jupiter and Saturn also obeyed Kepler’s third law extending it effectively to all orbitary systems and not just the planets of the solar system.

Lastly Newton derived Kepler’s first and second laws from his axiomatic system of dynamics giving them the true status of laws of physics. This led Newton to claim that the third law was Kepler’s but the first two were his because he, as opposed to Kepler, had really proved them

As we can see the list of people involved in revolutionising astronomy in the seventeenth century in that they replaced all the geocentric systems with a Keplerian elliptical system is by no means restricted to ‘one man’ as claimed in the subtitle to David Love’s book but is quite extensive and very diverse. There are no lone geniuses; science is a collective, collaborative enterprise.





[1] David Love, Kepler and the Universe: How One Man Revolutionized Astronomy, Prometheus Books, 2015

[2] Kitty Ferguson, Tycho and Kepler, The Unlikely Partnership that Forever Changed our Understanding of the Heavens, Walker Books, 2002

[3] For a wonderful description of this correspondence and how it contributed to the genesis of Astronmia Nova see James Voelkel’s excellent, The Composition of Kepler’s Astronomia nova, Princeton University Press, 2001


Filed under History of Astronomy, Myths of Science, Uncategorized

The Renaissance Mathematicus “Live & Uming”

Those of you with nothing better to do can listen to a podcast of the Renaissance Mathematicus (that’s me folks!) searching for words, desperately trying to remember names, uming & ahing, thinking on his feet (I was actually sitting down the whole time) and generally stumbling his way through an eighty minute spontaneous, unrehearsed, live interview with Scott Gosnell of Bottle Rocket Science on such scintillated topics, as why the Pope got his knickers in a twist over Galileo or that notorious seventeenth century religious fanatic Isaac Newton. In fact the same boring load of old codswallop that you can read at you leisure here on this blog. As I say if you have nothing more exciting to do, such as watching paint dry or listening to the grass grow, then go listen.

Leave a comment

Filed under Autobiographical, History of Astronomy, History of science, Myths of Science, Renaissance Science

The Phlogiston Theory – Wonderfully wrong but fantastically fruitful

There is a type of supporter of gnu atheism and/or scientism who takes a very black and white attitude to the definition of science and also to the history of science. For these people, and there are surprisingly many of them, theories are either right, and thus scientific, and help the progress of science or wrong, and thus not scientific, and hinder that progress. Of course from the point of view of the historian this attitude or stand point is one than can only be regarded with incredulity, as our gnu atheist proponent of scientism dismisses geocentrism, the phlogiston theory and Lamarckism as false and thus to be dumped in the trash can of history whilst acclaiming Copernicus, Lavoisier and Darwin as gods of science who led as out the valley of ignorance into the sunshine of rational thought.

I have addressed this situation before on more than one occasion but as a historian of science I think that it’s a lesson that needs to be repeated at regular intervals. Because it is the American Chemical Society’s “National Chemistry Week 2015” I shall be re-examining the Phlogiston Theory whose creator Georg Ernst Stahl was born on 22 October 1659 in Ansbach, which is in Middle Franconia just down the road from where I live.

Stahl had a fairly conventional career, studying medicine at Jena University from 1679 to 1684. 1687 he became court physician to the Duke of Sachen-Weimar and in 1694 he was appointed professor of medicine at the newly founded University of Halle, where he remained until 1715 when he became personal physician to Friedrich Wilhelm I, King of Prussia. Stahl like most chemists in the Early Modern Period was a professional physician, chemistry only existing within the academic context as a sub-discipline of medicine.

To understand the phlogiston theory we need to go back and take a brief look at the development of the theory of matter since the ancient Greeks. Empedocles introduced the famous four-element theory, Earth, Water, Air and Fire, in the fifth century BCE and this remained the basic theory in Europe until the Early Modern Period. In the ninth century CE Abu Mūsā Jābir ibn Hayyān added Sulphur and Mercury to the four-elements as principles, rather than substances, to explain the characteristics of the seven metals. In the sixteenth century CE, Paracelsus took over al- Jābir’s Sulphur and Mercury adding Salt as his tria prima to explain the characteristics of all matter. In the seventeenth century, when Paracelsus’ influence was at its height, many alchemists/chemists adopted a five-element theory – Earth, Water, Sulphur, Mercury and Salt – dropping air and fire. Robert Boyle, in his The Sceptical Chymist (1661), threw out both the Greek four-element theory and Paracelsus’ tria prima, groping towards a more modern concept of element. We now arrive at the origins of the phlogiston theory.

The German Johann Joachim Becher (1635–1682), a physician and alchemist, was a big fan of Boyle and his theories and even travelled to London to learn at the feet of the master. Like Boyle he rejected both the Greek four-element theory and Paracelsus’ tria prima, in his Physica Subterranea (1667) replacing them with a two-element theory Earth and Water with Air present just as a mixing agent for the two. However he basically reintroduced Paracelsus’ tria prima in the form of three different types of Earth.

  • terra fluida or mercurial Earth giving material the characteristics, fluidity, fineness, fugacity, metallic appearance
  • terra pinguis or fatty Earth giving material the characteristics oily, sulphurous and flammable
  • terra lapidea glassy Earth, giving material the characteristic fusibility

Stahl took up Becher’s scheme of elements concentrating on his terra pinguis, making it his central substance and renaming it phlogiston. In his theory all substances, which are flammable contain phlogiston, which is given up when they burn, the combustion ceasing when the phlogiston is exhausted. The classic demonstration of this was the combustion of mercury, which turns to ash, in Stahl’s terminology (mercuric oxide in ours). If this ash is reheated with charcoal the phlogiston is restored (according to Stahl) and with it the mercury. (In our view the charcoal removes the oxygen restoring the mercury). In a complex series of experiment Stahl turned sulphuric acid into sulphur and back again, explaining the changes once again through the removal and return of phlogiston. Through extension Stahl, an excellent experimental chemist, was able to explain, what we now know as the redox reactions and the acid-base reactions, with his phlogiston theory based on experiment and empirical observation. Stahl’s phlogiston theory was thus the first empirically based ‘scientific’ explanation of a large part of the foundations of chemistry. It is a classic example of what Thomas Kuhn called a paradigm and Imre Lakatos a scientific research programme.

Viewed with hindsight the phlogiston theory is gloriously, wonderfully and absolutely wrong in all of its aspects thus leading to the scorn with which it is viewed by our gnu atheist proponent of scientism, however they are wrong to do so. I prefer Lakatos’ scientific research programme to Kuhn’s paradigm exactly because it describes the success of the phlogiston theory much better. For Lakatos it’s irrelevant whether a theory is right or wrong, what matters are its heuristics. A scientific research programme that produces new facts and phenomena that fit within the descriptive scope of the programme has a positive heuristic. One that produces new facts and phenomena that don’t fit has a negative heuristic. Scientific research programmes have both positive and negative heuristics simultaneously throughout their existences, so long as the positive heuristic outweighs the negative one the programme continues to be accepted. This was exactly the case with the phlogiston theory.

Most European eighteenth-century chemist accepted and worked within the framework of the phlogiston theory and produced a great deal of new important chemical knowledge. Most notable in this sense are the, mostly British, so-called pneumatic chemists. Working within the phlogiston theory Joseph Black (1728–1799), professor for medicine in Edinburgh, isolated and identified carbon dioxide whilst his doctoral student Daniel Rutherford (1749–1819) isolated and identified nitrogen. The Swede Carl Wilhelm Scheele (1742–1786) produced, identified and studied oxygen for which he doesn’t get the credit because although he was first, he delayed in publishing his results and was beaten to the punch by Joseph Priestley (1733–1804), who had independently also discovered oxygen labelling it erroneously dephlogisticated air. Priestley by far and away the greatest of the pneumatic chemists isolated and identified at least eight other gases as well as laying the foundations for the discovery of photosynthesis, perhaps his greatest achievement.

Henry Cavendish (1731–1810) isolated and identified hydrogen, which he thought for a time might actually be phlogiston, before going on to make the most important discovery within the framework of the phlogiston theory, the structure of water. By a series of careful experiments Cavendish was able to demonstrate that water was not an element but a compound consisting of two measures of phlogiston (hydrogen) with one of dephlogisticated air (oxygen). With the same level of precision he also demonstrated that normal air consists of four parts of nitrogen to one of oxygen or better said not quite. He constantly found something he couldn’t identify present in one one-hundredth and twentieth of the volume of nitrogen. In the nineteenth century this would finally be identified as the gas argon.

All of these discoveries are to be counted to the positive heuristic of the phlogiston theory. What weighed heavily on the negative side is the fact that as the accuracy of measurement increased in the eighteenth century it was discovered that the ashes, of mercury for example, left behind on burning were heavier than the original substance being burnt. This was troubling as combustion was supposed to be the release of phlogiston. Some supporters of the theory even suggested negative phlogiston to explain this anomaly. This suggestion, which never caught on, gets particularly mocked today, something I find somewhat strange in an age that has had to accept anti-matter and is now being asked to accept dark matter and dark energy to explain known anomalies in current theories.

Ironically it was the discoveries of oxygen and the composition of water that gave Lavoisier the necessary building blocks to dismantle the phlogiston theory and build his own competing theory, which would in the end prove successful and commit the phlogiston theory to the scrap heap of the history of chemistry. However one should never forget that it was exactly this theory that delivered him the tools he needed to do so. As I wrote in my sub-title even a theory that is wonderfully wrong can be fantastically fruitful and should be treated with respect when viewed with hindsight.



Filed under History of Chemistry, History of science, Myths of Science

Science contra Copernicus

One of the most persistent and pernicious myths in the history of astronomy is that Galileo, with his telescopic observations, proved the validity of the Copernican heliocentric hypothesis and thus all opposition to it from that point on was purely based on ignorance and blind religious prejudice. Strangely, this version of the story is particularly popular amongst gnu atheists. I say strangely because these are just the people who pride themselves on only believing the facts and basing all their judgements on the evidence. Even Galileo knew that the evidence produced by his telescopic observations only disproved some aspects of Aristotelian cosmology and full scale Ptolemaic astronomy but other Tychonic and semi-Tychonic geocentric models still fit the available facts. A well as this the evidence was still a long way from proving the existence of a heliocentric model and many physical aspects spoke strongly against a moving earth. Put another way, the scientific debate on geocentrism versus heliocentrism was still wide open with geocentrism still in the most favourable position.

Apart from the inconclusiveness of the telescopic observations and the problems of the physics of a moving earth there were other astronomical arguments against heliocentricity at the time that remain largely unknown today. Christopher M. Graney[1] has done the history of astronomy community a big service in uncovering those arguments and presenting them in his new book Setting Aside All Authority: Giovanni Battista Riccioli and the Science against Copernicus in the Age of Galileo[2].


We’ll start with the general summary, as I’ve already stated in an earlier post this is an excellent five star plus book and if you have any interest in this critical period of transition in the history of astronomy then it is quite simply an obligatory text that you must read. So if you follow my advice, what are you getting for your money?

In 1651 the Jesuit astronomer Giovanni Battista Riccioli published his Almagestum Novum or New Almagest , which contains a list of 126 arguments concerning the motion of the earth, i.e. the heliocentric hypothesis, 49 for and 77 against and it is this list that provides the intellectual scaffolding for Graney’s book. Interestingly in discussion on seventeenth-century astronomy Riccioli’s book, and its list, has largely been dismissed or ignored in the past. The prevailing attitudes in the past seem to have been either it’s a book by a Jesuit so it must be religious and thus uninteresting or, as was taught to me, it’s a historical account of pre-Galilean astronomy and thus uninteresting. In fact before Graney and his wife undertook the work this list had never even been translated into English. As to the first objections only a few of Riccioli’s arguments are based on religion and as Graney points out Riccioli does not consider them to be very important compared with the scientific arguments. As to the second argument Riccioli’s account is anything but historical but reflects the real debate over heliocentrism that was taking place in the middle of the seventeenth century.

The strongest scientific argument contra Copernicus, which occupies pride of place in Graney’s book, is the so-called star size argument, which in fact predates both Galileo and the telescope and was first posited by Tycho Brahe. Based on his determination of the visible diameter of a star, Tycho calculated that for the stars to be far enough away so as to display no visible parallax, as required by a Copernican model with a moving earth, then they must be in reality unimaginably gigantic. A single star would have the same diameter as Saturn’s orbit around the sun. These dimensions for the stars didn’t just appear to Tycho to be completely irrational and so unacceptable. In a Tychonic cosmos, however, with its much smaller dimensions the stars would have a much more rational size. Should anyone think that this argument was not taken seriously, much later in the seventeenth century Christiaan Huygens considered the star size problem to be Tycho’s principle argument against Copernicus.

Many, more modern, historians dismissed the star size problem through the mistaken belief that the telescope had solved the problem by showing that stars are mere points of light and Tycho’s determined star diameters were merely an illusion caused by atmospheric refractions. In fact the opposite was true, early telescopes as used by Galileo and Simon Marius, amongst others, showed the stars to have solid disc shaped bodies like the planets and thus confirming Tycho’s calculations. Marius used this fact to argue scientifically for a Tychonic cosmos whilst Galileo tried to dodge the issue. We now know that what those early telescopic astronomers saw was not the bodies of stars but Airy discs an optical artefact caused by diffraction and the narrow aperture of the telescope and so the whole star size argument is in fact bogus. However it was first Edmond Halley at the beginning of the eighteenth century who surmised that these observed discs were in fact not real.

Graney details the whole history of the star size argument from Tycho down to Huygens revealing some interesting aspect along the way. For example the early Copernicans answered Tycho’s objections not with scientific arguments but with religious ones, along the lines of that’s the way God planned it!

Although the star size argument was the strongest scientific argument contra Copernicus it was by no means the only one and Graney gives detailed coverage of the whole range offering arguments and counter arguments, as presented by the participants in the seventeenth-century debate. Of interest particular here is Riccioli’s anticipation of the so-called Coriolis effect, which he failed to detect experimental thus rejecting a moving earth. Far from being a decided issue since 1610 when Galileo published his Sidereus Nuncius heliocentricity remained a scientifically disputed hypothesis for most of the seventeenth century.

Graney’s book is excellently written and clear and easy to understand even for the non-physicists and astronomers. He explains clearly and simply the, sometimes complex, physical and mathematical arguments and it is clear from his writing style that he must be a very good college teacher. The book is well illustrated, has an extensive bibliography and a useful index.

As a bonus the book contains two appendixes. The first is a translation (together with the original Latin text) and technical discussion of Francesco Ingoli’s 1616 Essay to Galileo, a never published but highly important document in the on going discussion on heliocentricity; Ingoli a Catholic cleric argued in favour of the Tychonic system. The second appendix is a translation (together with the original Latin text) and technical discussion of Riccioli’s Reports Regarding His Experiments with Falling Bodies. These experiments are of historical interest as they demonstrate Riccioli’s abilities, as a physicist, as he delivered the first empirical confirmation of Galileo’s laws of fall.

Graney’s book is a first class addition to the literature on the history of astronomy in the seventeenth century and an absolute must read for anyone claiming serious interest in the topic. If you don’t believe me read what Peter Barker, Dennis Danielson and Owen Gingerich, all first class historians of Early Modern astronomy, have to say on the back cover of the book.


[1] Disclosure; Chris Graney is not only a colleague, but he and his wife, Christina, are also personal friends of mine. Beyond that, Chris has written, at my request, several guest blogs here at the Renaissance Mathematicus, all of which were based on his research for the book. Even more relevant I was, purely by accident I hasten to add, one of those responsible for sending Chris off on the historical trail that led to him writing this book; a fact that is acknowledged on page xiv of the introduction. All of this, of course, disqualifies me as an impartial reviewer of this book but I’m going to review it anyway. Anybody who knows me, knows that I don’t pull punches and when the subject is history of science I don’t do favours for friends. If I thought Chris’ book was not up to par I might refrain from reviewing it and explain to him privately why. If I thought the book was truly bad I would warn him privately and still write a negative review to keep people from wasting their time with it. However, thankfully, none of this is the case, so I could with a clear conscience write the positive review you are reading. If you don’t trust my impartiality, fair enough, read somebody else’s review.

[2] Christopher M. Graney, Setting Aside All Authority: Giovanni Battista Riccioli and the Science against Copernicus in the Age of Galileo, University of Notre Dame Press; Notre Dame Indiana, 2015


Filed under Book Reviews, History of Astronomy, Myths of Science

Political correctness and the history of science

Anyone who regularly reads this blog will be already aware that the historian David Wootton has written a new book entitled The Invention of Science: A New History of The Scientific Revolution; in The Times (unfortunately behind a pay wall) Gerard DeGroot doesn’t so much review the book as perform a very nasty, vindictive hatchet job on it. DeGroot doesn’t just raise the spectre of eurocentrism in his critic he formally slaps Wootton in the face with it from the very opening paragraph of his review. This raises the question as to whether he is right to do so and whether Wootton is guilty as charged. Before I address these points I would like to briefly review what exactly eurocentrism with respect to the history of science is.

There used to be a brief standard sketch of the history of science, that probably arose some time in the Enlightenment but which owes much of its ethos to Renaissance historiography. This outline usually goes something like this. Science[1] was invented by the ancient Greeks. After the collapse of civilisation in the Dark Ages (a deliberate use of a discredited term here) science was rescued and conserved (but not changed or added to) by the Islamic Empire before being retrieved in the Renaissance by the Europeans, who then went on to create modern science in the Scientific Revolution. This piece of mythology reflected the triumphalist historiography of a colonialist Europe in the throws of dominating and exploiting large parts of the rest of the world.

During the twentieth century historians, many of them Europeans, dismantled this piece of fiction and began to explore and elucidate the histories of science of other cultures such as Egypt, Babylon, China, India and the Islamic Empire, creating in the process a much wider and infinitely more complex picture of the history of science, consisting of transfers of knowledge across space and time throughout the last approximately four thousand years. This newly acquired knowledge exposed anybody who still insisted on propagating part or all of the earlier fairy story to the charge of eurocentrism, a charge that when considering the whole of the history of science is more than justified.

Unfortunately, as I have commented in the past, this also led to an over zealous backlash on behalf of the previously wronged cultures particularly on the Internet. One only needs to state that X (a European) discovered/invented Y (some piece of science, technology, medicine, mathematics…) for some over assiduous commentator (almost always not a historian of science) to pop up saying, that’s not true Z (an Indian, Islamic, Chinese, or whatever scholar) discovered/invented Y long before X was even born. Occasionally these claims are correct but much more often they are inaccurate, exaggerated or just plain false. Any attempt to correct the informant leads inevitably to an accusation of eurocentrism. Eurocentrism has become a sort of universal weapon used indiscriminately whether it is applicable or not.

Wootton’s book deals not with a general universal history of science but as it very clearly states in its subtitle with the Scientific Revolution a historical episode that took place in Europe in the Early Modern Period. Whether one is, as a historian, a ‘revolutionary’ or a ‘gradualist’ there is no doubt that following its reintroduction into Europe during the High Middle Ages that which we call science, irrespective of its original sources, underwent a radical change that led to the emergence by, at the latest, the nineteenth century, science as we know it today. The major difference between Wootton and myself is that he thinks this process took place almost entirely within the seventeenth century whereas I see a timeframe stretching from the fourteenth century to at least the middle of the eighteenth.

Wootton is writing about a historical phenomenon that took place exclusively within Europe to accuse him of eurocentrism is to say the least perverse. If this were not a European phenomenon then the so-called Needham question would simply be nonsensical. Joseph Needham (1900-195) was the twentieth century’s greatest historian of Chinese science and instigator of the monumental, on going seven volume Science and Civilisation in China. The question that Needham posed runs as follows “Why did modern science, the mathematization of hypotheses about Nature, with all its implications for advanced technology, take its meteoric rise only in the West at the time of Galileo [but] had not developed in Chinese civilisation or Indian civilisation?” He could have equally well have posed the same question for the Islamic Empire. Many historians have tacked this question respective the three cultures and their answers are as diverse, as they are inconclusive. Some approach the question by trying to address the reasons for the decline of science and technology in China, India or the Islamic Empire whereas others try to isolate the factors that led to the Scientific Revolution in Europe. Although he doesn’t directly address the Needham question Wootton’s can be seen as an example of the latter.

If I were to be charitable to DeGroot it would appear that his main error lies in his interpretation of the word science as used by Wootton in his main title. It is clear that what Wootton intends is ‘modern science’ as used by Needham in the quote of his famous question above. DeGroot, I think disingenuously choses it to mean any form of scientific activity from anywhere and anytime in human history. We can see this conflict of interpretations in the following quotes from DeGroot:

…to assert that science was invented between certain dates in western European history automatically imposes a proprietary right – by defining science in a certain way it becomes, in essence, European.


A different intellectual climate existed in India, China and the Middle East, [in the Middle Ages] however. Outside Europe, minds were more open to progress and curiosity fired scientific enquiry. For instance great strides were made in pure and applied mathematics, optics, astronomy and medicine in the Middle East long before Columbus set sail [Wootton sees 1492 and Columbus’ first voyage as the starting point of the Scientific Revolution]. As early as the 10th century, brilliant scientists (not exclusively Muslim) were drawn to centres of learning in Baghdad, Balkh and Bukhara. These scholars considered Europe an intellectual backwater, yet hardly get a mention in this book. In other words, the so-called Scientific Revolution seems like a revolution only if we ignore what was happening outside Europe.

The first quote is a clear accusation of eurocentrism and the second is DeGroot’s attempt to justify his accusation. Nothing he writes in the second quote is wrong but also none of it has any real relevance to the book that David Wootton has written. Interesting is his attempt to deny that the Scientific Revolution ever took place. Whether you think that the very real change in the nature of science that took place in Europe in the Early Modern Period did so in the form of a revolution or more gradually over a longer timeframe to deny its very existence is to fly in the face of the historical facts. Whatever happened in the Islamic Empire between the eighth and twelfth centuries, the Golden Age of Islamic science, other than provided some of the foundations on which Kepler, Galileo, Newton et al built their new science, none of it had very much relevance to what took place in Europe in the seventeenth century.

This point is spelled out very clearly by A. Mark Smith in his recently published book, From Sight to Light, an essential volume for anybody interested in the history of optics. Smith’s book is a counter argument to David C. Lindberg’s Theories of Vision: From Al-Kindi to Kepler. Lindberg had argued that Kepler was, so to speak, the crowning glory of the European perspectivist tradition of optics that begins with the introduction of the work of Ibn al-Haytham into Europe in the thirteenth century. Following the same path, starting with ancient Greek optics, Smith, an expert on al-Haytham and Arabic optics, wants to show that Kepler is in fact a break with the perspectivist tradition and a new beginning in the theory of optics, a revolution if you will. Well aware that he might face charges of eurocentrism Smith devotes several pages of his introductions to explaining why such a charge would not be justified. He closes his explanation with the following paragraph:

The same holds for the evolution of modern optics over the sixteenth and seventeenth centuries. It may well be that certain key ideas, laws and concepts that contributed to that evolution were anticipated by Arabic or, for that matter, Indian, Chinese or Mesoamerican thinkers. And it is certainly the case that there was a lively cross-cultural marketplace of commodities and ideas between the Latin “West” and Arabic “East” throughout the Middle Ages and Renaissance. The fact remains, though, that it was in Europe that those ideas, laws, concepts were eventually assimilated, refined, channelled, and combined in such a way as to form the basis of what most of us today would characterize as modern optics. Any claim to the contrary strikes me as historically perverse. Furthermore, to contend that the evolution of modern optics over the sixteenth and seventeenth centuries happened in Europe is not to give Europe proprietary rights to that science or to accord Europe cultural exceptionalism or superiority for having developed it. I therefore strongly resist any charge of being trapped, whether wittingly or unwittingly, in some grand, master narrative or of engaging in hegemonic discourse.

If we substitute modern science for modern optics in Smith’s eloquent speech for the defence I think we can safely reject as baseless the accusations of eurocentrism that DeGroot makes against Wootton.


[1] Throughout this post I shall be using the word science as a collective noun for science, technology, medicine and mathematics to save time and effort whilst writing.


Filed under Book Reviews, History of science, Myths of Science

Aristocrats and paupers, farmers and tradesmen – Where do the scientists come from?

A few days ago on Twitter I stumbled across the following exchange, a certain Alex Wild (@Myrmecos) tweeted:

What does it say about modern science that most of the #scienceamoviequote tweets are about grants, publishing, tenure, and careers?

To which Claus Wilke (@ClausWilke) responded:

200 years ago no scientist worried about grants, tenure, careers.

All were wealthy lords with free time on their hands.

Or monks.

To which Gomijacogeo (@gomijacogeo) added:

Or had patrons…

Yours truly, as ever, eager to play Whac-A-Mole with any myth in the history of science, as soon as it pops its head above the parapet, it not being the first time that I’ve seen the same or similar expressed, reciprocated:

Sorry, but that is simple not true.

Referring to Claus Wilke’s comment rather than Gomijacogeo’s, which does have a certain amount of historical validity.

This brief exchange led me to think about the origins of the various figures from the history of science that I write about on a fairly regular basis and what follows is a totally informal survey of the backgrounds of those scholars. Mr Wilke’s remark only extends back to 1815 but my survey goes back to the fifteenth century on the principle that the further back one goes the more likely it is that a scholar needs to be independently wealthy or a monk.

Johannes Müller, aka Regiomontanus, was most probably the son of miller, miller by name miller by trade, who was obviously wealthy enough to send his son to university, where he became a lecturer on having completed his studies. Later he enjoyed the support of a series of patrons over a period of about fifteen years until his death. As is all too often the case, we no nothing about the background of Regiomontanus’ teacher Georg von Peuerbach before he became a lecturer at the University of Vienna. We do however know that he enjoyed the patronage of various kings and emperors in his role as an astrologer.

Moving into the sixteenth century we little about the backgrounds of the three Nürnberger mathematicians, Johannes Werner, Georg Hartmann and Johannes Schöner but all three were university graduates and all three held secure but relatively lowly and poorly paid jobs in the church, which however gave them the freedom to pursue their diverse mathematical activities. Georg Rheticus who knew all three of the Nürnberger came from a wealthy bourgeois background, although his father a town physician was executed for theft and fraud when he was a child. His mother was, however, independently wealthy and Achilles Grasser, another town physician, took over guiding his education until he became a university lecturer. Rheticus of course brought Copernicus’ magnum opus, De revolutionibus, to the world and it is to the good Nicolaus that we now turn. His father was a rich businessman, who also passed away whilst Copernicus was still a child. In his case his career was directed and supported by his uncle, Lucas Watzenrode, who was Prince Bishop of Ermland and thus a very powerful patron who also secured a church sinecure for his nephew, who thus needed never to work in his whole life, although he did take on important administrative posts in the Bishopric of Frauenburg.

Up until now with had quite a lot of wealthy and important patrons but not one wealthy lord, as a scholar in his own right. This changes with Tycho Brahe who was a genuine, bone fide, wealthy aristocrat, whose scientific career was footed on a very generous appanage from the Danish Crown, although as I have pointed out in an earlier post his appanage would almost certainly have been much larger had he decided to become a courtier instead of an astronomer.

The opposite end of the scale can be found in Tycho’s most famous assistant Johannes Kepler. His parents were poor, mostly working as innkeepers, although his father was a mercenary who regularly disappeared of to war and at some point never came back. Kepler, very obviously a gifted child, only got an education because of the very generous scholarship scheme that existed at the time in Baden-Württemberg to educate the large number of Protestant priest and school teachers needed following the conversion from Catholicism. Kepler then worked as a schoolteacher and district mathematician, a lowly paid job, in Austria before moving to Prague and becoming Tycho’s assistant and shortly afterwards his successor as Imperial Mathematicus. This was in theory a well-paid position but, as was all too often the case with royal and aristocratic patrons, actually getting paid was a major problem. Kepler would later enjoy the patronage of the Catholic General Albrecht Wenzel Eusebius von Waldstein, better known as Wallenstein, although I’m not sure that enjoy is the right word for their relationship.

With Kepler’s great rival in the heliocentricity stakes, Galileo Galilei, we have another aristocrat albeit a minor impoverished one, with an emphasis on impoverished. This is probably the reason that his father wanted him to study medicine, a profession that would guarantee a good income. Unfortunately he chose instead to become a mathematician a profession that was notoriously badly paid in the early seventeenth century. Galileo became a university professor for mathematics and despite subsidiary income from his thriving instrument workshop and providing boarding for students, a common practice amongst Renaissance professors, he was always infamously hard up. This was partially because he enjoyed la dolce vita and lived beyond his means and partially because of the financial demands of his brother and sisters for whom he took over responsibility after the death of his father. This is probably the main reason that Galileo used his scientific discoveries as capital to acquire the patronage of the Medici and became a courtier, leaving academia behind him.

Simon Marius, astronomical colleague, of both Kepler and Galileo, although his relations with both of them were fraught, was the son of a barrel maker and relied on the patronage of the local lord of the manor to obtain his education. The same lord then employed him as court astrologer thus ensuring that he could devote his live to his scientific activities.

Christoph Clavius, about whose background we know absolutely nothing, was like all the other Jesuit mathematicians and astronomers, who I’ve written about over the years, a monk. Although it should be remembered that the Jesuits were/are essentially a teaching order so the scientific Jesuits can almost be considered as proto-professional scientist (excusing here the anachronistic use of the term scientist and it further uses in this post).

Mathematician and physicist, Marin Mersenne, was a genuine monk who conducted his voluminous scientific correspondence from his humble monk’s cell. His colleague, contemporary and fellow Jesuit academy graduate, René Descartes was the son of a wealthy lawyer and politician, who after graduating from university as a lawyer became a mercenary. After he retired from soldiering he lived from his inherited wealth although he also had patrons at different stages of his life. Pierre Gassendi, a priest who lived and worked as a university professor, came from a similar bourgeois background. Holland’s most famous Cartesian, Christiaan Huygens was the son of a wealthy Dutch aristocrat, who however on his appointment to the French Académie des sciences became a, highly paid, professional scientist.

Crossing the channel to the British Isles we meet another aristocrat in the form of Robert Boyle, who was wealthy enough to live the life of an independent scholar. Boyle’s closest colleague and one time assistant, Robert Hooke, was the exact opposite. Born the son of an Anglican curate he was left almost penniless when his father died. Hooke had to strive for everything he got in life and his inherent feelings of social inferiority might go a long way to explaining his less than pleasant character. Hooke strove well, dying a wealthy man, money earned by his own honest labour. No patronage here.

Hooke’s nemesis Isaac Newton was the son of a yeoman farmer, albeit a wealthy one. Later in life when he inherited them, the Newton acres generated an annual income of six hundred pounds per annum, not bad compared to the one hundred pounds per annum paid to the Astronomer Royal, for example. Newton’s mother, however, put him through university as a sizar, a student who earns his tuition fees by working as a servant to other students. After graduating MA for which he had received a fellowship, Newton became Lucasian Professor and later, famously, warden of the mint thus earning his own living without patronage. Newton’s sidekick Edmond Halley was the son of a wealthy soapboiler, a not especially romantic profession but obviously a profitable one, as Halley inherited a substantial fortune after his father was murdered. Halley would go on to hold various positions including Savilian Professor and most notably Astronomer Royal.

At the moment I’m (supposed to be) preparing a lecture on the eighteenth-century pneumatic chemists, so let us now turn our attention to them. Stephen Hales was the son of a Baronet, a purchasable title, who went on to become an Anglican clergyman. Although this survey does not include many of them, clergymen made considerable contributions to the sciences, as amateurs, throughout the eighteenth and nineteenth centuries. Joseph Black was the son of a wine trader who after a very successful studentship went on to become professor of medicine and chemistry and thus a professional scientist. Black’s student Daniel Rutherford was the son of a professor of medicine and went on himself to become a professor of botany. William Brownrigg the son of landed gentry became a medical practitioner. Henry Cavendish was a scion of one of the oldest and most powerful aristocratic families in Britain, who was thus, like Robert Boyle, able to lead the life of a gentleman scientist, making him the third scientist to fulfil the cliché expressed in the tweet that prompted this post. The most famous of the pneumatic chemists, Joseph Priestley, was the son of a cloth finisher, supported by wealthy relatives he studied to become a dissenting preacher and teacher both of which professions he practiced for many years before relatively late in life moving to Birmingham, where he effectively became house chemist to the Lunar Society. For a number of years he had been private tutor to the children of Lord Shelburne, who might thus be considered a patron.

The astronomer William Herschel was the son of a military musician who followed his father into the Hanoverian army as an oboist. After a military defeat he fled to Britain (as a deserter!) where he successfully established himself as an organist, composer, conductor and music teacher, astronomer was his hobby. Following the discovery of Uranus he was appointed The King’s Astronomer, enjoying the patronage of George III and able to devote himself full time to the study of the stars.

Closing out in the nineteenth century with three rather random scientists, all of who achieved notoriety and fame, Joseph Fraunhofer, Humphry Davy and Michael Faraday all started life in poor families but went on, largely through their own efforts to become professional scientists who help shape modern science.

The above is, of course, all anecdotal and as is well known the plural of anecdote is not data. However I think that it demonstrates that at least since the fifteenth century, in Europe, men who went on to become important contributors to the evolution of science could and did come from a wide variety of backgrounds and managed to conduct their investigation through an equally wide variety of channels. They were by no means all “wealthy lords with time on their hands or monks”.

On the subject of patronage, which helped many of those I have sketched to follow their chosen paths in the sciences. I personally don’t see a great deal of difference between a wealthy ruler in the Renaissance supporting the work of an outstanding researcher and some modern international business conglomeration paying for a new research facility at some modern elite university. Both are institutions with substantial resources, which see the utility of supporting scientific research for whatever reasons they might have.




Filed under History of science, Myths of Science

Misusing Galileo to criticise the Galileo gambit

Yesterday The Guardian website had an article on climate change denialists entitled, Here’s what happens when you try to replicate climate contrarian papers[1].

The article is headed with this portrait of Galileo

Galileo demonstrating his astronomical theories. Climate contrarians have virtually nothing in common with Galileo. Photograph: Tarker/Tarker/Corbis

Galileo demonstrating his astronomical theories. Climate contrarians have virtually nothing in common with Galileo. Photograph: Tarker/Tarker/Corbis

And it opens with the following paragraph:

Those who reject the 97% expert consensus on human-caused global warming often evoke Galileo as an example of when the scientific minority overturned the majority view. In reality, climate contrarians have almost nothing in common with Galileo, whose conclusions were based on empirical scientific evidence, supported by many scientific contemporaries, and persecuted by the religious-political establishment. Nevertheless, there’s a slim chance that the 2–3% minority is correct and the 97% climate consensus is wrong.

Now it is true that climate change denialists, like denialists in many other areas of scientific consensus, commonly use what is now known as the Galileo Gambit. This involves claiming in some way that Galileo was persecuted for his theories, although he was proved right in the long run. Implying that the denialist will also be proved right in the long run and hailed as another Galileo. Bob Dylan provided the perfect answer to the Galileo Gambit in his song Bob Dylan’s 115th Dream way back in 1965.

I said, “You know they refused Jesus, too”

He said, “You’re not Him

I would not object to the author’s comments on the contrarians misuse of the name of Galileo if her his comment had stopped at, climate contrarians have almost nothing in common with Galileo, however she he goes on to spoil it with what follows.

Although Galileo’s views on heliocentrism, and that is what stands to discussion here, had their origins in empirical observations made with the telescope he unfortunately did not stop there and they were not supported by a consensus of his contemporaries by any means. In fact at the time of Galileo’s trial by the Catholic Church the majority of astronomers qualified to pass judgement on the subject almost certainly rejected heliocentricity, most of them on good scientific grounds.

In his Dialogo, the book that caused his downfall, Galileo knew very well that he did not have the necessary empirical facts to back up the heliocentric hypothesis and so he resorted to polemic and rhetoric and brought as his pièce de résistance, his theory of the tides, which was fatally flawed and contradicted by the empirical evidence even before it hit the printed page.

Although it became largely accepted by the experts by around 1670, the necessary empirical evidence to substantiate heliocentricity didn’t emerge until the eighteenth and in the case of stellar parallax the nineteenth centuries.

I have written about this historical misrepresentation of Galileo’s position on various occasions and I don’t intend to repeat myself in this post. However anybody who is interested can read some of my thoughts in the post collected under the heading, The Transition to Heliocentricity: The Rough Guides. I also strongly recommend Christopher M. Graney’s recently published Setting Aside All Authority: Giovanni Battista Riccioli and the Science against Copernicus in the Age of Galileo, my review of which should, hopefully, appear here in the not to distant future.

Addendum: Seb Falk has pointed out that Dana Nuccitelli is a he not a she and I have made the necessary corrections to the text. I apologise unreservedly to Mr Nuccitelli for this error.

[1] h/t to Seb Falk (@Seb_Falk) for drawing my attention to this latest misstatement of Galileo’s scientific situation.


Filed under History of Astronomy, Myths of Science