Category Archives: Myths of Science

How to create your own Galileo

Writing this book review caused me a great deal of of stress, even leading to sleepless night when I made the mistake of reading the offending piece of literature as bedtime reading. The review itself has become horrendously long and I must at times fight my instinct to add even more explanations, as to why this or that was wrong. It is in the words of that excellent history of science author, Matthew Cobb, ‘baggy and rambling’ and should actually be radically edited but I just can’t be arsed to do it, so I’m simply posting the whole monstrosity. For those, who don’t want to read the whole thing, and I wouldn’t blame you, the first three and the last five paragraphs offer a sort of synopsis of the whole thing.

Since I began writing book reviews on a more regular basis I have tried only to review books that I personally find good and which I think might be of interest to those who come here to read my weekly scribblings. I decided that on the whole it isn’t worth wasting time and energy writing about uninteresting, mediocre or simply bad books. However, occasionally a book come along that I feel duty bound, given my reputation as a #histSTM grouch, to debunk as a favour to my readers so that they don’t waste their time and energy reading it; today’s review is one such.

Some time back I wrote a post about the Alexandrian mathematician and philosopher Hypatia, which started with the fact that she has been used as a sort of blank slate onto which numerous people down the centuries have projected their images of what they would have wanted her to be. In the case of Hypatia this is fairly easy, as the rest of my post pointed out we know next to nothing about the lady. Another figure, who has been used extensively over the years as a silhouette, which people fill out according to their own wishes is Galileo Galilei; in his case this is more difficult as we actually know an awful lot about the Tuscan mathematician’s life and work. However, this has not prevented numerous authors from creating their own Galileos.

The latest author, who has decided to present the world with his Galileo, is the astrophysicist and very successful author of popular books on mathematics and science, Mario Livio with his Galileo and the Science Deniers.[1] I might not have bothered with this book but Livio is a very successful pop science book author, as is made very clear by the fact that the hardback and paperback were both issued simultaneously and at very low prices; the publishers expect it to sell well, so it will unfortunately have a big impact on uninformed peoples perceptions of Galileo. I say unfortunately, which, of course, gives readers of this review a very strong clue as to what I think of this book. Quite simply don’t bother, it brings nothing new to our knowledge of Galileo and in fact is full of, at times, quite serious historical errors, serious that is if you’re a historian, who takes getting the facts right seriously.

Livio001

The opening sentences starts with a couple of wonderful errors and also lays out Livio’s version of Galileo:

Being an astrophysicist myself, I have always been fascinated by Galileo. He was, after all, not only the founder of modern astronomy and astrophysics–the person who turned an ancient profession into the universe’s deepest secrets and awe-inspiring wonders–but also a symbol of the fight for intellectual freedom.

I think Copernicus, Tycho Brahe and Johannes Kepler might want a word with Livio about, who exactly is the founder of modern astronomy. Also, excuse the language, but what the fuck did Galileo ever do for astrophysics? The final half sentence tells us into which silhouette Livio has decided to pour his Galileo; Livio’s Galileo is the white knight of freedom of speech and freedom of thought, who has mounted his charger and taking up his lance sets off to kill the anti-science dragon of the Holy Roman Catholic Church. This is, of course not a new Galileo but a well-known old model, which historians of science have spent a lot of time and effort dismantling over the last fifty plus years.

Central to the problems with Livio’s book is that he completely ignores the historical context in which the Galileo story took place. His is totally a presentist view in which he applies the social rules and moral judgements of the twentieth-first century to the various occurrences he sketches in the early seventeenth century. This is quite simply very bad historiography. He compounds this error by trying to draw parallels between Galileo’s conflict with the Catholic Church and the current problems with science denialists in our times, hence the title of his book. To do this he simply denies Galileo’s critics any scientific basis for their criticism whatsoever, Galileo is science, his critics are anti-science. A rather simplistic and historically highly inaccurate presentation of the known facts.

Just to make clear what exactly the historical context was, there existed no freedom of speech or freedom of thought under any civil or religious authority anywhere in Europe at the beginning of the seventeenth century; such social concepts still lay in the future. There is a slight irony in the fact that the current wave of science denialists, against whom Livio’s book is directed, are in fact exercising their, protected by law, rights of freedom of thought and speech. More importantly the Holy Roman Catholic Church was not just a religion and a church but also a powerful political and judicial body with judicial rights over all within its dominion and this in an age of absolutism with the Pope as the most absolute of all absolute rulers. All authorities both civil and religious reserved for itself the right to determine what its subject were permitted to express in public, the Catholic Church was in no way unique in claiming and exercising this right.

Still in the preface to Livio’s book we find his first distortion of the historical scientific facts, he writes that Galileo’s telescopic discoveries, “All but destroyed the stability of the Earth-centered Ptolemaic universe.” Here Livio, and not only here, fails to differentiate between Aristotelian cosmology and Ptolemaic astronomy. All of the telescopic discoveries, with the exception of the phases of Venus, demolished aspects of Aristotelian cosmology but had no significance for Ptolemaic geocentric astronomy. The discovery of the phases of Venus, of course, refuted a pure geocentric system but was perfectly compatible with a Tychonic geo-heliocentric system, which then became the default alternative to a heliocentric system. With two notable exceptions that I will deal with later Livio makes no clear mention of the fact that the telescopic discoveries were made within the same approximately three year period not only by Galileo but simultaneous by others, so if Galileo had never used a telescope it would have made very little difference to the subsequent history of astronomy. This makes rather a mockery of Livio’s next dubious claim, “his [Galileo’s] ideas became the basis on which modern science has been erected.” This is much less true than Livio and other Galileo groupies would have us believe. Galileo made a contribution but others in the seventeenth century actually contributed significantly more.

One last comment from the preface, Livio writes:

He insisted on publishing many of his scientific findings in Italian [actually Tuscan not Italian] (rather than Latin), for the benefit of every educated rather than for a limited elite.

In the early seventeenth century almost every educated person would per definition have been able to read and write Latin; Latin was the default language of education.

Reading the opening chapter of Livio’s book, Rebel with a Cause, I constantly had the feeling that I had been transported back to the 1960s and 70s, when I first began to read books about the history of science in general and Galileo in particular. It as if the last fifty plus years of history of science research had never taken place, he even relies on Einstein and Bertrand Russell as his historical authorities, at times I shuddered. He goes so far as to tell us that the Renaissance happened because people discovered that they were individuals! I can’t remember when I last read this particular piece of inanity and I would be curious who actually put it into the world. The final page of this chapter contains all of the classic Galileo clichés.

Perhaps most important, Galileo was the pioneer and star of advancing the new art of experimental science. He realised that he could test or suggest theories by artificially manipulating various terrestrial phenomena. He as also the first scientist whose vision and scientific outlook incorporated methods and results that were applicable to all branches of science.

There is a long historical list of people who would disagree–Archimedes, Ptolemaeus, al-Haytham, Grosseteste, Roger Bacon, William Gilbert and a whole host of alchemists starting with Abū Mūsā Jābir ibn Hayyān (for Livio opinion on alchemy see below)–just to name the most prominent. Modern research has also conclusively shown that artisanal practice in the fifteenth and sixteenth centuries played a significant role in the development of empirical, experimental science. Livio’s last sentence here is also rather dubious, apart from some rather trivial aspects, there are no methods and results that are applicable to all branches of science.

…in four areas he revolutionised the field: astronomy and astrophysics; the laws of motion and mechanics; the astonishing relationship between mathematics and physical reality […]; and experimental science.

Despite everything, Galileo’s contributions to astronomy were rather minimal and he certainly didn’t revolutionise the field, others such as Kepler, whom he ignored, did. I am still trying to work out what his contributions to astrophysics could possibly be? His real major contribution was indeed to motion and mechanics but he was no means alone in this others such as Simon Stevin and Isaac Beeckman made substantial contributions to the new developments in these areas. The mathematics thing, to which Livio keeps returning, is baloney and I shall deal with it separately later. Galileo made contributions to the development of experimental science but he was by no means alone in this and to say he revolutionised it is hyperbole.

The only defense remaining to those obstinately refusing to accept the conclusions implied by the accumulating weight of empirical facts and scientific reasoning was to reject the results almost solely on the basis of religious or political ideology

Here Livio betrays his own tactic, put crudely, throughout the book he twists the historical facts in order to try and make out that there no legitimate scientific objections to Galileo’s claims, however there were.

The next chapter is the usual enthusiastic fan boy description of Galileo’s talents as an all round humanist and contains nothing particularly objectionable but does contain a strong indication of the superficiality of Livio’s historical knowledge. He writes, “First, at age twenty-two, Galileo, already had the chutzpah to challenge the great Aristotle on topics related to motion…” People had been consistently challenging the great Aristotle on topics related to motion since the sixth century CE and Galileo was merely joining a long tradition of such work. Livio also casually calls Aristotle’s theory of motion impetus! Impetus was, of course, a theory initially developed by John Philoponus in the sixth century CE when seriously challenging Aristotle’s theory of motion. On a side note Livio says that the tools to treat such variables such as velocity and acceleration, i.e. calculus, were first developed by Newton and Leibniz. Other seventeenth century mathematicians who contributed substantially to the development of the calculus such as Cavalieri, de Saint-Vincent, Fermat, Pascal, Descarte, John Wallis and Isaac Barrow would be very surprised to hear this. On the same page he repeats the myth that Christoph Clavius was “the senior mathematician on the commission that instituted the Gregorian calendar, he wasn’t, Ignazio Danti was.

Clavius turns up as one of the leading mathematicians, who the young Galileo turned to for mentorship when he was trying to establish a reputation as a mathematician and get support to find an appointment as professor of mathematics. Interestingly Galileo’s other mentor Guidobaldo del Monte (1545–1607) appears nowhere in Livio’s book. This is strange as it was del Monte, who acquired the professorship in Pisa for Galileo through his brother Cardinal Francesco Maria del Monte (1549–1627), who was the de ‘Medici cardinal and recommended Galileo to the Grand Duke. It was also del Monte, who devised the experiment that led Galileo to the parabola law, which Livio calls one of Galileo’s crowning achievements.

In the next chapter on Galileo’s work on the theory of fall Livio can’t help taking a sideswipe at alchemy and astrology:

It is certainly true that, at their inception, the sciences were not immune to false beliefs, since they are sometimes connected to fictitious fields such as alchemy and astrology. This was partly the reason why Galileo decided later to rely on mathematics, which appeared to provide a more secure foundation.

This off hand rejection ignores completely that astrology was the main driving force behind astronomy since its beginnings in antiquity down to the seventeenth century and that all the leading Renaissance astronomers, including Galileo, were practicing astrologers. The practice of astrology/astronomy, of course, requires a high level of mathematical ability. Alchemy developed virtually all of the experimental methods and the necessary equipment to carry out those experiments on which chemistry was built.

Now in Padua, where Galileo was also professor of mathematics, a position that he once again acquired with the assistance of del Monte, we get the story of Galileo’s three lectures on the nova of 1604. Livio informs us that “Christoph Clavius confirmed the null parallax determination–that is, no shift had been observed–but refused to accept its implications as compelling.”

This is once again Livio’s tactic of trying to discredit the Jesuits. The implications that he is talking about are that the heavens are not unchanging as claimed by Aristotle. Clavius observed the nova of 1572 and already in 1581 published a digression on the subject fully accepting that the nova was supralunar and that the heavens were not unchanging. He included this in his Sphaera in 1585, the most widely read astronomy textbook in the late sixteenth and early seventeenth centuries and he probably thus had the most influence in persuading others that change had occurred in the heavens. He also included the same results for the novae of 1600 and 1604, so what is Livio talking about? Clavius was unable to explain what these novae were but then again nobody else in the seventeenth century could either.

We now move on to Galileo, telescopic astronomy and the Sidereus Nuncius. Although he actually talks about other telescopic astronomers–Scheiner, Marius, Harriot, Fabricius–they are only offered bit parts in Livio’s screenplay, which follows the usual path of giving Galileo credit for everything. He attributes the discovery of Earthshine, the Moon illuminated by sunlight reflected by the Earth, to Galileo, whereas it was previously discovered by Leonardo, who didn’t publish, and Michael Mästlin, who did. He attributes the discovery of stars that can’t be seen without a telescope to Galileo, whereas this was already noted in the printed account of the first telescope demonstration in Den Hague, the source of Sarpi’s and thus Galileo’s first knowledge of the telescope. We then get one of the most bizarre claims made by Livio in the book:

Even more consequential for the future of astrophysics was Galileo’s discovery that stars varied enormously in brightness, with some being a few hundred times brighter than others.

Coming from a professional astrophysicist I find this statement mind boggling. The difference in brightness between celestial objects is obvious to anybody with reasonable eyesight, who simply looks up at the night sky in an area without light pollution. Astronomers even use a six-point scale to designate the different levels of brightness, which is termed magnitude; this was first introduced by Ptolemaeus around 150 CE!

We then get a very brief account of the star size argument as originated by Tycho, which Livio falsely claims Galileo dismissed by saying that the observed star discs are merely artefacts. They are in fact merely artefacts but Galileo didn’t say this. He accepts their existence and uses a completely different argument to try and dismiss the star size argument.

We now arrive at the Moons of Jupiter and Simon Marius. Livio mentions Marius several times in his book but insists on calling him Simon Mayr, his birth name, why? Marius issued all of his publications under the Latinised version of his name and so historian refer to him as Simon Marius. Livio doesn’t call Copernicus, Kopernik or Tycho, Tyge their birth names, so why does he call Marius, Mayr? What he writes about Marius and the Moons of Jupiter left me, as a Marius expert, totally flabbergasted:

What would have undoubtedly annoyed Galileo no end is that the Galilean satellites are known today by the names assigned to them by the German astronomer Simon Mayr rather than as the “Medici stars.” Mayr may have independently discovered the satellites before Galileo, but he failed to understand that the moons were orbiting the planet. [my emphasis]

First off, the names were suggested by Kepler not Marius, who however first published them specifically mentioning the fact that they were suggested by Kepler. Secondly Marius discovered the moons, famously, one day later than Galileo, any confusion about who discovered what when being produced by use of different calendars, Gregorian and Julian. Thirdly, the clause that I have emphasised above is pure and utter bullshit. Marius knew very well that the moons orbited Jupiter and he calculated the orbits, calculations that he published before Galileo. Marius’ calculations are also more accurate than those of Galileo. Should Livio doubt any of this I can send him scans of the relevant pages of Mundus Jovialis in the original Latin or in German and/or English translation. Livio now brings the story of Galileo hating Marius because he accused him of being behind Baldessar Capra’s plagiarism of Galileo’s proportional compass pamphlet in 1606. Marius had been Capra’s mathematics teacher earlier in Padua. Livio fails to mention that the accusations are provably false. Galileo in 1607 had himself cleared Marius of any involvement in the case and the whole episode took place a year after Marius had left Padua.

We now move on to the peculiar shape of Saturn and the discovery of the phases of Venus. In the later case we get absolutely no mention that the phases of Venus were discovered independently by Harriot, Marius, and the astronomers of the Collegio Romano, the latter almost certainly before Galileo. Livio notes correctly that the discovery of the phases definitively refutes the possibility of a pure geocentric system. However, it does not refute a geo-heliocentric Tychonic system. Livio admits this very grudgingly:

…but could not definitely dispose of Brahe’s geocentric-heliocentric compromise […]. This left a potential escape route for those Jesuit astronomers who were still determined to avoid Copernicanism.

Throughout his book Livio tries to imply that there is no real justification for supporting the Tychonic system, whereas it was not only the Jesuits, who did so but many other astronomers as well because the empirical evidence supported it more that a heliocentric one, of which more later. However, Livio consistently ignores this fact because it doesn’t fit his fairy-tale narrative.

Livio deals fairly conventionally with the telescopic discovery of sunspots and the discussion on their nature between Galileo and Christoph Scheiner and although he ends his account by noting the publication of Scheiner’s Rosa Ursina sive Sol (1626–1630) he makes no mention of the fact that the book is a masterpiece of astronomy, far better than anything Galileo published in the discipline. As should always be noted, due to the haste in which he wrote and published it, Sidereus Nuncius was closer to a press report than a scientific publication. He does however mention, what he calls “some further comments he made later in the book The Assayer, which the Jesuit astronomer took to be directed at him personally, did turn him into an unappeasable enemy.” Galileo actual vehemently and totally falsely accused Scheiner of plagiarism in The Assayer, which he later compounded by plagiarising Scheiner’s work in his own Dialogo. Scheiner’s antagonism is understandable. We now get the real reason why Livio keeps badmouthing the Jesuits; he sees them as behind Galileo’s trial in 1633. He writes, “This marked just the beginning of a conflict with the Jesuits, which would culminate in the punitive actions against Galileo in 1633.” This is an old myth and quite simply not true, the Jesuits did not come to Galileo defence but they were also not responsible for his trial.

We now come to objections to the telescopic discoveries:

How could anyone be sure that what Galileo was seeing was a genuine phenomenon and not a spurious artifact produced by the telescope itself?

Not only wasn’t there a convincing theory of optics a that could demonstrate that the telescope doesn’t deceive, they contended but also the validity of such a theory in itself based on mathematics, was questionable. [my emphasis]

 

Livio tries to imply that both objections are just anti-science nit picking but they are in fact very solid, very necessary scientific question that had to be asked and to be answered if people were going to accept the validity of the telescopic discovery. To the first general objection, although Galileo, an excellent observer, made none himself, there were numerous cases of published discoveries that turned out to be merely optical artefacts in the early years of telescopic astronomy. Not really surprising given the really poor quality of the instruments being used, Galileo’s included.

That an optical theory of the telescope didn’t exist was a very serious problem, as it would be with any new scientific instrument. If you can’t explain how the instrument works how do you expect people to accept the results? Kepler solved the problem with his Dioptrice published in 1611, which explained fully and scientifically how lenses and lens combinations function, describing various different types of telescope. Galileo dismissed and mocked, what is now regarded as a milestone in the history of geometrical optics. The last clause is, once again, Livio spouting total crap. Theories of optics had been geometrical, i.e. mathematical, since at least, in the fourth century BCE and even Aristotle classified optics as one of the mixed sciences, i.e. those such as astronomy that are dependent on mathematics for their proofs. Kepler’s book was accepted by all those qualified to pass judgement on the matter, with the notable exception of Galileo, who didn’t want to share the limelight with anybody, and together with Kepler’s earlier Pars Optica (1604) formed the foundations of modern scientific optics.

The reference to mathematics here is Livio’s attempt to create or propagate a myth that before Galileo, nobody conceived of a mathematics-based science. It is time to tackle that myth. Livio argues that Aristotle rejected mathematics in science and that Aristotelians regarded anything proof based on mathematics as not valid. He, of course, finds an obscure Aristotelian contemporary of Galileo’s to quote to prove this but does not quote any evidence to the contrary or even appear to think that some might exist. He is very wrong in this. Because, in Aristotle’s opinion, mathematics does no deal with the real world the results of mathematic are not episteme or scientia or as we would say knowledge. He however makes allowances for the so-called mixed sciences, astronomy, optics and statics. Livio acknowledges this status for astronomy but argues with the medieval Aristotelians that astronomical mathematical models are mere calculating devices and not models of reality; describing cosmological reality was the domain of the philosophers and not the mathematical astronomers. He also claims that this was still the situation in the second decade of the seventeenth century, it wasn’t. Beginning with Copernicus astronomers began to claim that their mathematical models were models of reality and by the time of Galileo’s first dispute with the Catholic Church this had become the generally accepted state of the discipline. The debate was which mathematical model describes the real cosmos?

It is a standard cliché in the history of science that one of the major factors that drove the so-called scientific revolution was the mathematization of science. Like many clichés there is more that a modicum of truth in this claim. Livio believes it is absolutely central and one of the major themes of his book is that Galileo was the first to mathematize science in his experiments on motion and the laws of fall. This is quite simply not true and Livio can only maintain his claim by steadfastly ignoring the history of mathematics in science prior to Galileo or did he even bother to look if there was any?

Starting with Galileo’s researches into motion and fall there is a three hundred year history of experimental and mathematical investigation into exactly this area starting with the Oxford Calculatores, who derived the mean speed theorem, which lies at the heart of the laws of fall and going down to Giambattista Benedetti (1530–1590), who produced all of the arguments and thought experiments on the subject for which Galileo is famous. There is much more, which I have already dealt with in an earlier post and won’t repeat here.Galileo knew of all of this work. The Archimedean renaissance in mathematics and the sciences, replacing the authority of Aristotle with that of Archimedes, in which Galileo is a major figure, does not start with Galileo but goes back at least to Regiomontanus (1436–1476).  The works of Archimedes were edited by Thomas Venatorius (1488–1551) and printed and published in a bilingual Greek and Latin edition in Basel in 1544. In general the sixteenth century saw a massive increase in the application of mathematics to a wide range of subjects, a development that was already well underway in the fifteenth century, including linear perspective in art, cartography, surveying, navigation, physics and astronomy. Galileo in no way started the mathematization but represents, together with several of his contemporaries such as Johannes Kepler, Simon Stevin, Christoph Clavius and Isaac Beeckman, a temporary high point in these developments. All four of those contemporaries were actually better mathematicians than Galileo.

On the question of the epistemological status of mathematical proofs, which Livio clearly states was still doubted in Galileo’s time, Christoph Clavius, who many people don’t realise was an excellent epistemologist, had already changed perceptions on this when Galileo was still a child. Clavius a Jesuit and thus by definition a Thomist Aristotelian used Aristotle’s own arguments to demonstrate that mathematical proofs have the same epistemological status as philosophical proofs. He even went to the extent of translating parts of the Elements of Euclid into Aristotelian syllogisms to show that mathematical proofs transport truth in the same way as philosophical, logical ones. Clavius’ influence was massive, he fought to get mathematics accepted as part of the educational reform programme of the Jesuits and then got the mathematical sciences established as a central part of the curriculum in Catholic schools, colleges and university also training the necessary teachers to carry out his programme. There is a reason why the young Galileo turned to Clavius, when seeking a mentor for his mathematical ambitions.

Taking all of this together the roll of mathematics and status of mathematical proofs in the sciences was very different in the early seventeenth century than the picture that Livio serves up. Far from being ground breaking Galileo’s (in)famous quote from The Assayer  “the book of nature is written in the language of mathematics” (which Livio offers up several times in his book) was actually stating a truth that had been generally accepted by many natural philosophers and mathematicians for many decades before Galileo put pen to paper.

Returning to Galileo’s telescope discoveries, Livio tells us that Kepler published his letter praising Galileo’s telescopic discoveries under the title Dissertio cum Nuncio Sidero (1610) then goes on to write: “Galileo was clearly pleased with its content, the letter was reprinted in Florence later in the year.” What Livio neglects to mention is that Galileo was responsible for that edition in Florence, which was a pirate edition published without Kepler’s knowledge and without his permission or consent. Livio makes it appear that the Jesuit astronomers of the Collegio Romano only reluctantly started to try and confirm Galileo’s discoveries and then only when ordered to do so. This is a complete distortion of what actually happened.

The astronomers in the Collegio Romano had their own telescopes and had been making astronomical telescopic observations well before Galileo published the Sidereus Nuncius. They immediately leapt on the pamphlet and set out to try and confirm or refute his observations. They had some difficulties constructing telescopes good enough to make the necessary observations and Christoph Grienberger (1561–1636), who was acting head of the school of mathematics due to Clavius’ advanced age, corresponded with Galileo, who provided copious advice and tips on observing and telescope construction. This was a work of friendly cooperation under fellow mathematicians. After some difficulties they succeeded in providing the necessary confirmation, which they made public and celebrated by throwing a banquet for Galileo when he visited Rome in 1611. As already stated above the Jesuit astronomers probably observed the phases of Venus before Galileo.

Livio then goes on to draw parallels with the fact that, “The current debate on global warming had to go […] through a similar painful [my emphasis] type of confirmation process.” I find this statement, quite frankly, bizarre coming from a scientist. All scientific discoveries have to be independently confirmed by other scientists, it is a central and highly important part of the whole scientific process. What the astronomers of the Collegio Romano did for Galileo was in no way “painful” but a necessary part of that scientific process for which Galileo was very thankful. I find it particularly bizarre given the very lively current debate on the significant number of scientific papers that have to be retracted because of failing confirmation. Reading Livio in the worst possible light, and not just here but at numerous other points in his narrative, he seems to be saying, if Galileo says it is so, then it must be true and anybody, who dares to criticise him, is in the wrong.

Of course, Livio cannot avoid the myth that, “First Copernicus and Galileo removed the Earth from its central position in the solar system.” Having previously quoted the “Copernicus principle”: the realisation that the Earth, and we human beings, are nothing special…” Also: “ What’s more the Copernican system was bound to be at odds with a worldview that had placed humans at the very center of creation, not only physically but also as a purpose and focus of for the universe’s existence.” Although geometrically central, the philosophers and astronomers in the Renaissance did not regard the Earth’s position as central in any special way. It was far more the bottom, the dregs of the universe. Trying to move the Earth into the heavens was moving it into an exalted place. At least Livio is honest enough to admit that Galileo remained blind to Kepler’s work, although Livio reduces it to just the discovery of elliptical orbits, whereas Kepler actually contributed more to modern astronomy than Copernicus and Galileo together.

Livio now moves on to Galileo’s entry into theology and his Letter to Castelli. As with all Galileo apologists, whist admitting that Galileo was trespassing in the territory of the theologians, he thinks that Galileo was right to do so and what he wrote was eminently sensible and should have been acknowledged and accepted. What Galileo did struck at the vey heart of the Reformation/Counter Reformation dispute that had been raging in Europe for one hundred years and just three years later would trigger the Thirty Years War, which devastated central Europe and resulted in the death of somewhere between one and two thirds of the entire population. The Catholic Church had always claimed that they and only they were permitted to interpret Holy Scripture. Luther claimed in opposition to this that every man should be allowed to interpret it for themselves. This led to schism and the Reformation. The Catholic Church confirmed, with emphasis, at the Council of Trent that only the Church’s own theologians were permitted to interpret the Bible. Now along comes a mere mathematicus, the lowest rang in the academic hierarchy, and cheerfully tells the theologians how to interpret the Holy Writ. The amazing thing is that they didn’t simply throw him into a foul dungeon and throw away the key.  I mentioned earlier that the Church was a judicial organ and the decisions of the Council of Trent were binding laws on all Catholics. Galileo knowingly and very provocatively broke that law and got mildly and unofficially admonished for doing so. Whatever a modern observer may think about the quality of Galileo’s theological arguments is completely irrelevant, it’s the fact that he made them at all that was the offence. However, in doing so he together with Foscarini provoked the Church into taking the heliocentric hypothesis under the microscope. He had been warned, as early as 1613, by various friends including Cardinal Maffeo Barberini, the future Pope Urban VIII not to do so.

Livio thinks that because he finds Galileo’s arguments in the Letter to Castelli reasonable and ‘because of science’ that the Catholic Church should have cut Galileo some slack and let him reinterpret the Bible. The Catholic Church should abandon their exclusive right to interpret Holy Writ, one of the fundaments of their entire religion, so that a nobody, and despite his celebrity status, in the grand scheme of things Galileo was a nobody, could promote an unproven astronomical hypothesis! This is the same exclusive right for which the same Church was prepared to engage in one of the most devastating wars in European history, just three years later. In his pseudo-historical narrative Livio has here completely lost touch with the historical context.  In fact Livio is not writing history at all but making presentist moral judgements with hindsight.

There is another bizarre statement by Livio where he writes:

All this notwithstanding, however, the Church might have still accommodated (albeit with difficulty) a hypotheticalsystem that would have made it easier for mathematicians to calculate orbits, positions, and appearances of planets and stars as long as such a system could be dismissed as not representing a true physical reality. The Copernican system could be accepted as a mere mathematical framework: a model invented so as to “save the appearances” of astronomical observations–that is, to fit the observed motion of the planets.

I am frankly baffled by this paragraph because that is exactly what the Church did in fact do. They fully accepted heliocentricity as a hypothesis, whilst rejecting it as a real physical description of the cosmos. This is shown very clearly by their treatment of Copernicus’ De revolutionibus, which unlike Kepler’s books, for example, was not placed on the Index of forbidden books but was only placed on it until corrected. This correction was carried out by 1620 and consisted only of changing or removing the comparatively few statement in the book claiming that heliocentricity was a real physical description of the cosmos. From 1621 Catholics were free to read the now purely hypothetical De revolutionibus. Livio relates all of this fairly accurately and then drops another clangour. He writes:

In reality, the modifications introduced by Cardinal Luigi Caetani and later by Cardinal Francesco Ingoli were indeed relatively minor and the publication of the revised version was approved in 1620. However, the new edition never reached the press, and so Copernicus’s book remained on the Index of Prohibited Books until 1835!

This is once again complete rubbish. The Catholic Church never intended to publish a new or revised edition of De revolutionibus. What they did was to issue the list of corrections deemed necessary and every Catholic owner of the book was expected to carry out the corrections in the own copies themselves. Quite a few obviously did and we have a number of surviving copies, including Galileo’s own private copy, with the corrections carried out according to the issued instructions. Interestingly almost all of the thus censored copies are in Italy or of Italian provenance, it seems that Catholics outside of Italy didn’t take much notice of the Vatican’s censorship order. De revolutionibuswas of course removed from the Index in 1620 having been corrected. Also, I know of no case of anyone being prosecuted for reading or owning an uncensored copy of the book.

Livio tries to counter the argument that I have presented above that Galileo was admonished because he meddled in theology by claiming that the motivation was one of anti-science. Livio. “[They] were trying only to convince Galileo not to meddle in theology, as a few modern scholars have concluded.” To counter this he brings statements from Grienberger and Bellarmino saying that elements of Copernicus theory contradict passages of Holy Writ. He writes:”[they] were quite intent on crushing the Copernican challenge as a representation of reality because, from their perspective, they were vindicating the authority of Scripture in determining truth.” Dear Dr Livio that is theology! As Bellarmino wrote in his letter to Foscarini, if a contradiction exists between Holy Writ and a proven scientific fact, the heliocentric hypothesis was of course at this point in time no where near being a proven scientific fact, then the theologians have to very carefully considered how to reinterpret Holy Writ; that is what theologians do!

This brings us to Roberto Bellarmino famous letter to Paolo Antonio Foscarini. Foscarini, a monk, had written a book defending heliocentricity and reinterpreting the Bible in a similar way to Galileo. Criticised, he sent his book to Roberto Bellarmino for his judgement; he hoped it would be favourable. The title contains the word Pythagorean, so Livio explains that the Pythagoreans thought Earth etc. orbited a central fire, therefore the comparison with Copernicus’ theory. Livio then writes, “Greek philosopher Heraclides of Pontus added, also in the fourth century BCE that the Earth rotated on its axis too…” As far as can be determined Heraclides proposed diurnal rotation in a geocentric system and not in a heliocentric or Pythagorean one.

Livio goes into a lot of detail about Foscarini’s text and Bellarmino’s letter but I will only mention two points. Livio quotes the paragraph that I have already paraphrased above, “…if there were a true demonstration that the sun is at the center of the world and the earth in the third heaven, and that the sun does not circle the earth but the earth circles the sun, then one would have to proceed with great care in explaining the Scriptures that appear contrary, and say rather that we do not understand them, than what is demonstrated is false.” Livio adds, “But I will not believe that there is such a demonstration, until it is shown me. Nor is it the same to demonstrate that by supposing the sun to be at the center and the earth in heaven one can save the appearances, and to demonstrate that in truth the sun is at the center and the earth in the heaven; for I believe the first demonstration may be available, but I have very great doubts about the second, and in case of doubt one must not abandon the Holy Scripture as interpreted by the Holy Fathers.”

This is of course eminently sensible and rational. If you want me to accept you scientific theory then show me the proof! Livio doesn’t accept this and goes of into a long diatribe, which demonstrates his own prejudices rather more than any faults in Bellarmino’s logic. He then comes with a totally spurious argument:

If two theories explain all the observed facts equally well, scientists would prefer to adopt, even if tentatively, the simpler one. Following Galileo’s discoveries, such a process would have definitely favoured the Copernican system over the Ptolemaic one, which was what Galileo had been championing all along. The requirement of simplicity would have also given an advantage to Copernicanism over Tycho Brahe’s hybrid geocentric-heliocentric model.

Ignoring the fact that the Ptolemaic system was dead in the water after the discovery of the phases of Venus and so the comparison is a waste of time, any alert reader will immediately spot the massive error in this argument. The two theories, Copernicus and Brahe, do not explain all the observed facts equally well. The Copernican system requires something very central that the Tychonic system does not, terrestrial motion. Livio adds this in a very off hand way, “Of course the ultimate test would have been to find direct proof for the Earth’s motion…” There was in fact absolutely no empirical proof of the Earth’s motion and wouldn’t be until Bradley discovered stellar aberration in 1725! To give the “advantage to Copernicanism over Tycho Brahe’s hybrid geocentric-heliocentric model” would be under the circumstances actually unscientific.

A little bit further on Livio delivers another highly spurious comment, he writes, “…but Bellarmino’s position was extremely rigid. He did not believe that a proof of Copernicanism could ever be found.” Livio is here putting words into Bellarmino’s mouth, who never said anything of the sort, rather he expressed doubt that that such a proof existed.  Livio finishes off his series of spurious attacks on Bellarmino by claiming to prove him theologically wrong. I find it slightly amusing that a twenty-first century astrophysicists claims that Bellarmino, who was universally regarded as the greatest living Catholic theologian and whose reputation as a theologian was such that at the end of his life he was both head of the Index and head of the Inquisition, was theologically wrong.

Things developed as they must and we now have Galileo rushing off to Rome to try and rescue the situation with his infamous theory of the tides. Livio explains the theory and its possible origins then he drops the following jewel:

Albeit wrong, Galileo’s commitment to mechanical easy-to-understand causation made his theory of tides at least plausible.

There is only one possible answer to this claim, bullshit! A theory that states there is only one high tide and one low tide at the same time every day, when there are in fact two of each of which the times travel around the clock over the lunar month (a strong indication of the correct theory of the tides) is anything but a plausible theory. It is as I said bullshit.

We now turn to the committee of consultors set up to examine the theological implications of heliocentricity. Livio of course has much to say against this. His first objection:

Ironically, the same office that had objected vehemently to scientists intruding into theology was now asking the theologians to judge on two purely scientific questions–two of the central tenets of he Copernican model.

Once again Livio appears to have no idea what theology is. The discipline of theology covers all forms of human activity in their entirety. There is absolutely nothing in human existence that doesn’t fall under the remit of theology. Secondly the function of the consultors in this case were being asked to examine the two central tenets of heliocentricity in relation to Catholic religious belief, not a scientific question at all.

Next up, Livio objects to the consultors themselves: “Not one was a professional astronomer or even an accomplished scientist in any discipline.” All of the consultors were highly educated, learned men, who would have had a solid instruction to Ptolemaic astronomy during there education and were more than capable of asking an expert for his advice if necessary.

Consultor: Is there any empirical evidence that the Earth moves and the Sun stands still?

Astronomer: No

Consultor: Is there any empirical evidence that the Sun and not the Earth is at the centre of the cosmos?

Astronomer: No

Simple wasn’t it.

 

The decisions of the consultors are well know:

On February 24 the Qualifiers delivered their unanimous report: the proposition that the Sun is stationary at the centre of the universe is “foolish and absurd in philosophy, and formally heretical since it explicitly contradicts in many places the sense of Holy Scripture”; the proposition that the Earth moves and is not at the centre of the universe “receives the same judgement in philosophy; and … in regard to theological truth it is at least erroneous in faith. (Wikipedia)

Foolish and absurd in philosophy is the scientific judgement and sounds somewhat harsh but can be simply translated as, is not supported by the available empirical evidence. Livio would disagree with both the judgement and my interpretation of it but it is historically fundamentally accurate. The second part of each judgement is of course the theological one. As is also well known the Pope commissioned Cardinal Bellarmino to inform Galileo of the decision and to instruct him not to hold or teach the heliocentric theory. Books, such as those of Kepler, claiming the physical reality of heliocentricity, were placed on the Index and De revolutionibus, as detailed above until corrected, which it was.

Bewilderingly Livio accuses Bellarmino and the Jesuits of failing to support Galileo against the Pope, which displays an incredible ignorance of the Catholic Church, the Pope and the Jesuit Order in the seventeenth century. As stated at the beginning the Catholic Church was a religious, political and judicial power in an age of absolutism and the Pope was an absolutist ruler. The Society of Jesus (Jesuits), and Bellarmino was also a Jesuit, is a religious order dedicated to and directly under the authority of the Pope. Livio’s accusations are totally insane.  He, of course, can’t resist making ahistorical and inaccurate comments about the decision, he writes:

The ruling made by officers of the Church for whom retaining authoritative power over areas totally outside their expertise took priority over open-minded critical thinking informed by scientific evidence.

Livio here continues to ignore/deny the simple fact that the scientific evidence in the early seventeenth century simply did not support an interpretation of heliocentricity as a physical reality and whilst it appears somewhat draconian the Church decision doesn’t actually say anything else.

Livio also launches the presentist moral outrage attack, “[some] argue that some of the responsibility for the prohibition of Copernicanism lies with Galileo himself, because he wouldn’t keep his mouth shut. Such claims are outrages.” Firstly the heliocentric hypothesis was never prohibited only the heliocentric theory, which given its scientific status at the time was in fact, although unnecessarily harsh, justifiable and secondly if Galileo had displayed somewhat more tact, instead of behaving like the proverbial bull in a china shop, things would never have taken the turn that they did.

We move on to the dispute over the nature of comets between the Jesuit astronomer Orazio Grassi and Galileo. Here Livio again displays his ignorance of the history of astronomy. He writes:

Grassi’s theory of comets deviated courageously from the Aristotelian view, which placed comets at about the distance of the Moon. Instead following Tycho Brahe, Grassi proposed that the comets were further out between the Moon and the Sun.

[…]

As to the actual nature of comets, many astronomers at the time were sill adopting Aristotle’s theory, which stated that these represented exhalations of the Earth that became visible above a certain height due to combustion, disappearing from view as soon as that inflammable material was exhausted. Grassi, however, again followed Brahe in suggesting that comets were some sort of “imitation planets.”

 

The modern debate on the nature of comets and whether they were sub- or supralunar began in the fifteenth century with Toscanelli (1397–1482), who tried to track the path of Comet Halley in 1456, as if it were a supralunar object. The debate continued in the work of Georg von Peuerbach (1423–1461), Toscanelli’s one time student, and Peuerbach’s student, Regiomontanus (1436–1476), who wrote a work on how to detect parallax in a moving comet. The debate continued in the 1530’s with many leading European astronomers taking part, including, Johannes Schöner (1477–1547), who published Regiomontanus’ work on comets, Peter Apian (1495–1552), after whom the law concerning comets’ tails in named, Copernicus (1473–1543), Gerolamo Cardano (1501–1576) and Jean Pena (1528–1558). The latter two both proposed a theory that comets were translucent, supralunar, bodies that focused the Sun’s rays like a lens creating the comets tail. Tycho’s comet, the great comet of 1577 was observed by astronomers all over Europe and Tycho, Michael Mästlin (1550-1631) and Thaddaeus Hagecius ab Hayek (1525–1600), three leading astronomers, all determined that comets were supralunar. Clavius accepted these results and included the fact that comets were supralunar in his Sphaera. This meant that the official view of the Catholic Church in general and the Jesuits in particular was that comets were supralunar. This view was confirmed again by astronomers throughout Europe observing Comet Halley in 1607. The was nothing courageous about Grassi’s theory of comets and in fact you would be hard put to it to find a serious European astronomer, apart from Galileo, who still adhered to Aristotelian cometary theory in 1618. In the same year Grassi’s Jesuit colleague Johann Baptist Cysat (c. 1587–1657), a student of Christoph Scheiner, became the first astronomer to observe a comet with a telescope giving the first ever description of a comet’s nucleus in his Mathemata astronomica de loco, motu, magnitudine et causis cometae qui sub finem anni 1618 et initium anni 1619 in coelo fulsit. Ingolstadt Ex Typographeo Ederiano 1619 (Ingolstadt, 1619). He followed Tycho Brahe in believing that comets orbited the sun. He also demonstrated the orbit was parabolic not circular.

Galileo, who due to ill health had not observed the comets of 1618, launched a vicious and insulting, unprovoked attack on Grassi’s publication, presenting a view of comets that was totally out of date, ignoring all of the accumulated scientific evidence from the last two centuries on the nature of comets just to put one over on the Jesuits and the supporters of Tycho’s theories. Livio does his best to defend Galileo’s disgusting behaviour but even he admits that Grassi was principally in the right and Galileo simply wrong. Livio goes as far as to claim that because comets has an elongated elliptical orbit (actually only some do) that Galileo’s claim that they travel in straight lines was more correct than Grassi’s claim that they orbit the Sun. In all other instances Livio goes out of his way to emphasise that hindsight shows that Galileo was right and his critics wrong so why the opposite tack here? Comets do orbit the Sun. Livio scrabbles around in the cesspit that is Galileo’s paper on comets looking for crumbs for which he can give Galileo credit.

Livio now criticises Grassi’s answer to Galileo’s attack because it contained sarcastic attacks on Galileo. Talk about pot calling the kettle black. He even brings up the obtuse suggestion that it was actually written by Christoph Scheiner because of his antagonism towards Galileo. This theory has a small problem; Scheiner only became antagonistic towards Galileo after Galileo had viciously insulted him in The Assayer, a publication that still lay in the future. Livio’s whole account of the affair is biased in Galileo’s favour so that it serves as a lead up to The Assayer, for the time being the last document in the dispute, because, as already mentioned, Livio sees it as the document in which Galileo established the place of mathematics in science. Livio’s account of The Assayer and its significance is more than somewhat outlandish.

With very little evidence to base this opinion upon, Galileo thought in 1623 that he knew the answer: the universe “is written in the language of mathematics.” It was this dedication to mathematics that raised Galileo above Grassi and the other scientist of his day, even when his specific arguments fell short of convincing–and even though he assigned to geometry a more important role than it seemed to deserve at the time. His opponents, he wrote, “failed to notice that to go against geometry is to deny truth in broad daylight.”

This whole paragraph contains so much that is wrong that it is difficult to know where to start.  I have already explained above that by the time Galileo wrote this infamous piece of purple prose it was widely accepted by both mathematician and natural philosophers that the future of science lay in an intensive mathematization. A process that was well under way when Galileo wrote something that was not new and sensational but a common place. A lot of contemporary scientists were dedicated to mathematics, such as Johannes Kepler, Simon Steven and Isaac Beeckman. In fact the last two both contributed at least as much to the development of mathematical physics in the seventeenth century as Galileo if not more. Unfortunately their achievements tend to get blended out on the popular level by the Galileo myth machine of which, Livio is just the latest in a long line of operators.

To raise Galileo above Grassi because of his dedication to mathematics is more than a joke; it’s grotesque. Earlier in his account of the dispute between Grassi and Galileo, Livio acknowledged that Grassi was an excellent optical physicist and an equally excellent architect both disciplines are fundamentally mathematical disciplines. He also points out that Grassi succeeded Grienberger as professor for mathematics at the Collegio Romano, who had succeeded Clavius. The chair for mathematics at the Collegio Romano was unique in European universities. Clavius had set up what we would now call an institute for advanced mathematics, a roll that both Grienberger and Grassi kept alive. This institute was dedicated to exemplifying, establishing and developing the roll of mathematics in the sciences. The Collegio Romano was quite simply the most advanced school for mathematics and its application anywhere in Europe. As far as geometry goes the standard textbook for geometry throughout most of the seventeenth century was Christoph Clavius’ Euclides Elementorum Libri XV, Rom 1574, note the date. This was not simply a new translation of Euclid’s classic but a modernised, simplified, streamlined textbook that was used extensively by both Catholic and Protestant educational establishments; the last edition was printed in 1717.

Shortly after the above passage on Galileo’s supposed revolutionary thoughts on mathematics we get the following throwaway line:

Galileo introduced the revolutionary departure from the medieval, ludicrous notion that everything worth knowing was already known.

When I read this I didn’t know whether to laugh, cry, rip my hair out (if I had any), or simply go out and throw myself off a high cliff in the face of such imbecilic drivel. I strongly suspect that any of my history of medieval science friends and colleagues will react similarly should they happen to read the above sentence. Starting at the very latest with the translation movement in the twelfth century medieval science was an evolving developing field with advances in a wide range of disciplines. The medieval scholars laid the foundations upon which Galileo built his own achievements. I would be quite happy to give Dr Livio a very long reading list of good books on medieval science to help him find a way out of his ignorance.

At the end of his chapter on The Assayer Livio warms up the old discovery of Pierto Redondi that Galileo was denounced to the Inquisition for the bits of primitive atomism contained in The Assayer. This was indeed true but the accusation was dismissed and nothing came of it, as Livio admits. Livio, however, now writes a whole paragraph about how important atomism, he actually means particle physics, is in modern physics, mentioning quarks, leptons, gage bosons etc., etc. I wonder how Livio would react if he knew that the principle source of atomism in the seventeenth century is now considered to be the German alchemist Daniel Sennert (1572–1637) reviving the theories of the thirteenth century alchemist Paul of Taranto. You remember alchemy one of those fictitious fields together with astrology that scientists sometime connected to.

Next up the Dialogo: Livio acknowledges that there were external political and social factors that affected the situation within the Vatican in the years leading up to the publication of the Dialogo. He starts with the astrological scandal. In 1630 an astrological prognostication predicting the Pope’s death was made and circulated by, to quote Livio, the abbot of Saint Praxedes in Rome. Livio then tells us, “some of Galileo’s adversaries tried to pin the blame on Galileo…” What Livio neglects to mention is that although Galileo was in this case innocent there were plausible ground for suspecting him, it was a case of guilt by association. Firstly, Galileo was known to be a practicing astrologer. Secondly, the abbot of Saint Praxedes, Orazio Morandi had been a good friend of Galileo’s since at least 1613. Thirdly, following an audience with the Pope concerning the forthcoming Dialogo in 1630, Galileo took part in a supper with Moriandi in Saint Praxedes together with Rafaello Visconti (Master of the Sacred Palace), another friend of Galileo’s, who read the manuscript of the Dialogo for Niccolò Ricardi the censor, who never actually read it, and an appraiser of the Inquisition. When Morandi was arrested for his horoscope and thrown into the Vatican’s dungeon, Visconti was also implicated and banished from the Vatican. That Galileo came under suspicion by association is hardly surprising. This was not a plot against Galileo as Livio claims.

We then have a wonderfully mangled piece of history from Livio, who write:

Unfortunately, this was not the end of the trials and tribulations Galileo had to endure for the publication of the Dialogo. Most significant of these was the sudden death on August 1, 1630, of Federico Cesi, the founder and sole source of funding for the Accademia dei Lincei. As a result the printing had to be done in Florence, outside of Riccardi’s jurisdiction. After some negotiations, it was agreed that Father Jacinto Stefani, a consultor of the Inquisition in Florence, would be in charge, but only after Riccardi approved the introduction and conclusion.

Although Cesi’s death was a serious blow to Galileo’s plans because he Cesi was supposed to finance the publication of the Dialogo, but this was not the reason why it was published in Florence and not in Rome. What actually happened is that after Galileo had returned to Florence from Rome with his manuscript the plague broke out in Florence. Restrictions on travel imposed by the authorities meant that Galileo could not return to Rome to oversee the printing and publication of his book. He requested permission from Riccardi to get the book published in Florence instead, but as already mentioned Riccardi hadn’t actually read the book intending to review the pages as they came of the printing press instead, having accepted Visconti’s recommendation. Riccardi was now in a pickle and wanted Galileo to send him a copy of the manuscript but due to the immense cost of producing such a copy, Galileo was very reluctant to do so.  Riccardi agreed to Galileo just sending the introduction and conclusion to Rome to be controlled and the rest being controlled in Florence by Stefani. Galileo and his circle of supporters now manipulated and even oppressed the two censors and played them against each other. The result was that the imprimatur was granted by Stefani under the impression that Ricarrdi had already cleared the manuscript for publication in Rome, he hadn’t, without actually controlling the text himself. Galileo had an imprimatur that had been obtained under false pretences, which meant that he didn’t actually have an imprimatur at all. All of this came out during the investigations following publication, which contributed to Galileo’s being prosecuted but did not play a role in the actual trial.

All of this, which Livio doesn’t mention at all, is important because when dealing with the trial Livio several times emphasises that the Church had given Galileo to publish the book as it was because he had not one but two imprimaturs, whereas in fact formally he didn’t have one at all.

Livio now tells us:

There is a certain sleight of hand in the title. [Dialogue Concerning the Two Chief Systems of the World, Ptolemaic and Copernican, Propounding Inconclusively in the Philosophical Reasons as Much for the One Side as for the Other] Even if one were to ignore the fact that the Aristotelian and the Ptolemaic systems were not identical, there was at least one other world system that in terms of agreement with observations was superior to the Ptolemaic: Tycho Brahe’s Hybrid system in which the planets revolved around the Sun, but the Sun itself revolved around the Earth. Galileo always regarded that system as unnecessarily complex and contrived, and he also thought that he’d found proof for the Earth’s motion through the phenomenon of the tides, so in striving to hand Copernicanism a clear victory (although formally the book was inconclusive) he probably didn’t want to confuse the issue with superfluous qualifications.

Once again so much to unpick. Livio obviously doesn’t understand that the system propagated by the Catholic Church before Copernicus was an uneasy mixture of Ptolemaic astronomy and Aristotelian cosmology, not Aristotelian astronomy, which is a whole different kettle of fish that had been revived by some in the sixteenth century and against which Clavius had fought tooth and nail. In fact he devotes much more space to refuting the Aristotelian homocentric astronomy in his Sphaera than he devotes to refuting Copernicus. The developments in astronomy since Copernicus published De revolutionibus had left Aristotelian cosmology in shreds and Clavius had been quite happy to also jettison that, so for Clavius, speak the Catholic Church, the world system was simply the Ptolemaic.

In fact Galileo’s whole title and thus his whole book is a complete sham By 1630 the two chief systems of the world were the Tychonic system and Johannes Kepler’s elliptical heliocentric system, which was regarded as separate from and as a competitor to Copernicus’ system. The Ptolemaic system had been killed off by the discovery of the phases of Venus and the plausible assumption that Mercury would also orbit the Sun as its general behaviour was identical to that of Venus; the phases of Mercury were first observed in 1639. Galileo just used Ptolemy as a fall guy for his sham Copernican victory. Copernicus’ heliocentric system had been rendered totally obsolete by Kepler’s discovery of the three laws of planetary motion, empirically based mathematical laws I would point out, which Galileo just completely ignored clinging to Copernicus’ ‘unnecessarily complex and contrived’ system of deferents and epicycles. Livio’s dismissal of the Tychonic system as ‘superfluous qualifications’ is put quite simply a joke, especially given that the Tychonic system was at the time the leading contender as the world system because of the failing evidence of terrestrial motion.

Livio without realising it now points out the central problem with the Dialogo:

The Dialogo is one of the most engaging science texts ever written. There are conflicts and drama, yes, but also philosophy, humor, cynicism, and poetic usage of language, so that the sum is much more than its parts.

All of the above is true except that as a piece of astronomy the sum is much less than its parts, which I will explain shortly. There is no doubt whatsoever that for all of his undeniably polymathic talents, Galileo’s greatest gift was as a polemicist. A friend of mine, who is a Galileo expert, calls him the first science publicist and this is a function that he carried out brilliantly. Yes, the Dialogo is a brilliant piece of literature, which is probably unequalled by any other scientific publication in the entire history of science. However, its literary brilliance appears to have blinded many of its readers to the fact that as a piece of astronomy it’s total crap.

As already mention, Galileo struts on to the stage to discuss what he calls the two chief world systems but actually delivers up is a sham battle between two obsolete and refuted systems. He clung stubbornly to his completely false theory that comets are mere optical illusions originating on the Earth against a mass of solid, empirical, scientific evidence that comets were in fact supralunar celestial objects that orbited the Sun. Something that Galileo was no prepared to accept because it was first proposed by Tycho, who saw it as supporting evidence for his system. He clung to Copernicus’ deferents and epicycles rather than acknowledge Kepler’s much simpler, empirically proven elliptical orbits. In fact, Galileo completely ignores Kepler’s three laws of planetary motion, by far and away, the best scientific supporting evidence for a heliocentric system because if he did acknowledge them he would have to hand the laurels for proving the superiority of the heliocentric system to Kepler instead of winning them for himself, his one and only aim in the whole story. Last but by no means least he structures his whole book and his argument around his totally ludicrous theory of the tides. One of the greatest mysteries in Galileo’s life is why he, an undeniably brilliant scientist, clung so tenaciously to such an obviously bankrupt theory.

Galileo’s masterwork sailed majestically past the actually astronomy debate in the 1630s and played little or no role in the ensuing astronomical discussion of the seventeenth century in which it was largely ignored being of no real relevance. It only became crowned as a classic in the late eighteenth and early nineteenth centuries when Galileo was declared to be a scientific martyr

Livio, like so many others, blinded by the radiance of Galileo’s rhetoric sees the matter somewhat differently. In a surprisingly short presentation of the book he praises Galileo’s achievements. There are a couple of minor points that I would like to pick up on, Livio delivers up once again the myth of heliocentricity removing the Earth from its central place in the cosmos:

More important, the act of removing humans from their central place in the cosmos was too brutal to be remedied by some philosophical pleasantries at the end of a debate from a very different tone.

The whole central place in the cosmos myth is one created in the late eighteenth century and I know of no seventeenth century use of it to criticise the heliocentric hypothesis. In a bit of waffle towards the end of this chapter Livio says the “He [Galileo] did his best…” If Galileo had truly done his best he would not have ignored the most compelling evidence for the heliocentric hypothesis, Kepler’s laws of planetary motion. He goes on to say that, “History has indeed proved that Galileo was right,” it hasn’t Galileo was wrong and Kepler was right.

Livio gives a fairly short and largely accurate account of Galileo’s trial by the Inquisition and the events leading up to following the publication of the book. The only major error being, as mentioned above, his insistence that the book had two imprimaturs. Livio acknowledges that the judgement of the three clerics, commissioned to read the book and determine whether Galileo taught or defended in anyway the heliocentric theory, that he had in fact done just that and thus broken the order from 1616 was correct. Although he can’t avoid a dig at Melchior Inchofer, the Jesuit under the three. This was the charge that was brought against Galileo and of which he was found guilty. He also can’t avoid turning up the emotional rhetoric, “What happened on the following day remains one of the most shameful events in our intellectual history.” Galileo deliberately and wilfully broke the law and received the standard punishment for having done so, which included abjuring. There is an old saying under criminals, if you can’t do the time don’t do the crime. Galileo was arrogant enough to think that he could put one over on the Catholic Church and get away scot-free, it turned out that he couldn’t.

We get a short, once again, rather gushing account of the Discorsi, Galileo real claim to fame but Livio rather spoils it by once again trying to claim that Galileo created modern science.

Through an ingenious combination of experimentation (for example, with inclined planes), abstraction (discovering mathematical laws), and rational generalisation (understanding that the same laws apply to all accelerated motions), Galileo established what has since become the modern approach to the study of all natural phenomena.

Although in the case of the studies presented by Galileo in the Discorsi he proved himself to be an excellent experimental scientist, all of these things had been done by others before Galileo and independently by others contemporaneously to Galileo. He was only one amongst other who helped to establish this methodology. Galileo was part of the evolution of a new scientific methodology that had started long before he was born and which he did not initiate. Like many others before him Livio also falsely attributes Newton’s first law, the principle of inertia, to Galileo. Whilst Galileo did indeed produce a version of the principle of inertia, Newton took his first law from the works of René Descartes, who in turn had taken it from Isaac Beeckman, who had formulated it independently of Galileo.

The next chapter of Livio’s book is an obtuse story of an account of the Galileo affair commissioned by the Vatican in the 1940s and then not published but then published under the name of a different author in the 1960s. The sole aim of this chapter is simply to take another gratuitous swing at the Catholic Church. The book closes with a fairly long digression on Einstein’s views on science and religion, which brings us to a major problem with the book, apart from the historical inaccuracies, it tries to be too many things at once.

One thing that I have mentioned in passing is Livio’s attempts to draw parallels between what happened to Galileo and the current crop of science deniers. The analogies simply don’t work because no matter how hard Livio tries to claim the opposite, Galileo’s critics in astronomy, especially the Jesuits, were not science deniers but just as much scientists as Galileo, who argued for an equally valid, in fact empirically more valid, system of astronomy, the Tychonic one, as Galileo’s heliocentric system. All the way through the book Livio keeps trying to disqualify the Tychonic system as unscientific but in the first half of the seventeenth century it was just as scientific as the heliocentric hypothesis. The only person practicing science denial here is Livio. He also wants to present the book as a discussion of the general relationship between science and religion but the whole time he argues from a presentist standpoint and refuses to view the relationship in Galileo’s time in its correct historical context. Lastly he actually wants to sell the book as a new biography of Galileo presented with the insights of a working astrophysicist, his own claim at the beginning of the book. Unfortunately it is here that he fails most.

He enters his story with a preconceived image of Galileo as a white knight on his mighty charger fighting for freedom of speech and freedom of thought in the sciences and as the originator and creator of modern experimental and mathematical science. With this image firmly in mind, from the start of his narrative, he fills out the picture with a classic case of confirmation bias. He completely ignores any real facts from the history of science that might force him to rethink his preconceived image of his hero. There is no mistaking the fact that is a strong element of hero worship in Livio’s vision of Galileo. Instead of describing the real state of science in the early seventeenth century, he present the reader with a comic book version of Aristotelian philosophy from the thirteenth century making it easier for him to present Galileo as some sort of superman, who dragged natural philosophy kicking and screaming into the modern world, whilst singlehandedly creating modern science. Edward Grant the eminent historian of medieval science (a discipline that Livio probably thinks doesn’t exist, because he seems to think that there was no medieval science), once very perceptively wrote that Aristotelian philosophy was not Aristotle’s philosophy and went on to point out that it is very difficult to define Aristotelian philosophy, as it kept on evolving and changing down the centuries. The Thomist philosophy of the Jesuits in the first third of the seventeenth century was a very different beast to the Aristotelian philosophy that Thomas Aquinas propagated in the thirteenth century. The historical distortions that Livio presents would be funny if they weren’t so grotesque.

On the question of Galileo being ‘a symbol of the fight for intellectual freedom, a lifetime of studying and thinking about Early Modern science has brought me to the conclusion that he wasn’t. In my opinion Galileo didn’t really care about such abstractions as freedom of thought, freedom of speech or intellectual freedom, all he cared about was his own vainglory. As Mario Biagioli clearly shows in his Galileo Courtier,[2] Galileo was a social climber. He was a relatively unknown, middle aged, professor of mathematics, who overnight became the most celebrated astronomer in Europe because of his telescopic discoveries. Alone the way he presented those discoveries shows his principle aim was to see what he could gain socially from them. Galileo loved his celebrity status and revelled in it. His engagement for heliocentricity was all motivated by the thought that if he could prove it true, then he would become even more famous and even more feted. To achieve this aim he lied, cheated and plagiarised. He attacked and viciously stomped on all those he regarded as competitors in his strivings for fame and adulations. He also deliberately ignored any evidence for heliocentricity presented by others (see Kepler’s laws of planetary motion) that might mean that they get the laurels and not he. Galileo might have been a great scientist but he was also a vain egoist. I think all of this might go someway to explaining his extraordinary blindness to the enormous inadequacies of his theory of the tides.

Reading this book made me very angry. The only positive thing I can say about it is that Livio is an excellent writer and the book is very well written and easy to read, but in the end even this must be viewed negatively. Mario Livio is a prominent scientist and the very successful author of popular books on mathematics and science. Because of his reputation non-specialist journals will have glowing reviews of his book, mostly written by people, who are neither Galileo experts and nor historians of science. If it follows the normal pattern for such books, specialist journals and professional historians of science will decline to review it, because it’s a pop book. The book will almost certainly become a genre bestseller and another generation of readers will acquire a mythical image of Galileo Galilei and a totally false impression of Renaissance science, something I have battled against in the eleven years that I have been writing this blog.

[1] Mario Livio, Galileo and the Science Deniers, Simon & Schuster paperbacks, New York, London, Toronto, Sydney, New Delhi, 2020

[2] Mario Biagioli, Galileo Courtier: The Practice of Science in the Culture of Absolutism, University of Chicago Press, Chicago & London, ppb. 1994

23 Comments

May 27, 2020 · 8:35 am

Annus mythologicus

Almost inevitably Newton’s so-called Annus mirabilis has become a social media meme during the current pandemic and the resulting quarantine. Not surprisingly Neil deGrasse Tyson has once again led the charge with the following on Twitter:

When Isaac Newton stayed at home to avoid the 1665 plague, he discovered the laws of gravity, optics, and he invented calculus.

Unfortunately for NdGT and all the others, who have followed his lead in posting variants, both positive and negative, the Annus mirabilis is actually a myth. So let us briefly examine what actually took place and what Isaac actually achieved in the 1660s.

GodfreyKneller-IsaacNewton-1689

Portrait of Newton at 46 by Godfrey Kneller, 1689 Source: Wikimedia Commons

We will start with the calculus, which he didn’t actually invent at all, neither in the 1660s nor at any other time. Calculus has a more than two thousand year history stretching back to fourth century BCE. The development of calculus accelerated in the seventeenth century beginning with Kepler and Cavalieri and, previous to Newton, reaching a high point in the work of John Wallis. What Newton, like Leibniz, did was to collate, order and expand the work that others had already produced. Let us take a closer look at what Newton actually achieved in the 1660s.

But before we start, one point that various people have made on the Internet is that during this time Newton was a completely free agent with no commitments, obligations or burdens, a bachelor without children. In college his chambers were cleaned by servants and his meals were prepared by others. At home in Woolsthorpe all of his needs were also met by servants. He could and did devote himself to studying without any interruptions.

Newton, who entered Trinity College Cambridge in June 1661, was an indifferent student apparently bored by the traditional curriculum he was supposed to learn. In April 1664 he was due to take a scholarship exam, which would make him financially independent. The general opinion was not positive, however he did pass as he also passed his BA in the following year, when the prognosis was equally negative. Westfall suggests that he had a patron, who recommended that Cambridge retain him.

Freed by the scholarship, Newton now discovered his love and aptitude for the modern mathematics and set off on a two-year intensive study of the subject, almost to the exclusion of everything else, using the books of the leading mathematicians of the period, Descartes (but in the expanded, improved Latin edition of van Schooten), Viète and Wallis. In October 1666 Newton’s total immersion in mathematics stopped as suddenly as it had begun when he wrote a manuscript summarising all that he had internalised. He had thoroughly learnt all of the work available on the modern analytical mathematics, extended it and systematised it. This was an extraordinary achievement by any standards and, although nobody knew about it at the time, established Newton as one of the leading mathematicians in Europe. Although quite amazing, the manuscript from 1666 is still a long way from being the calculus that we know today or even the calculus that was known, say in 1700.

It should be noted that this intense burst of mathematical activity by the young Newton had absolutely nothing to do with the plague or his being quarantined/isolated because of it. It is an amusing fact that Newton was stimulated to investigate and learn mathematics, according to his own account, because he bought a book on astrology at Sturbridge Fair and couldn’t understand it. Unlike many of his contemporaries, Newton does not appear to have believed in astrology but he learnt his astronomy from the books of Vincent Wing (1619–1668) and Thomas Street (1621–1689) both of whom were practicing astrologers.

I said above that Newton devoted himself to mathematics almost to the exclusion of everything else in this period. However, at the beginning he started a notebook in which he listed topics in natural philosophy that he would be interested in investigating further in the future. Having abandoned mathematics he now turned to one of those topics, motion and space. Once again he was guided in his studies by the leaders in the field, once again Descartes, then Christiaan Huygens and also Galileo in the English translation by Thomas Salusbury, which appeared in 1665. Newton’s early work in this field was largely based on the principle of inertia that he took from Descartes and Descartes’ theories of impact. Once again Newton made very good progress, correcting Descartes errors and demonstrating that Galileo’s value for ‘g’ the force of acceleration due to gravity was seriously wrong. He also made his first attempt to show that the force that causes an object to fall to the ground, possibly the legendary apple, and the force that prevents the Moon from shooting off at a tangent, as the principle of inertia says it should, were one and the same. This attempt sort of failed because the data available to Newton at the time was not accurate enough. Newton abandoned this line of thinking and only returned to it almost twenty years later.

Once again, the progress that the young Newton made in this area were quite impressive but his efforts were very distant from his proof of the law of gravity and its consequences that he would deliver in the Principia, twenty year later. For the record Newton didn’t discover the law of gravity he proved it, there is an important difference between the two. Of note in this early work on mechanics is that Newton’s concepts of mass and motions were both defective. Also of note is that to carry out his gravity comparison Newton used Kepler’s third law of planetary motion to determine the force holding the Moon in its orbit and not the law of gravity. The key result presented in Principia is Newton’s brilliant proof that Kepler’s third law and the law of gravity are in fact mathematically equivalent.

The third area to which Newton invested significant time and effort in the 1660s was optics. I must confess that I have absolutely no idea what Neil deGrasse Tyson means when he writes that Newton discovered the laws of optics. By the time Newton entered the field, the science of optics was already two thousand years old and various researchers including Euclid, Ptolemaeus, Ibn al-Haytham, Kepler, Snel, and Descartes had all contributed substantially to its laws. In the 1660s Newton entered a highly developed field of scientific investigation. He stated quite correctly that he investigated the phenomenon of colour. Once again his starting point was the work of others, who were the leaders in the field, most notably Descartes and Hooke. It should be clear by now that in his early development Newton’s debt to the works of Descartes was immense, something he tried to deny in later life. What we have here is the programme of experiments into light that Newton carried out and which formed the basis of his very first scientific paper published in 1672. This paper famously established that white light is made up of coloured light. Also of significance Newton was the first to discover chromatic aberration, the fact that spherical lenses don’t sharply focus light to a single point but break it up into a spectrum, which means the images have coloured fringes. This discovery led Newton to develop his reflecting telescope, which avoids the problem of chromatic aberration.

rsta20140213f02

Newton’s sketch of his crucial experiment. Source: Royal Society

Here trying to establish a time line of when and where he carried out these experiments is very difficult, not alone because Newton’s own statements on the subject are contradictory and some of them are provably false. For example he talks about acquiring a second prism from Sturbridge Fair in a year when one didn’t take place. Also Newton’s source of light was sunlight let into a darkened room through small hole in the shutters. This was only possible at certain times of year and certain times of day when the sun is in the right position respective the window. Newton claims experiments made at times where these conditions weren’t met. That not all the experiments were made in Woolsthorpe Manor is clear, as many of them required two operators, which means that they were made when Newton was back in his chambers in Trinity College. The best guestimate is that this programme of experiments took place over the period 1660 to 1670, so once again not in Newton’s year of quarantine.

Another thing that keeps getting mentioned in connection with this story is that during his experiments on light Newton, shock-horror, stuck a pin in his eye! He didn’t. What he did was to insert a bodkin, a flat, blunt, threading needle, into his eye-socket between his skull and his eyeball in order to apply pressure to the back of his eyeball. Nasty enough, but somewhat different to sticking a pin in his eye.

All in all the developments that the young Newton achieved in mathematics and physics in the 1660s were actually spread out over a period of six years. They were also not as extensive or revolutionary as implied in Neil deGrasse Tyson brief tweeted claim. In fact a period of six intensive years of study would be quite normal for a talented student to acquire the basics of mathematics and physics. And I think we can all agree that Newton was very talented. His achievements were remarkable but not sensational.

It is justified to ask where then does the myth of the Annus Mirabilis actually come from? The answer is Newton himself. In later life he claimed that he had done all these things in that one-year, the fictional ones rather than the real achievements. So why did he claim this? One reason, a charitable interpretation, is that of an old man just telescoping the memories of his youth. However, there is a less charitable but probably more truthful explanation. Newton became in his life embroiled in several priority disputes with other natural philosophers over his discoveries, with Leibniz over the calculus, with Hooke over gravity and with Hook and Huygens over optics. By pushing back into the distant past some of his major discoveries he can, at least to his own satisfaction, firmly establish his priority.

The whole thing is best summarised by Westfall in his Newton biography Never at Rest at the end of his chapter on the topic, interestingly entitled Anni mirabiles, amazing years, not Annus mirabilis the amazing year, on which the brief summary above is largely based. It is worth quoting Westfall’s summary in full:

On close examination, the anni mirabiles turn out to be less miraculous than the annus mirabilis of Newtonian myth. When 1660 closed, Newton was not in command of the results that have made his reputation deathless, not in mathematics, not in mechanics, not in optics. What he had done in all three was to lay foundations, some more extensive than others, on which he could build with assurance, but nothing was complete at the end of 1666, and most were not even close to complete. Far from diminishing Newton’s stature, such a judgement enhances it by treating his achievements as a human drama of toil and struggle rather than a tale of divine revelation. “I keep the subject constantly before me, “ he said, “and wait ‘till the first dawnings open slowly, by little and little, into full and clear light.” In 1666 by dint of keeping subjects constantly before him, he saw the first dawnings open slowly. Years of thinking on them continuously had yet to pass before he gazed on a full and clear light.[1]

Neil deGrasse Tyson has form when it comes to making grand false statements about #histSTM, this is by no means the first time that he has spread the myth of Newton’s Annus mirabilis. What is perhaps even worse is that when historians point out, with evidence, that he is spouting crap he doesn’t accept that he is wrong but invents new crap to justify his original crap. Once he tweeted the classic piece of fake history that people in the Middle Ages believed the world was flat. As a whole series of historians pointed out to him that European culture had known since antiquity that that the world was a sphere, he invented a completely new piece of fake history and said, yes the people in antiquity had known it but it had been forgotten in the Middle Ages. He is simply never prepared to admit that he is wrong. I could bring other examples such as my exchange with him on the superstition of wishing on a star that you can read here but this post is long enough already.

Bizarrely Neil deGrasse Tyson has the correct answer to his behaviour when it comes to #histSTM, of which he is so ignorant. He offers an online course on the scientific method, always ready and willing to turn his notoriety into a chance to make a quick buck, and has an advertising video on Youtube for it that begins thus:

One of the great challenges in this world is knowing enough about a subject to think you’re right but not enough about the subject to know you’re wrong.

This perfectly encapsulates Neil deGrasse Tyson position on #histSTM!

If you want a shorter, better written, more succinct version of the same story then Tom Levenson has one for you in The New Yorker 

[1] Ricard S. Westfall, Never at Rest: A Biography of Isaac Newton, CUP; Cambridge, ppb. 1983, p. 174.

 

21 Comments

Filed under History of Astronomy, History of Mathematics, History of Optics, Myths of Science, Newton

April 12th

The HISTSCI_HULK had just been settling down to the beautiful sunny morning and deciding, which of his Easter eggs he wanted to eat first (chocolate for breakfast on Easter is OK, isn’t it?), when he let out an ear shattering bellow of rage that signalled that he was about to go on the rampage. What could have so upset the valiant defender of truth and accuracy in the history of science? He had been casually perusing the website Today in Science History, a useful calendar of birth, deaths and events in #histSTM, when his eyes were drawn to the following brief statement:

 

“In 1633, Galileo Galilei’s second trial before the Inquisition began. At its conclusion his belief that the Earth was not the centre of the Universe was pronounced heretical”

What could possible have so enraged the HISTSCI monster in this apparently innocuous historical claim? Well, almost everything. The date and the name are correct but both substantive claims are simply false. Of course, there is the possibility that we have slipped into a parallel universe and are dealing with another Galileo Galilei about whom the stated facts are correct but Ockham’s razor would suggest that the simplest solution is that the facts are wrong.

We start with, “Galileo Galilei’s second trial before the Inquisition began,” Galileo only ever had one trial before the Inquisition so this could not have been the second. This is a wide spread misconception that occurs here not for this first time and it is worth explaining why it’s false. Galileo had to do with the Inquisition three times in his life. Three times, I hear you ask, when or what was the third time. Most people aren’t aware of Galileo’s first run in with the Inquisition, which took place when he was still a relatively unknown professor for mathematics in Padua in 1604.

Galileo was denounced to the Venetian Inquisition by a former amanuensis, Silvestro Pagnoni from Pesaro for practicing deterministic astrology. Yes, Galileo was a practicing astrologer and no, he didn’t just do it for the money. Greek astrology was deterministic, which meant that ones entire life was determined at the point of birth. This conflicted with the Christian belief in free will and was thus considered heretical. Quite why the Medieval Church didn’t just dump astrology is somewhat puzzling but in the thirteenth century Albertus Magnus and Thomas Aquinas redefined astrology, so that it was non-deterministic for human thought. You can read exactly how they did so in Darrel Rutkin’s excellent book, Sapientia Astrologica. Although the Church accepted astrology in the seventeenth century, deterministic astrology was definitely not acceptable. The Venetian Inquisition duly investigated the accusation and, having cleared Galileo of all suspicion, did not pursue the case any further. Galileo’s next brush with the Inquisition was the much more famous one in 1615/16 and it is this one that people mistakenly think was a trial with Galileo as the accused.

What actually happened was that the Church provoked by Galileo’s Letter to Benedetto Castelli and Paolo Antonio Foscarini’s Epistle concerning the Pythagorean and Copernican opinion of the Mobility of the Earth and the stability of the sun and of the new system or constitution of the World set up a commission to investigate and pass judgement on the heliocentric cosmological theory. The conclusion of the commission is generally well known.

The proposition that the Sun is stationary at the centre of the universe is “foolish and absurd in philosophy, and formally heretical since it explicitly contradicts in many places the sense of Holy Scripture”; the proposition that the Earth moves and is not at the centre of the universe “receives the same judgement in philosophy; and … in regard to theological truth it is at least erroneous in faith.”

Absurd in philosophy can be translated as scientifically false, a correct judgement based on the knowledge of the time, as the available empirical evidence solidly supported a helio-geocentric system and not a heliocentric one.

As Galileo was the leading proponent of a heliocentric world view the Pope, Paul V, instructed Roberto Bellarmino, the Church’s leading theologian to inform Galileo of the commission’s findings and to instruct him that he could no longer hold or teach the heliocentric theory. Bellarmino did as instructed but at no point was Galileo on trail.

The astute reader will have already noticed that it was not at the end of his trial in 1633 that the “belief that the Earth was not the centre of the Universe was pronounced heretical” but already by the commission of investigation in 1616. In fact we now stumble upon a conundrum, the heliocentric theory was never actually officially pronounced heretical. The commission found that the proposition that the Sun is stationary at the centre of the universe is “foolish and absurd in philosophy, and formally heretical since it explicitly contradicts in many places the sense of Holy Scripture” but only a Pope can formally declare something heretical and no pope ever did.

I’m not going to address the trial itself and the factors leading up to it, as I fairly recently wrote a whole blog post on the topic, which you can read here.

This anniversary provoked an at times heated exchange on Twitter, yesterday and this morning, in which various people attacked the Catholic Church and/or the Inquisition, their attacks based largely on false or inaccurate information and I, as all too often, ended up trying my best to correct their mistaken utterances. I will now repeat some of the core insights from that exchange.

Galileo was during his interrogation and trial by the Roman Inquisition never imprisoned nor tortured and not even shown the instruments of torture, all of which claims are too often believed to represent the truth. He was, in fact, treated with care and respect as an honoured guest throughout his interrogation. He was housed in a luxury apartment with servants to see to his needs and during the breaks between the separate interrogations was even allowed to return to the apartment in Rome where he was staying before the interrogations began. Following the trial where he was found guilty of grave suspicion of heresy, and not heresy as if often falsely claimed, he was sentenced to life imprisonment, which was immediately commuted to house arrest. He spent the first weeks of his house arrest as the honoured guest of Archbishop Piccolomini in his palace in Sienna until it proved too much of a good thing and Urban ordered that he go home. He spent the rest of his house arrest in his own villa in Arceti near Florence, where he was cared for by servants. He was allowed visitors and now too old and too frail to travel anyway he devoted himself to writing the Discorsi, his most important scientific work, which despite a ban was published without the Church undertaking any action against it. The average European peasant in the period certainly lived a much worse life.

One topic that came up several times was that even if not tortured or threatened with torture, Galileo would have been scared of the Inquisition because of its reputation and especially because of what they did to Bruno. If there were a false facts about the Church and Galileo bingo game evoking Bruno would certainly occupy the centre square. These comment stimulated the following speculations on my part:

Actually, I don’t think Galileo was particularly concerned about the Inquisition; his self-opinionated arrogance protected him from such thoughts. He wasn’t a religious nutcase like Bruno, he was the greatest scientist in Europe, he was a Medicean courtier, he was a much admired and feted member of Roman high society, he counted princes and powerful cardinals amongst his best friends and supporters, Maffeo Barberini had been one of his best friends since 1612. When he became Pope Urban VIII, Barberini granted him several private audiences and praised his latest book, Il Saggiatore, it was Barberini who, as Pope, had commissioned him to write his book comparing the geocentric and heliocentric systems, what could he possibly have to fear?

This is of course, as I say, purely speculative but the way Galileo is known to have behaved during his interrogations would seem to support such a view.

 

 

 

 

 

 

12 Comments

Filed under History of Astronomy, Myths of Science, Renaissance Science

Stylish writing is not necessarily good science

I have become somewhat infamous for writing #histSTM blog posts that are a predominately negative take on the scientific achievements of Galileo Galilei. In fact I think I probably made my breakthrough as a #histsci blogger with my notorious Extracting the Stopper post, deflating Galileo’s popular reputation. I actually got commissioned to write a toned down version of that post for AEON several years later. In my opinion Galileo was an important figure in the evolution of science during the early seventeenth century but his reputation has been blown up out of all proportion, well beyond his actual contributions. To make a simple comparison, in the same period of time the contributions of Johannes Kepler were immensely greater and more significant than those made by Galileo but whereas Galileo is regarded as one of the giants of modern science and is probably one of the three most well known historical practitioners of the mathematical sciences, alongside Newton and Einstein, Kepler is at best an also ran, whose popular image is not even a fraction of that of Galileo’s. This of course raises the question, why? What does/did Galileo have that Kepler didn’t? I think the answer lies in Galileo’s undeniable talents as a writer.

Galileo was a master stylist, a brilliant polemicist and science communicator, whose major works are still a stimulating pleasure to read. If you ask people about Galileo they will more often than not quote one of his well-known turns of phrase rather than his scientific achievements. The two books trope with its ‘mathematics is the language of nature’, which in the original actually reads: Philosophy is written in this grand book, which stands continually open before our eyes (I say the ‘Universe’), but can not be understood without first learning to comprehend the language and know the characters as it is written. It is written in mathematical language, and its characters are triangles, circles and other geometric figures, without which it is impossible to humanly understand a word; without these one is wandering in a dark labyrinth. Or the much-loved, the Bible shows the way to go to heaven, not the way the heavens go, which again in the original reads: The intention of the Holy Ghost is to teach us how one goes to heaven, not how heaven goes. It is a trivial truth that Galileo had a way with words.

This cannot be said of Johannes Kepler. I shall probably bring the wrath of a horde of Kepler scholars on my head for saying this but even in translation, Johannes Kepler is anything but an easy read. Galileo even commented on this. When confronted with Kepler’s Dioptrice (1611), one of the most important books on optics ever written, Galileo complained that it was turgid and unreadable. Having ploughed my way through it in German translation, I sympathise with Galileo’s negative judgement. However, in his rejection Galileo failed to realise just how scientifically important the Dioptrice actually was. Nobody in their right mind would describe Kepler as a master stylist or a brilliant polemicist.

I think this contrast in literary abilities goes a long way to explaining the very different popular conceptions of the two men. People read Galileo’s major works or selections from them and are stimulated and impressed by his literary mastery, whereas Kepler’s major works are not even presented, as something to be read by anyone, who is not a historian of science. One just gets his three laws of planetary motion served up in modern guise, as a horribly mathematical side product of heliocentricity.

Of course, a serious factor in their respective notorieties is Galileo’s infamous trial by the Roman Inquisition. This was used to style him as a martyr for science, a process that only really began at the end of the eighteenth and beginning of the nineteenth centuries. Kepler’s life, which in many ways was far more spectacular and far more tragic than Galileo’s doesn’t have such a singular defining moment in it.

Returning to the literary theme I think that what has happened is that non-scientists and non-historians of science have read Galileo and impressed by his literary abilities, his skill at turning a phrase, his adroit, and oft deceitful, presentation of pro and contra arguments often fail to notice that they are being sold a pup. As I tried to make clear in the last episode of my continuing ‘the emergence of modern astronomy’ series although Galileo’s Dialogo has an awesome reputation in Early Modern history, its scientific value is, to put it mildly, negligible. To say this appears to most people as some form of sacrilege, “but the Dialogo is an important defence of science against the forces of religious ignorance” or some such they would splutter. But in reality it isn’t, as I hope I made clear the work contributed nothing new to the on going debate and all that Galileo succeeded in doing was getting up the Pope’s nose.

The same can be said of Il Saggiatore, another highly praised work of literature. As I commented in another post the, oft quoted line on mathematics, which had led to Galileo being praised as the man, who, apparently single handed, mathematized the physical science was actually, when he wrote it, old hat and others had been writing the book of nature in the language of mathematics for at least one hundred years before Galileo put pen to paper but none of them had taken the time to express what they were doing poetically. In fact it took historians of science a long time to correct this mistaken perception, as they also tended to suffer from a serious dose of Galileo adoration. The core of Il Saggiatore is as I have explained elsewhere is total rubbish, as Galileo is arguing against the scientific knowledge of his time with very spurious assertions merely so that he doesn’t have to acknowledge that Grassi is right and he is wrong. An admission that very few Galileo scholars are prepared to make in public, it might tarnish his reputation.

Interestingly one work that deserves its historical reputation Galileo’s Sidereus Nuncius, also suffers from serious scientific deficits that tend to get overlooked. Written and published in haste to avoid getting beaten to the punch by a potential, unknown rival the book actually reads more like an extended press release that a work of science. It might well be that Galileo intended to write a more scientific evaluation of his telescopic observations and discoveries once he had established his priority but somehow, having become something of a scientific superstar overnight, he never quite got round to it. This is once again a failing that most readers tend to overlook, over awed by the very impressive literary presentation.

Much of Galileo’s written work is actually more appearance than substance, or as the Germans say Mehr Schein als Sein, but ironically, there is one major work of Galileo’s that is both literarily brilliant and scientifically solid but which tends to get mostly overlooked, his Discorsi. The experiments on which part of it is based get described by the book itself remains for most people largely unknown. I shall be taking a closer look at it in a later post.

 

 

 

 

 

5 Comments

Filed under History of Astronomy, History of Optics, History of Physics, Myths of Science, Renaissance Science

The emergence of modern astronomy – a complex mosaic: Part XXVII

Without a doubt the most well-known, in fact notorious, episode in the transition from a geocentric to a heliocentric cosmology/astronomy in the seventeenth century was the publication of Galileo Galilei’s Dialogo sopra i due massimi sistemi del mondo (Dialogue Concerning the Two Chief World Systems) in 1632 and his subsequent trial and conviction by the Supreme Sacred Congregation of the Roman and Universal Inquisition or simply Roman Inquisition; an episode that has been blown up out of all proportions over the centuries. It would require a whole book of its own to really do this subject justice but I shall deal with it here in two sketches. The first to outline how and why the publication of this book led to Galileo’s trial and the second to assess the impact of the book on the seventeenth century astronomical/cosmological debate, which was much less than is often claimed.

Galileos_Dialogue_Title_Page

Frontispiece and title page of the Dialogo, 1632 Source: Wikimedia Commons

The first salient point is Galileo’s social status in the early seventeenth century. Nowadays we place ‘great scientists’ on a pedestal and accord them a very high social status but this was not always the case. In the Renaissance, within society in general, natural philosophers and mathematicians had a comparatively low status and within the ruling political and religious hierarchies Galileo was effectively a nobody. Yes, he was famous for his telescopic discoveries but this did not change the fact that he was a mere mathematicus. As court mathematicus and philosophicus to the Medici in Florence he was little more than a high-level court jester, he should reflect positively on his masters. His role was to entertain the grand duke and his guests at banquets and other social occasions with his sparkling wit, either in the form of a discourse or if a suitable opponent was at hand, in a staged dispute. Points were awarded not for truth content but for verbal brilliance. Galileo was a master at such games. However, his real status as a courtier was very low and should he bring negative attention to the court, they would drop him without a thought, as they did when the Inquisition moved against him.

Galileo_by_leoni

Galileo Portrait by Ottavio Leoni Source: Wikimedia Commons

As a cardinal, Maffeo Barberini (1568–1644) had befriended Galileo when his first came to prominence in 1611 and he was also an admirer of the Accademia dei Lincei. When he was elected Pope in 1623 the Accademia celebrated his election and amongst other things presented him with a copy of Galileo’s Il Saggiatore, which he read and apparently very much enjoyed. As a result he granted Galileo several private audiences, a great honour. Through his actions Barberini had raised Galileo to the status of papal favourite, a situation not without its dangers.

Caravaggio_Maffeo_Barberini

C. 1598 painting of Maffeo Barberini at age 30 by Caravaggio Source: Wikimedia Commons

Mario Biagioli presents the, I think correct, hypothesis that having raised Galileo up as a court favourite Barberini then destroyed him. Such behaviour was quite common under absolutist rulers, as a power demonstration to intimidate potential rebels. Galileo was a perfect victim for such a demonstration highly prominent and popular but with no real political or religious significance. Would Barberini have staged such a demonstration at the time? There is evidence that he was growing more and more paranoid during this period. Barberini, who believed deeply in astrology, heard rumours that an astrologer had foreseen his death in the stars. His death was to coincide with a solar eclipse in 1630. Barberini with the help of his court astrologer, Tommaso Campanella (1568–1639) took extreme evasive action and survived the cosmic threat but he had Orazio Morandi (c. 1570–1630), a close friend and supporter of Galileo’s, arrested and thrown in the papal dungeons, where he died, for having cast the offending horoscope.

Turning to the Dialogo, the official bone of contention, Galileo succeeded in his egotism in alienating Barberini with its publication. Apparently during the phase when he was very much in Barberini’s good books, Galileo had told the Pope that the Protestants were laughing at the Catholics because they didn’t understand the heliocentric hypothesis. Of course, during the Thirty Years War any such mockery was totally unacceptable. Barberini gave Galileo permission to write a book presenting and contrasting the heliocentric and geocentric systems but with certain conditions. Both systems were to be presented as equals with no attempts to prove the superiority or truth of either and Galileo was to include the philosophical and theological opinion of the Pope that whatever the empirical evidence might suggest, God in his infinite wisdom could create the cosmos in what ever way he chose.

The book that Galileo wrote in no way fulfilled the condition stated by Barberini. Presented as a discussion over four days between on the one side a Copernican, Salviati named after Filippo Salviati (1682–1614) a close friend of Galileo’s and Sagredo, supposedly neutral but leaning strongly to heliocentricity, named after Giovanni Francesco Sagredo (1571–1620) another close friend of Galileo’s. Opposing these learned gentlemen is Simplicio, an Aristotelian, named after Simplicius of Cilicia a sixth-century commentator on Aristotle. This name is with relative certainty a play on the Italian word “semplice”, which means simple as in simple minded. Galileo stacked the deck from the beginning.

The first three days of discussion are a rehash of the previous decades of discoveries and developments in astronomy and cosmology with the arguments for heliocentricity, or rather against geocentricity in its Ptolemaic/Aristotelian form, presented in their best light and the counter arguments presented decidedly less well. Galileo was leaving nothing to chance, he knew who was going to win this discussion. The whole thing is crowned with Galileo’s theory of the tides on day four, which he falsely believed, despite its very obvious flaws, to be a solid empirical proof of the Earth’s movements in a heliocentric model. This was in no way an unbiased presentation of two equal systems but an obvious propaganda text for heliocentricity. Worse than this, he placed the Pope’s words on the subject in the mouth of Simplicio, the simpleton, not a smart move. When it was published the shit hit the fan.

However, before considering the events leading up to the trial and the trial itself there are a couple of other factors that prejudiced the case against Galileo. In order to get published at all, the book, as with every other book, had to be given publication permission by the censor. To repeat something that people tend to forget, censorship was practiced by all secular and all religious authorities throughout the whole of Europe and was not peculiar to the Catholic Church. Freedom of speech and freedom of thought were alien concepts in the world of seventeenth century religion and politics. Galileo wanted initially to title the book, Dialogue on the Ebb and Flow of the Seas, referring of course to his theory of the tides, and include a preface to this effect. He was told to remove both by the censor, as they, of course, implied a proof of heliocentricity. Because of an outbreak of the plague, Galileo retired to Florence to write his book and preceded to play the censor in Florence and the censor in Rome off against each other, which meant that the book was published without being properly controlled by a censor. This, of course, all came out after publication and did not help Galileo’s case at all; he had been far too clever for his own good.

Another major problem had specifically nothing to do with Galileo in the first instance but rebounded on him at the worst time.  On 8 March 1632 Cardinal Borgia castigated the Pope for not supporting King Philipp IV of Spain against the German Protestants. The situation almost degenerated into a punch up with the Swiss Guard being called in to separate the adversaries. As a result Barberini decided to purge the Vatican of pro-Spanish elements. One of the most prominent men to be banished was Giovanni Ciampoli (1589–1643) Barberini’s chamberlain. Ciampoli was an old friend and supporter of Galileo and a member of the Accademia dei Lincei. He was highly active in helping Galileo trick the censors and had read the manuscript of the Dialogo, telling Barberini that it fulfilled his conditions. His banishment was a major disaster for Galileo.

Giovanni_Ciampoli

Giovanni Ciampoli Source: Wikimedia Commons

One should of course also not forget that Galileo had effectively destroyed any hope of support from the Jesuits, the leading astronomers and mathematicians of the age, who had very actively supported him in 1611, with his unwarranted and libellous attacks on Grazi and Scheiner in his Il Saggiatore. He repeated the attacks on Scheiner in the Dialogo, whilst at the same time plagiarising him, claiming some of Scheiner’s sunspot discoveries as his own. There is even some evidence that the Jesuits worked behind the scenes urging the Pope to put Galileo on trial.

When the Dialogo was published it immediately caused a major stir. Barberini appointed officials to read and assess it. Their judgement was conclusive, the Dialogo obviously breached the judgement of 1616 forbidding the teaching of heliocentricity as a factual theory. Anybody reading the Dialogo today would confirm that judgement. The consequence was that Galileo was summoned to Rome to answer to the Inquisition. Galileo stalled claiming bad health but was informed either he comes or he would be fetched. The Medici’s refused to support him; they did no consider him worth going into confrontation with the Pope for.

Portrait_Ferdinando_II_de_Medici

Ferdinando II de’ Medici Grand Duke of Tuscany in Coronation Robes (school of Justus Sustermans). Source: Wikimedia Commons

We don’t need to go into details of the trial. Like all authoritarian courts the Inquisition didn’t wish to try their accused but preferred them to confess, this was the case with Galileo. During his interviews with the Inquisition Galileo was treated with care and consideration because of his age and bad health. He was provided with an apartment in the Inquisition building with servants to care for him. At first he denied the charges but when he realised that this wouldn’t work he said that he had got carried away whilst writing and he offered to rewrite the book. This also didn’t work, the book was already on the market and was a comparative best seller, there was no going back. Galileo thought he possessed a get out of jail free card. In 1616, after he had been interviewed by Bellarmino, rumours circulated that he had been formally censured by the Inquisition. Galileo wrote to Bellarmino complaining and the Cardinal provided him with a letter stating categorically that this was not the case. Galileo now produced this letter thinking it would absolve him of the charges. The Inquisition now produced the written version of the statement that had been read to Galileo by an official of the Inquisition immediately following his interview with Bellarmino expressly forbidding the teaching of the heliocentric theory as fact. This document still exists and there have been discussions as to its genuineness but the general consensus is that it is genuine and not a forgery. Galileo was finished, guilty as charged. Some opponents of the Church make a lot of noise about Galileo being shown the instruments of torture but this was a mere formality in a heresy trial and at no point was Galileo threatened with torture.

The rest is history. Galileo confessed and formally adjured to the charge of grave suspicion of heresy, compared to heresy a comparatively minor charge. He was sentenced to prison, which was immediately commuted to house arrest. He spent the first months of his house arrest as the guest of Ascanio II Piccolomini (1590–1671), Archbishop of Siena,

Ascanio_II_Piccolomini,_X_Arcivescovo_di_Siena

Ascanio II Piccolomini Source: Wikimedia Commons

until Barberini intervened and sent him home to his villa in Arcetri. Here he lived out his last decade in comparative comfort, cared for by loyal servants, receiving visitor and writing his most important book, Discorsi e dimostrazioni matematiche intorno a due nuove scienze (Discourses and Mathematical Demonstrations Relating to Two New Sciences).

Galileo’s real crime was hubris, trying to play an absolutist ruler, the Pope, for a fool. Others were executed for less in the seventeenth century and not just by the Catholic Church. Galileo got off comparatively lightly.

What role did the Dialogo actually play in the ongoing cosmological/astronomical debate in the seventeenth century? The real answer is, given its reputation, surprisingly little. In reality Galileo was totally out of step with the actual debate that was taking place around 1630. Driven by his egotistical desire to be the man, who proved the truth of heliocentricity, he deliberately turned a blind eye to the most important developments and so side lined himself.

We saw earlier that around 1613 there were more that a half a dozen systems vying for a place in the debate, however by 1630 nearly all of the systems had been eliminated leaving just two in serious consideration. Galileo called his book Dialogue Concerning the Two Chief World Systems, but the two systems that he chose to discuss, the Ptolemaic/Aristotelian geocentric system and the Copernican heliocentric system, were ones that had already been rejected by almost all participants in the debate by 1630 . The choice of the pure geocentric system of Ptolemaeus was particularly disingenuous, as Galileo had helped to show that it was no longer viable twenty years earlier. The first system actually under discussion when Galileo published his book was a Tychonic geo-heliocentric system with diurnal rotation, Christen Longomontanus (1562–1647), Tycho’s chief assistant, had published an updated version based on Tycho’s data in his Astronomia Danica in 1622. This was the system that had been formally adopted by the Jesuits.

lf

The second was the elliptical heliocentric system of Johannes Kepler, of which I dealt with the relevant publications in the last post.

Galileo completely ignores Tycho, whose system could explain all of the available evidence for heliocentricity, because he didn’t want to admit that this was the case, arguing instead that the evidence must imply a heliocentric system. He also, against all the available empirical evidence, maintained his belief that comets were sublunar meteorological phenomena, because the supporters of a Tychonic system used their perceived solar orbit as an argument for their system.  He is even intensely disrespectful to Tycho in the Dialogo, for which Kepler severely castigated him. He also completely ignores Kepler, which is even more crass, as the best available arguments for heliocentricity were to be found clearly in Kepler published works. Galileo could not adopt Kepler’s system because it would mean that Kepler and not he would be the man, who proved the truth of the heliocentric system.

Although the first three days of the Dialogo provide a good polemic presentation for all of the evidence up till that point for a refutation of the Ptolemaic/Aristotelian system, with the very notable exception of the comets, Galileo’s book was out dated when it was written and had very little impact on the subsequent astronomical/cosmological debate in the seventeenth century. I will indulge in a little bit of hypothetical historical speculation here. If Galileo had actually written a balanced and neutral account of the positive and negative points of the Tychonic geo-heliocentric system with diurnal rotation and Kepler’s elliptical heliocentric system, it might have had the following consequences. Firstly, given his preeminent skills as a science communicator, his book would have been a valuable contribution to the ongoing debate and secondly he probably wouldn’t have been persecuted by the Catholic Church. However, one can’t turn back the clock and undo what has already been done.

I will close this overlong post with a few brief comments on the impact of the Church’s ban on the heliocentric theory, the heliocentric hypothesis was still permitted, and the trial and sentencing of Galileo, after all he was the most famous astronomer in Europe. Basically the impact was much more minimal than is usually implied in all the popular presentations of the subject. Outside of Italy these actions of the Church had almost no impact whatsoever, even in other Catholic countries. In fact a Latin edition of the Dialogo was published openly in Lyon in 1641, by the bookseller Jean-Antoine Huguetan (1567–1650), and dedicated to the French diplomat Balthasar de Monconys (1611–1665), who was educated by the Jesuits.

2007_CKS_07399_0148_000()

Within Italy well-behaved Catholics censored their copies of Copernicus’ De revolutionibus according to the Church’s instructions but continued to read and use them. Censored copies of the book are virtually unknown outside of Italy. Also within Italy, astronomers would begin their discussions of heliocentricity by stating in the preface that the Holy Mother Church in its wisdom had declared this system to be false, but it is an interesting mathematical hypothesis and then go on in their books to discuss it fully. On the whole the Inquisition left them in peace.

 

***A brief footnote to the above: this is a historical sketch of what took place around 1630 in Northern Italy written from the viewpoint of the politics, laws and customs that ruled there at that time. It is not a moral judgement on the behaviour of either the Catholic Church or Galileo Galilei and I would be grateful if any commentators on this post would confine themselves to the contextual historical facts and not go off on wild moral polemics based on hindsight. Comments on and criticism of the historical context and/or content are, as always, welcome.

 

 

 

 

 

 

 

 

 

19 Comments

Filed under History of Astronomy, History of science, Myths of Science, Renaissance Science

Both sides of history: Some thoughts on a history of science cliché

Earlier in the yeary, University of Edinburgh historian of mathematics, Michael Barany, used the expression “the wrong side of history” whilst live tweeting the university’s conference on Charles Piazzi Smyth the nineteenth century English astronomer and pyramidologist. This oft repeated cliché somehow struck a chord and I asked on Twitter what people actually thought it meant. I received quite a lot of answers spread over a fairly wide spectrum. Some though of it as a moral judgement, others on a similar wavelength viewed it as purely political, listing the well-known villain of history, Hitler, Stalin et al. But the view that really interested me, and the reason Michael Barany had used it, was its use in the history of science to designate people, who had strongly defended a theory or hypothesis that was later proved to be false. I think its use in this way is largely inappropriate, as it paints a much too black and white picture, whereas the history of science is, in my opinion, mostly various shades of grey. I would like to illustrate what I mean with some historical examples; this is not a systematic study but some musings provoked by my initial reaction to the phrase.

Copernicus is something of an icon in the history of astronomy, as the first Early Modern European astronomer to suggest that the cosmos was heliocentric and not, as had generally been believed, geocentric, so that puts him very much on the right side of history. However, although we actually know very little about his motivation, we do know that his main concern was to remove Ptolemeaus’ equant point in order to make astronomy conform with the so-called Platonic axioms i.e. all celestial motion takes place in uniform circular motion around a common centre. This desire of his to maintain the Platonic axioms places him firmly on the wrong side of history.

Tycho Brahe rejected heliocentricity both on astronomical and on religious grounds landing him on the wrong side of history but revolutionised observational astronomy delivering vast quantities of new astronomical data of an unheard of accuracy; you guessed it, right side of history.

Johannes Kepler, however, not only strongly propagated heliocentricity but using Tycho’s new data abandoned the Platonic axioms completely, replacing them with his three laws of planetary motion, still valid today, right side of history with a vengeance. Unfortunately the extremely devote Christian believed in a closed, finite cosmos with God as the sun, Jesus as the fixed stars and the Holy Ghost as the space in between; you can’t really get further on the wrong side of history than that.

In the popular imagination Galileo Galilei is considered to be one-hundred pre cent on the right side of history but was he really? The book, that most people know is his Dialogue Concerning the Two Chief World Systems, which is a polemic for heliocentricity and because we actually live in a heliocentric system it is assumed that what Galileo has to say is correct; unfortunately this assumption is far from the truth. Firstly the two systems he discusses Copernican heliocentricity and Ptolemaic geocentricity were both out dated when he wrote the book, Copernicus displaced by Kepler’s elliptical system and Ptolemy refuted by the discovery of the phases of Venus. Galileo simply ignores the true contemporary contenders, Kepler and some form of geo-heliocentric system. So he is very much on the wrong side of history. Even worse his supposedly crowning argument, his theory of the tides, presented on the fourth and final day of his dialogue, was already contradicted by the available empirical evidence. He even goes so far as to rubbish Kepler’s correct assumption that tides are somehow caused by the moon. Galileo did many things that were in fact on the right side of history but his sally into the astronomical/cosmological debate of the period was anything but.

For modern scientists astronomy is an honourable and ancient science, whereas astrology is merely occult mumbo jumbo. However, all three of our early modern astronomers, Tycho, Kepler and Galileo, were practicing astrologers, who genuinely believed in it. Distinctly wrong side of history there.

Moving to the other end of the seventeenth century we meet Isaac Newton. Like Galileo, Newton is venerated as a scholar firmly on the right side of history. However, beyond his achievements in mathematics, astronomy and physics, as every Newton aficionado well knows, he held views on religion and alchemy that make life very difficult for his rational fans. They like to argue that his science has nothing to do with his non-scientific activities but any analysis of his work shows that the various fields of his thought scientific and non-scientific were thoroughly integrated with one another. So which side of history do we place him on?

I briefly mentioned astrology above, which today is without doubt regarded, as being on the wrong side of history but astrology was one of the major driving forces behind the evolution of European astronomy from its beginnings in the Fertile Crescent sometime in the third millennium BCE all the way down to the end of the seventeenth century. Although, he was not a believer even Newton learnt his astronomy from books written by astrologers.

An eighteenth century theory that gets mocked by believers in right and wrong sides of history, as truly beyond the pale is the phlogiston theory in chemistry. It is of course viewed with hindsight stupendously and wonderfully wrong. However, what those, who mock it ignore is that scholars such as Joseph Black, Daniel Rutherford, Carl Wilhelm Scheele, Joseph Priestley and Henry Cavendish working within the framework of the phlogiston theory discovered, isolated and identified the properties of carbon dioxide, nitrogen, oxygen, hydrogen and the structure of water amongst other things; these researchers laid the foundations of modern chemistry. All on the wrong side of history, really? Some go so far as to attribute the discovery of oxygen to Lavoisier and not to Scheele and Priestley because unlike Priestley he didn’t believe it to be dephlogisticated air and was thus on the right side of history. But was he? Lavoisier named the gas oxygen from the Greek for sharp or acid believing it to be the element that makes all acids acidic, a belief that was just as false as Priestley’s dephlogisticated air.

Like Galileo and Newton in the seventeenth century, Albert Einstein is an icon of twentieth century science. Einstein is criticised and said to be on the wrong side of history because although he, together with Max Planck, founded the quantum theory, for which they both won Nobel Prizes, he refused to accept the indeterminate model of quantum mechanics created by Niels Bohr, based on the theories of Schrödinger, Heisenberg et al. Einstein was a determinist and was in this case shown to be wrong in the long run but Bohr himself said that Einstein contribute as much as anybody else to the development of quantum mechanics through his astute criticism.

I hope I have brought enough clear examples to show that categorising scientist or developments in science, as either on the right or wrong side of history is actually complete rubbish. Every scientific scholar, who has ever lived, has got some things right, some wrong and quite a lot, sort of half right. Science advances by others correcting the wrong and the half right bits. Also theories that in the end proved to be totally wrong, such as astrology, the phlogiston theory or alchemy, can, and in fact did, generate important results that furthered the evolution of science. The evolution of science is not categorised by clear black and white situations but as I said above consists of multifarious shades of grey. The right/wrong side of history concept is actually nothing more than a veiled version of presentism i.e. only acknowledging those aspects of the history of science that we consider to be right from our current standpoint.

I firmly believe that the concept of right or wrong side of history together with presentism and the expressions ‘father of’, ‘greatest’, and ‘first’ belongs in the rubbish bin and should never ever be applied in anything that purports to be serious history of science.

 

 

 

 

 

 

40 Comments

Filed under History of science, Myths of Science

There is no year zero!

I realise that in writing this post I am wasting my time, pissing against the wind, banging my head against a brick wall and all the other colourful expressions in the English language that describe embarking on a hopeless endeavour but I am renowned for being a pedantic curmudgeon and so I soldier on into the jaws of disappointment and defeat. I shall attempt to explain carefully and I hope clearly why the 31st of December of the year 2019 does not mark the end of the second decade of the 21st century. I know, I know but I must.

The core of the problem lies in the fact that we possess two basic sets of counting numbers, cardinals and ordinals. Now cardinals have nothing to do with the Holy Roman Catholic Church, a family of birds or a baseball team from St. Louis but are the numbers we use to say how many items there are in a group, a collection, a heap or as the mathematician prefer to call it a set. Let us look at a well-known example:

I’ll sing you twelve, O

Green grow the rushes, O

What are your twelve, O?

Twelve for the twelve Apostles

Eleven for the eleven who went to heaven,

Ten for the ten commandments,

Nine for the nine bright shiners,

Eight for the April Rainers.

Seven for the seven stars in the sky,

Six for the six proud walkers,

Five for the symbols at your door,

Four for the Gospel makers,

Three, three, the rivals,

Two, two, the lily-white boys,

Clothed all in green, O

One is one and all alone

And evermore shall be so.

This is the final round of an old English counting song the meaning of several lines of which remain intriguingly obscure. Starting with the fourth line from the top we have a set of 12 Apostles i.e. the original twelve follower of Jesus. One line further in, we have a set of 11, who went to heaven, presumably the Apostles minus Judas Iscariot. And so we proceed, each line refers to a group or set giving to number contained in it.

In everyday life we use cardinal numbers all the time. I bought 6 eggs today. There are 28 children in Johnny’s class. My car has 4 wheels and so on and so forth. The cardinal numbers also contain the number zero (0), which indicates that a particular group or set under discussion contain no items at all. There are currently zero kings of France. We can carry out all the usually simple arithmetical operations–addition, subtraction, multiplication and division–on the cardinal numbers including zero, with the exception that we can’t divide by zero; mathematicians say division by zero is not defined. So if Johnny’s class with its 28 members are joined by Jenny’s class with 27 members for the school trip there will be 55 children on the bus. I’m sure you can think up lots of other examples yourselves.

Ordinal numbers have a different function, there signify the position of items in a list, row, series etc. We also use different names for ordinal numbers to cardinal numbers, so instead of one, two three four…, we say first, second, third, fourth…etc. an example would be, Johnny was the fifth person in his class to get the flu this winter. Now, in the ordinal numbers there is no zero, it would be a contradiction in terms, as it can’t exist. Occasionally when there is an existing ordered list of principles or laws people will talk about the ‘zeroeth’ law, meaning one that wasn’t originally included but that they think should precede the existing ones.

When we talk about years we tend to use the words for cardinal numbers but in fact we are actually talking about ordinal numbers. What we call 2019 CE or AD i.e. two thousand and nineteen is in fact the two thousand and nineteenth year of the Common Era or the two thousand and nineteenth year of Our Lord. Whichever system of counting years one uses, Gregorian, Jewish, Muslim, Persian, Chinese, Hindu or whatever there is and never can be a year zero, it is, as stated abve, a contradiction in terms and cannot exist. Therefore the first decade, that is a group of ten year, in your calendrical system consists of the years one to ten or the first year to the tenth year, the second decade the years eleven to twenty or the eleventh year to the twentieth year and so on. The first century, that is a group of one hundred years, consists of the years one to one hundred or the first year to the one-hundredth year. First millennium, that is one thousand years, consists of the years one to one thousand or the first year to the one-thousandth year.

Going back to our starting point the first decade of the 21st century started on the 1st January 2001 and finished on the 31st December 2010. The second decade started on the 1st January 2011 and will end on the 31st December 2020 and not on 31st December 2019 as various innumerate people would have you believe.

 

16 Comments

Filed under Calendrics, History of Mathematics, Myths of Science

The Royal Society really needs to work on its history of the telescope

One would think that the Royal Society being one of the eldest, but not the eldest as they like to claim, scientific societies in Europe when presenting themselves as purveyors of the history of science, would take the trouble to get their facts right. If, however, one thought this, one would be wrong. Last week on the Internet the Royal Society was pushing a slide show, under their own name, on Google Arts and Culture on the history of the telescope in astronomy that in terms of historical accuracy is less than one, as a historian of science, nay of the telescope, might hope or indeed wish for.

The slide show in question is titled, Silent Harmony: astronomy at the Royal Society: Discover how innovation in telescopes and other optical instruments changed the way we see the universe. Following the title slide we have another general blurb slide but things then get serious on the history level, we get told under the heading, The new astronomy:

Galileo_by_leoni

Galileo Portrait by Ottavio Leoni Source: Wikimedia Commons

Galileo Galilei (1564-1642) was the first to explore the solar system using a telescope. His work directly built on famous predecessors such as Nicolaus Copernicus (1473-1543) and Johannes Kepler (1571-1630), who set out to model a heliocentric universe – one in which the sun is at the centre of the universe – and theorise the motion of planets. 

Sometimes I tire slightly of repeating myself but once more into the breach dear friends, once more. Galileo was not the first to explore the solar system using a telescope. That honour goes to a man in London, you know London home of the Royal Society, Thomas Harriot (1560–1621).

thomasharriot

Portrait often claimed to be Thomas Harriot (1602), which hangs in Oriel College, Oxford. Source: Wikimedia Commons

Also at the same time as Galileo was aiming his telescope at the heavens in Padua, Simon Marius (1573–1625) was doing the same in Ansbach in Franconia

houghton_gc6_m4552_614m_-_simon_marius_-_cropped-2

Simon Marius Source: Wikimedia Commons

and Giovanni Paolo Lembo (1570–1618) and Odo van Maelcote (1572–1615) in Rome. Whilst Galileo was more than prepared to call himself a Copernican, he very strongly rejected or ignored the work of Johannes Kepler, so saying that his work directly built on that of Kepler is more than a simple distortion of history. To say that these three theorised the motion of planets is to say the least bizarre, all astronomical models whether heliocentric, geocentric or geo-heliocentric theorise the motion of planets that is a large part of what astronomy is. We are not finished with Signor Galileo:

Galileo’s Starry Messenger was the first published work to incorporate scientific observations made using a telescope.

The treatise contains descriptions of lunar landscapes, new stars in well-known constellations and the major satellites of Jupiter.

This is all correct, however because he was the first to publish people make the mistake of thinking he was the first or even the only one to make telescopic observations in 1609. Moving on, the next slide caption isn’t correct:

Galileo designed and built the most powerful telescope of his generation.

His own instrument, a thirty-power magnifier preserved at the Museo Galileo in Florence, served as model to other instrument-makers for many years.

I’m beginning to think that the Royal Society has got something against Thomas Harriot. Whilst Galileo did indeed build a thirty-power telescope it was not the most powerful telescope of his generation, Harriot built a fifty-power one. However, as in a Dutch telescope (convex objective/concave eyepiece) the field of vision diminishes with magnification the fifty-power telescope proved next to useless. Galileo’s own instrument did not serve as a model to other instrument-makers for many years that, is to put it mildly, total bullshit. Lots of people knew how to construct a simple Dutch telescope and did so without any reference to Galileo.

We skip a few slides and arrive at the most famous President of the Royal Society, Isaac Newton;

GodfreyKneller-IsaacNewton-1689

Portrait of Newton by Godfrey Kneller, 1689 Source: Wikimedia Commons

we get a picture of Newton’s reflecting telescope with the following caption:

NewtonsTelescopeReplica

Replica of Newton’s second reflecting telescope, which he presented to the Royal Society in 1672 Source: Wikimedia Commons

The Royal Society also owns a reflecting telescope made by Newton as a direct application of his theories on light and colour.

This statement is a best misleading and at worst simply wrong depending on how you interpret it. Newton’s theories on light and colour led him to the awareness that the coloured fringes visible on the images of the then normal refracting telescope were the result of chromatic aberration, i.e. the visible light being split up into the colour spectrum when passing through a spherical lenses. This discovery led him to developing a reflecting telescope because he believed falsely that creating an achromatic lens was impossible. It would be more than half a century before Chester Moore Hall invented the first achromatic lens. The principle of the reflecting telescope, which with a suitable mirror, does not suffer from chromatic aberration, had been known since antiquity and Newton was by no means the first to try and construct one. He was, however, the first to succeed in producing a functioning reflecting telescope. You can read an outline of the full history of the reflecting telescope here. Interestingly nobody succeeded in copying Newton’s achievements for the best part of fifty years, when John Hadley (1682–1784), another fellow of the Royal Society, who gets no mention in this slide show, finally succeeded in producing large scale functioning reflecting telescopes; Newton’s instrument was little more than a toy.

The instrument allowed him to make various observations conclusive with his theories on gravity.

This caption is just high-grade rubbish. Newton did not make any observations with this instrument that were in anyway connected with his theory of gravity, let alone conclusive with it.

There are, in the mean time, quite a few good books on the history of the telescope, I have most of them sitting on my book shelf and I’m sure some of them are in the Royal Society’s library, so why didn’t who ever put this slide show together consult them or simply ask an expert?

 

 

 

 

 

 

 

8 Comments

Filed under History of Astronomy, History of Optics, History of science, Myths of Science

Why, FFS! why?

On Twitter this morning physicist and science writer Graham Farmelo inadvertently drew my attention to a reader’s letter in The Guardian from Sunday by a Collin Moffat. Upon reading this load of old cobblers, your friendly, mild mannered historian of Renaissance mathematics instantly turned into the howling-with-rage HISTSCI_HULK. What could possibly have provoked this outbreak? I present for your delectation the offending object.

I fear Thomas Eaton (Weekend Quiz, 12 October) is giving further credence to “fake news” from 1507, when a German cartographer was seeking the derivation of “America” and hit upon the name of Amerigo Vespucci, an obscure Florentine navigator. Derived from this single source, this made-up derivation has been copied ever after.

The fact is that Christopher Columbus visited Iceland in 1477-78, and learned of a western landmass named “Markland”. Seeking funds from King Ferdinand of Spain, he told the king that the western continent really did exist, it even had a name – and Columbus adapted “Markland” into the Spanish way of speaking, which requires an initial vowel “A-”, and dropped “-land” substituting “-ia”.

Thus “A-mark-ia”, ie “America”. In Icelandic, “Markland” may be translated as “the Outback” – perhaps a fair description.

See Graeme Davis, Vikings in America (Birlinn, 2009).

Astute readers will remember that we have been here before, with those that erroneously claim that America was named after a Welsh merchant by the name of Richard Ap Meric. The claim presented here is equally erroneous; let us examine it in detail.

…when a German cartographer was seeking the derivation of “America” and hit upon the name of Amerigo Vespucci, an obscure Florentine navigator.

It was actually two German cartographers Martin Waldseemüller and Matthias Ringmann and they were not looking for a derivation of America, they coined the name. What is more, they give a clear explanation as to why and how the coined the name and why exactly they chose to name the newly discovered continent after Amerigo Vespucci, who, by the way, wasn’t that obscure. You can read the details in my earlier post. It is of interest that the supporters of the Ap Meric theory use exactly the same tactic of lying about Waldseemüller and Ringmann and their coinage.

The fact is that Christopher Columbus visited Iceland in 1477-78, and learned of a western landmass named “Markland”.

Let us examine what is known about Columbus’ supposed visit to Iceland. You will note that I use the term supposed, as facts about this voyage are more than rather thin. In his biography of Columbus, Felipe Fernandez-Armesto, historian of Early Modern exploration, writes:

He claimed that February 1477–the date can be treated as unreliable in such a long –deferred recollection [from 1495]–he sailed ‘a hundred leagues beyond’ Iceland, on a trip from Bristol…

In “Christopher Columbus and the Age of Exploration: An Encyclopedia”[1] edited by the American historian, Silvio A. Bedini, we can read:

The possibility of Columbus having visited Iceland is based on a passage in his son Fernando Colón’s biography of his father. He cites a letter from Columbus stating that in February 1477 he sailed “a hundred leagues beyond the island of Til” (i.e. Thule, Iceland). But there is no evidence to his having stopped in Iceland or spoken with anyone, and in any case it is unlikely that anyone he spoke to would have known about the the Icelandic discovery of Vinland.

This makes rather a mockery of the letter’s final claim:

Seeking funds from King Ferdinand of Spain, he told the king that the western continent really did exist, it even had a name – and Columbus adapted “Markland” into the Spanish way of speaking, which requires an initial vowel “A-”, and dropped “-land” substituting “-ia”.

Given that it is a well established fact that Columbus was trying to sail westward to Asia and ran into America purely by accident, convinced by the way that he had actually reached Asia, the above is nothing more than a fairly tale with no historical substance whatsoever.

To close I want to address the question posed in the title to this brief post. Given that we have a clear and one hundred per cent reliable source for the name of America and the two men who coined it, why oh why do people keep coming up with totally unsubstantiated origins of the name based on ahistorical fantasies? And no I can’t be bothered to waste either my time or my money on Graeme Davis’ book, which is currently deleted and only available as a Kindle.

[1] On days like this it pays to have one book or another sitting around on your bookshelves.

Felipe Fernández-Armesto, Columbus, Duckworth, London, ppb 1996, p. 18. Christopher Columbus and the Age of Exploration: An Encyclopedia, ed. Silvio A. Bedini, Da Capo Press, New York, ppb 1992, p. 314

4 Comments

Filed under History of Cartography, History of Navigation, Myths of Science, Renaissance Science

If you can’t tell your Cassini from your Huygens then you shouldn’t be writing about the history of astronomy.

There I was, mild mannered historian of early modern science, enjoying my first cup of tea on a lazy Sunday morning, whilst cruising the highway and byways of cyberspace, when I espied a statement that caused an explosion of indignation, transforming me into the much feared, fire spitting HISTSCI_HULKTM. What piece of histSTM crap had unleashed the pedantic monster this time and sent him off on a stamping rage?

The object of HSH’s rage was contained in an essay by Vahe Peroomian (Associate Professor of Physics and Astronomy, University of Southern California – Dornsife College of Letters, Arts and Sciences) A brief astronomical history of Saturn’s amazing rings, published simultaneously on both The Conversation and PHYS.ORG 15 August 2019. Peroomian writes:

I am a space scientist with a passion for teaching physics andastronomy, and Saturn’s rings have always fascinated me as they tell the story of how the eyes of humanity were opened to the wonders of our solar system and the cosmos.

He continues:

When Galileo first observed Saturn through his telescope in 1610, he was still basking in the fame of discovering the four moons of Jupiter. But Saturn perplexed him. Peering at the planet through his telescope, it first looked to him as a planet with two very large moons, then as a lone planet, and then again through his newer telescope, in 1616, as a planet with arms or handles.

Galileo_by_leoni

Galileo Portrait by Ottavio Leoni Source: Wikimedia Commons

Galileo actually observed Saturn three times. The first time in 1610 he thought that the rings were handles or large moons on either side of the planet, “I have observed the highest planet [Saturn] to be triple bodied. This is to say to my very great amazement Saturn was seen to me to be not a single star, but three together, which almost touch each other.”

saturn44

Galileo’s 1610 sketch of Saturn and its rings

The second time was in 1612 and whatever it was that he observed in 1610 had simply disappeared, “I do not know what to say in a case so surprising, so unlooked for and so novel.” The Earth’s position relative to Saturn had changed and the rings were no longer visible but Galileo did not know this. In 1616 the rings were back but with a totally altered appearance, “The two companions are no longer two small perfectly round globes … but are present much larger and no longer round … that is, two half eclipses with two little dark triangles in the middle of the figure and contiguous to the middle globe of Saturn, which is seen, as always, perfectly round.” [1]

saturn2

Galileo’s 1616 sketch of Saturn and its rings

There is no mention of a new telescope and it is fairly certain that all three periods of observation were either carried out with the same or very similar telescopes. The differences that Galileo observed were due to the changing visibility of Saturn’s rings caused by its changing relative position to Earth and not to any change of instrument on Galileo’s part.

Although sloppy and annoying, the minor errors in Peroomian’s account of Galileo’s observations of Saturn are in themselves not capable of triggering the HSH’s wrath but what he wrote next is:

Four decades later, Giovanni Cassini first suggested that Saturn was a ringed planet, and what Galileo had seen were different views of Saturn’s rings. Because of the 27 degrees in the tilt of Saturn’s rotation axis relative to the plane of its orbit, the rings appear to tilt toward and away from Earth with the 29-year cycle of Saturn’s revolution about the Sun, giving humanity an ever-changing view of the rings.

giovanni_cassini

Giovanni Cassini (artist unknown) Source: Wikimedia Commons

Now, Giovanni Cassini did record some important observations of Saturn; he discovered four of Saturn’s largest moons and also the gap in the rings that is named after him. Although, Giuseppe Campani, Cassini’s telescope maker, observed the gap before he did without realising that it was a gap. However, it was not Cassini who first suggested that what people had been observing were rings but Christiaan Huygens.

Christiaan Huygens first proposed that Saturn was surrounded by a solid ring in 1655, “a thin, flat ring, nowhere touching, and inclined to the ecliptic.” In 1659 he published his book, Systema Saturnium : sive, De causis mirandorum Saturni phaenomenôn, et comite ejus Planeta Novo detailing how the appearance of the rings varied as the Earth and Saturn orbited the sun.

huygens_phases1

Plate from Huygens’ Systema Saturnium showing the various recorded observations of Saturn made by astronomers before his own times

huygens_phases2

Plate from Huygens’ Systema Saturnium explaining why the appearance of Saturn and its rings changes over time and that all those different appearances can be explained by assuming the existence of the rings

Confusing Cassini and Huygens, two of the greatest observational astronomers of the seventeenth century, who were scientific rivals, is not a trivial error and shouldn’t be made anywhere by anyone. However, to make this error in an essay that is published  on two major Internet websites borders on the criminal. I have no idea what the reach of PHYS.ORG is but The Conversation claims to have a readership of ten million plus. This means that a lot of people are being fed false history of astronomy facts by a supposed expert.

If the good doctor Peroomian had bothered to check his facts, a thing that I thought all scientists were taught to do when receiving their mother milk, he could have easily discovered his crass error and corrected it, even the much maligned Wikipedia gets it right, but apparently he didn’t consider it necessary to do so, after all it’s just history and not real science.

[1]The Galileo and Huygens quotes are taken from Ron Baalke’s excellent time line, Historical Background of Saturn’s Rings.

 

14 Comments

Filed under History of Astronomy, History of science, Myths of Science