Category Archives: Myths of Science

STOMP. STOMP, STOMP … KEPLER DID WOT!

I really shouldn’t but the HISTSCI_HULK is twisting my arm and muttering dark threats, so here goes. A week ago, we took apart Vedang Sati’s post 10 Discoveries By Newton That Changed The World. When I copied it to my blog, I removed the links that Sati had built into his post. I then made the mistake of following his link to his post on Kepler, so here we go again. 

Johannes Kepler Source: Wikimedia Commons

7 Ways In Which Johannes Kepler Changed Astronomy

Johannes Kepler was a German astronomer who discovered the three laws of planetary motion. Apart from his contributions to astronomy, he is also known to have pioneered the field of optics. In this post, let’s read some amazing facts about Kepler and his work. 

He obviously doesn’t rate Kepler as highly as he rates Newton, so the introduction is less hagiographic this time. However, it does contain one quite extraordinary claim, when he writes, “he is also known to have pioneered the field of optics.” Optics as a scientific discipline was pioneered by Euclid, who lived in the fourth century BCE, so about two thousand years before Kepler. There were also quite a few people active in the field in the two millennia in between.

Early Affliction

He suffered from small pox at a very early age. The disease left him with weak eyesight. Isn’t  it wonderful then how he went on to invent eyeglasses for near-eye and far-eye sightedness.

Kepler did indeed suffer from smallpox sometime around the age of four, which almost cost him his life and did indeed leave him with damaged eyesight. However, Kepler did not invent spectacles of any type whatsoever. The first spectacles for presbyopia, far-sightedness occurring in old age, began to appear in the last decades of the thirteenth century CE. Spectacles for myopia, short-sightedness, were widely available by the early fifteenth century. What Kepler actually did was to publish the first scientific explanation of how lenses function to correct defects in eyesight in his Astronomiae Pars Optica (The Optical Part of Astronomy), in 1604. Francesco Maurolico (1494–1574) actually gave the correct explanation earlier than Kepler in his Photismi de lumine et umbra but this was only published posthumously in 1611, so the credit for priority goes to Kepler

Astronomiae Pars Optica Source: Wikimedia Commons

Introduction to Astronomy

Kepler’s childhood was worsened by his family’s financial troubles. At the age of 6, Johannes had to drop out of school so to earn money for the family. He worked as a waiter in an inn.

As Kepler first entered school at the age of seven, it would have been difficult for his schooling to have been interrupted when he was six. His primary schooling was in fact often interrupted both by illness and the financial fortunes of the family. 

In the same year, his mother took him out at night to show him the Great Comet of 1577 which aroused his life-long interest in science and astronomy. 

Yes, she did!

Copernican Supporter

At a time when everyone was against the heliocentric model of the universe, Kepler became its outspoken supporter. He was the first person to defend the Copernican theory from a scientific and a religious perspective.

Not everyone was opposed to the heliocentric model of the universe, just the majority. Poor old Georg Joachim Rheticus (1514–1574), as the professor of mathematics, who persuaded Copernicus to publish De revolutionibus, he would be deeply insulted by the claim that Kepler was the “first person to defend the Copernican theory from a scientific and a religious perspective.” Rheticus, of course, did both, long before Kepler was even born, although his religious defence remained unpublished and was only rediscovered in the twentieth century. Rheticus was not the only supporter of Copernicus, who preceded Kepler there were others, most notably, in this case, Michael Mästlin (1550–1631), who taught Kepler the Copernican heliocentrism. 

Contemporary of Galileo

Galileo was not a great supporter of Kepler’s work especially when Kepler had proposed that the Moon had an influence over the water (tides). It would take an understanding many decades later which would prove Kepler correct and Galileo wrong.

It is indeed very true that Galileo rejected Kepler’s theory of the tides, when promoting his own highly defective theory, but that is mild compared to his conscious ignoring of Kepler’s laws of planetary motion, which were at the time the most significant evidence for a heliocentric cosmos.

Pioneer of Optics

Kepler made ground-breaking contributions to optics including the formulation of inverse-square law governing the intensity of light; inventing an improved refracting telescope; and correctly explaining the function of the human eye.

Kepler’s contributions to the science of optics were indeed highly significant and represent a major turning point in the development of the discipline. His Astronomiae Pars Optica does indeed contain the inverse square law of light intensity and the first statement that the image is created in the eye on the retina and not in the crystal lens.

However, that he invented an improved telescope is more than a little problematic. When Galileo published his Sidereus Nuncius in 1610, the first published account of astronomical, telescopic discoveries, there was no explanation how a telescope actually functions, so people were justifiably sceptical. Having written the book on how lenses function with his Astronomiae Pars Optica in 1604, Kepler now delivered a scientific explanation how the telescope functioned with his Dioptrice in 1611. 

Kepler Dioptrice Source: Wikimedia Commons

This contained not just a theoretical explanation of the optics of a Dutch or Galilean telescope, with a convex objective and a concave eyepiece, but also of a telescope with convex objective and convex eyepiece, which produces an inverted image, now known as a Keplerian or astronomical telescope, also one with three convex lenses, the third lens to right the inverted image, now known as a field telescope, and lastly, difficult to believe, the telephoto lens. Kepler’s work remained strictly theoretical, and he never constructed any of these telescopes, so is he really the inventor? The first astronomical telescope was constructed by Christoph Grienberger (1561–1636) for Christoph Scheiner (c. 1573–1650) as his heliotropic telescope, for his sunspot studies. 

Heliotropic telescope on the left. On the right Scheiner’s acknowledgement that Grienberger was the inventor

Is the astronomical telescope an improved telescope, in comparison with the Dutch telescope? It is very much a question of horses for courses. If you go to the theatre or the opera then your opera glasses, actually a Dutch telescope, will be much more help in distinguishing the figure on the stage than an astronomical telescope. Naturally, the astronomical telescope, with its wider fields of vision, is, as its name implies, much better for astronomical observations than the Dutch telescope once you get past the problem of the inverted image. This problem was solved with the invention of the multiple lens eyepiece by Anton Maria Schyrleus de Rheita (1604–1660), announced in Oculus Enoch et Eliae published in 1645, although he had already been manufacturing them together with Johann Wiesel (1583–1662) since 1643.

Helped Newton

His planetary laws went on to help Sir Isaac Newton derive the inverse square law of gravity. Newton had famously acknowledged Kepler’s role, in a quote: “If I have seen further, it is by standing on the shoulders of giant(s).

Sati is not alone in failing to give credit to Kepler for his laws of planetary motion in their own right, but instead regarding them merely as a stepping-stone for Newton and the law of gravity. Kepler’s laws of planetary motion, in particular his third law, are the most significant evidence for a heliocentric model of the cosmos between the publication of De revolutionibus in 1543 and Principia in 1687 and deserve to be acknowledged and honoured in their own right! 

Newton’s famous quote, actually a much-used phrase in one form or another in the Early Modern period, originated with Bernard of Chartres (died after 1124) in the twelfth century. Newton used it in a letter to Robert Hooke on 5 February 1675, so twelve years before the publication of his Principia and definitively not referencing Kepler:

What Des-Cartes [sic] did was a good step. You have added much several ways, & especially in taking the colours of thin plates into philosophical consideration. If I have seen further it is by standing on the sholders [sic] of Giants.

Kepler’s Legacy

There is a mountain range in New Zealand named after the famous astronomer. A crater on the Moon is called Kepler’s crater. NASA paid tribute to the scientist by naming their exo-planet telescope, Kepler.

Given the vast number of things named after Kepler, particularly in Germany, Sati’s selection is rather bizarre, in particular because it is a mountain hiking trail in New Zealand that is named after Kepler and not the mountain range itself.

Once again, we are confronted with a collection of half facts and straight falsehoods on this website, whose author, as I stated last time has nearly 190,000 followers on Facebook. 

Me: I told you that we couldn’t stop the tide coming in

HS_H: You’re not trying hard enough. You’ve gotta really STOMP EM!

Me: #histsigh

4 Comments

Filed under History of Astronomy, History of Optics, Myths of Science

STOMP, STOMP, STOMP … NEWTON DID WOT!

Oh dear! The HISTSCI_HULK has been woken from his post festive slumbers and is once again on the rampage. What has provoked this outbreak so early in the new year? He chanced to see a post, that one of my followers on Facebook had linked to, celebrating Newton’s new-style birthday on 4 January. As is well-known, we here at the Renaissance Mathematicus celebrate Newton’s old-style birthday, but that’s another story. 

The post is on a website called Wonders of Physics, is the work of an Indian physicist, Vedang Sati, and is titled:

10 Discoveries By Newton That Changed The World

I have reproduced the whole horror show below. Let us examine it.

Isaac Newton is one of the few names that will forever be enshrined in physics history and that too with a lot of glamour associated. Contributions of none other physicist match, his, well, Einstein’s, or not even his!? The following are Newton’s ten most well-known works that changed the world later on. 

A strong hagiographical vibe going down here, which doesn’t bode well.

Laws of motion

1. An object will remain at rest or move in a straight line unless acted upon by an external force.

2. F=ma.

3. For every action, there is an equal and opposite reaction. 

Newton’s three laws of motion, along with thermodynamics, stimulated the industrial revolution of the 18th and 19th centuries. Much of the society built today owes to these laws.

Remember these are supposedly the things that Newton discovered. His first law of motion, the law of inertia, was first formulated by Galileo, who, however, thought it only applied to circular motion. For linear motion it was first formulated by Isaac Beeckman and taken over from him by both René Descartes and Pierre Gassendi. Newton took it from Descartes. The second law, which was actually slightly different in the original form in which Newton used it, was taken from Christiaan Huygens. The third law was probably developed out of the studies of elastic and inelastic collision, which again originates by Descartes, who got much wrong which was corrected by both Huygens and Newton. Newton’s contribution was to combine them as axioms from which to deduce his mechanics, again probably inspired by Huygens. He tried out various combinations of a range of laws before settling on these three. Sati’s following statement is quite frankly bizarre, whilst not totally false. What about the Principia, where they occur, as the foundation of classical mechanics and perhaps more importantly celestial mechanics.

Binomial Theorem

Around 1665, Isaac Newton discovered the Binomial Theorem, a method to expand the powers of sum of two terms. He generalized the same in 1676. The binomial theorem is used in probability theory and in the computing sciences.

The binomial theorem has a very long history stretching back a couple of thousand years before Newton was born. The famous presentation of the binomial coefficients, known as Pascal’s Triangle, which we all learnt in school (didn’t we?), was known both to Indian and Chinese mathematicians in the Middle Ages. Newton contribution was to expand the binomial theorm to the so-called general form, valid for any rational exponent. 

Inverse square law

By using Kepler’s laws of planetary motion, Newton derived the inverse square law of gravity. This means that the force of gravity between two objects is inversely proportional to the square of the distance between their centers. This law is used to launch satellites into space.

I covered this so many times, it’s getting boring. Let’s just say the inverse square law of gravity was derived/hypothesized by quite a few people in the seventeenth century, of whom Newton was one. His achievement was to show that the inverse square law of gravity and Kepler’s third law of planetary motion are mathematically equivalent, which as the latter in derived empirically means that the former is true. Newton didn’t discover the inverse square law of gravity he proved it.

Newton’s cannon

Newton was a strong supporter of Copernican Heliocentrism. This was a thought experiment by Newton to illustrate orbit or revolution of moon around earth (and hence, earth around the Sun)

He imagined a very tall mountain at the top of the world on which a cannon is loaded. If too much gunpowder is used, then the cannon ball will fly into space. If too little is used, then the ball wouldn’t travel far. Just the right amount of powder will make the ball orbit the Earth. 

This thought experiment was in Newton’s De mundi systemate, a manuscript that was an originally more popular draft of what became the third book of the Principia. The rewritten and expanded published version was considerably more technical and mathematical. Of course, it has nothing to do with gunpowder, but with velocities and forces. Newton is asking when do the inertial force and the force of gravity balance out, leading to the projectile going into orbit. It has nothing to do directly with heliocentricity, as it would equally apply to a geocentric model, as indeed the Moon’s orbit around the Earth is. De mundi systemate was first published in Latin and in an English translation, entitled A Treatise of the System of the World posthumously in 1728, so fifty years after the Principia, making it at best an object of curiosity and not in any way world changing. 

Calculus

Newton invented the differential calculus when he was trying to figure out the problem of accelerating body. Whereas Leibniz is best-known for the creation of integral calculus. The calculus is at the foundation of higher level mathematics. Calculus is used in physics and engineering, such as to improve the architecture of buildings and bridges.

This really hurts. Newton and Leibniz both collated and codified systems of calculus that included both differential and integral calculus. Neither of them invented it. Both of them built on a two-thousand-year development of the discipline, which I have sketch in a blog post here. On the applications of calculus, I recommend Steven Strogatz’s “Infinite Powers”

Rainbow

Newton was the first to understand the formation of rainbow. He also figured out that white light was a combination of 7 colors. This he demonstrated by using a disc, which is painted in the colors, fixed on an axis. When rotated, the colors mix, leading to a whitish hue.

In the fourteenth century both the German Theodoric of Freiberg and the Persian Kamal al-Din al-Farsi gave correct theoretical explanations of the rainbow, independently of one another. They deliver an interesting example of multiple discovery, and that scientific discoveries can get lost and have to be made again. In the seventeenth century the correct explanation was rediscovered by Marco Antonio de Dominis, whose explanation of the secondary rainbow was not quite right. A fully correct explanation was then delivered by René Descartes. 

That white light is in fact a mixture of the colours of the spectrum was indeed a genuine Newton discovery, made with a long series of experiments using prisms and then demonstrated the same way. Newton’s paper on his experiments was his first significant publication and, although hotly contested, established his reputation. It was indeed Newton, who first named seven colours in the spectrum, there are in fact infinitely many, which had to do with his arcane theories on harmony. As far as can be ascertained the Newton Disc was first demonstrated by Pieter van Musschenbroek in 1762. 

Reflecting Telescope

In 1666, Newton imagined a telescope with mirrors which he finished making two years later in 1668. It has many advantages over refracting telescope such as clearer image, cheap cost, etc.

Once again, the reflecting telescope has a long and complicated history and Newton was by no means the first to try and construct one. However, he was the first to succeed in constructing one that worked. I have an article that explains that history here.

Law of cooling

His law states that the rate of heat loss in a body is proportional to the difference in the temperatures between the body and its surroundings. The more the difference, the sooner the cup of tea will cool down.

Whilst historically interesting, Newton’s law of cooling holds only for very small temperature differences. It didn’t change the world

Classification of cubics

Newton found 72 of the 78 “species” of cubic curves and categorized them into four types. In 1717, Scottish mathematician James Stirling proved that every cubic was one of these four types.

Of all the vast amount of mathematics that Newton produced, and mostly didn’t publish, to choose his classification of cubics as one of his 10 discoveries that changed the world is beyond bizarre. 

Alchemy

At that time, alchemy was the equivalent of chemistry. Newton was very interested in this field apart from his works in physics. He conducted many experiments in chemistry and made notes on creating a philosopher’s stone.

Newton could not succeed in this attempt but he did manage to invent many types of alloys including a purple copper alloy and a fusible alloy (Bi, Pb, Sn). The alloy has medical applications (radiotherapy).

Here we have a classic example of the Newton was really doing chemistry defence, although he does admit that Newton made notes on creating a philosopher’s stone. If one is going to call any of his alloys, world changing, then surely it should be speculum, an alloy of copper and tin with a dash of arsenic, which Newton created to make the mirror for his reflecting telescope, and which was used by others for this purpose for the next couple of centuries.

Of course, the whole concept of a greatest discovery hit list for any scientist is totally grotesque and can only lead to misconceptions about how science actually develops. However, if one is going to be stupid enough to produce one, then one should at least get one’s facts rights. Even worse is that things like the classification of the cubics or Newton’s Law of Cooling are anything but greatest discoveries and in no way “changed the world.” 

You might wonder why I take the trouble to criticise this website, but the author has nearly 190,000 followers on Facebook and he is by no means the only popular peddler of crap in place of real history of science on the Internet. I often get the feeling that I and my buddy the HISTSCI_HULK are a latter-day King Cnut trying to stem the tide of #histSTM bullshit. 

3 Comments

Filed under History of science, Myths of Science, Newton

We plumb the depths of boundless history of science stupidity 

Late on Friday evening, Renaissance mathematicus friend and star historian of medieval science, Seb Falk, posted a couple of paragraphs from an Oberserver newspaper interview with the physicist and self-appointed science communicator Michio Kaku, from April this year. The history of science content of those paragraphs was so utterly, mindbogglingly ludicrous that it had me tossing and turning all night and woke from his deep winter sleep the HISTSCI_HULK, who is now raging through my humble abode like a demented behemoth on speed. What was it that set the living history of science bullshit detector in such a state of apoplexy? I offer up the evidence:

How much, do you think, would Isaac Newton understand of your book?
I think he would appreciate it. In 1666 we had the great plague. Cambridge University was shut down and a 23-year-old boy was sent home, and he saw an apple fall on his estate. And then he realised that the laws that control an apple are the same laws that control the moon. So the epidemic gave Isaac Newton an opportunity to sit down and follow the mathematics of falling apples and falling moons. But of course there was no mathematics at that time. He couldn’t solve the problem so he created his own mathematics. That’s what we are doing now. We, too, are being hit by the plague. We, too, are confined to our desks. And we, too, are creating new mathematics.

This paragraph is, of course, the tired old myth of Newton’s Annus mirabilis, which got continually recycled in the early months of the current pandemic and, which I demolished in a blog post back in April 2020, so I won’t bore you with a rehash here. However, Kaku has managed to add a dimension of utter mind shattering ignorance

But of course there was no mathematics at that time. He couldn’t solve the problem so he created his own mathematics.

Just limiting myself to the Early Modern Period, Tartaglia, Cardano, Ferrari, Bombelli, Stiefel, Viète, Harriot, Napier, Kepler, Galileo, Cavalieri, Fermat, Descartes, Pascal, Gregory, Barrow, Wallis and many others are all not just turning in their graves, but spinning at high speed, whilst screaming WHAT THE FUCK! at 140 decibels.

The real irony is that not only did Newton not codify the calculus during his non-existent Annus mirabilis–he didn’t create it, it evolved over a period of approximately two thousand years–but when he wrote his Principia twenty years later, he used a modernised version of Euclidian geometry, which was created some two thousand years earlier, and not the calculus!  

There is more to come:

There are many brilliant scientists whose contributions you discuss in the book. Which one, for you, stands out above the rest?
Newton is at number one, because, almost out of nothing, out of an era of witchcraft and sorcery, he comes up with the mathematics of the universe, he comes up with a theory of almost everything. That’s incredible. Einstein piggybacked on Newton, using the calculus of Newton to work out the dynamics of curved spacetime and general relativity. They are like supernovas, blindingly brilliant and illuminating the entire landscape and changing human destiny. Newton’s laws of motion set into motion the foundation for the Industrial Revolution. A person like that comes along once every several centuries.

Where to start? To describe the late seventeenth and early nineteenth centuries as “an era of witchcraft and sorcery” is simply bizarre. This is the highpoint of the so-called Scientific Revolution, it is the Augustan age of literature that in Britain alone produced Swift, Pope, Defoe, and many others, it is the age of William Hogarth, it is the age in which modern capitalism was born and, and, and… Yes, some people still believed in witchcraft and sorcery, some still do today, but it was by no means a central factor of the social, political, or cultural life of the period. This was the dawn of the Enlightenment, for fuck’s sake, the period of Spinosa, Locke, Hume and, once again, many others. 

The “Newton is at number one, because, almost out of nothing” produces howls of protest echoing down the centuries from Kepler, Stevin, Galileo, Torricelli, Descartes, Pascal, Huygens et al

With respect to Steven Strogatz, I will grant him his hyperbolic “mathematics of the universe”, but Newton’s physics covers just a very small area of the entire world of knowledge and is in no way a “theory of almost everything.” 

I should leave the comments on Einstein, to those better qualified to condemn them than I. However, I find the claim that “Einstein piggybacked on Newton” simply grotesque. Also, the calculus that Newton and Leibniz codified, which became the mathematics of Newtonian physics, although Newton himself did not use it, is a very different beast to the tensor calculus used in the general relativity theory. In fact, the only thing they have in common is the word calculus, I would expect someone with a doctorate in physics to know that.

One is tempted to ask if the Guardian has fired all of its science editors and replaced them with failed door to door vacuum cleaner salesmen. It’s the only rational explanation as to why the science pages of the Observer were adorned with such unfathomably dumb history of science. It is supposed to be a quality newspaper!

The HISTSCI_HULK has in the meantime thrown himself off the balcony into the snowstorm and was last seen stomping off into the woods muttering, The horror! The horror!

10 Comments

Filed under History of science, Myths of Science

The Renaissance Mathematicus tries his luck as YouTube Influencer

Some time back I had a late-night chat with medieval historian Tim O’Neill about all things Galileo Galilei; late night for me that is, early morning for him. Unbeknown to me the sneaky Aussie bugger recorded my ruminations on the Tuscan mathematicus; they’re like that those antipodeans, duplicitous. Now he’s gone and posted the whole affair on YouTube, for all the world to see.

 I may have to have plastic surgery and move to an unknown destination in South America.

However, if you have a strong stomach and like to watch train wrecks or are just curious what the Renaissance Mathematicus looks like in real life, then you can find the whole horrible mess on Tim’s History for Atheists YouTube channel in three obscenely long parts:

The Galileo Affair Part 1 

The Galileo Affair Part 2 

The Galileo Affair Part 3  

 Who knows, if enough people can be fooled into watching it, I might become the next Paris Hilton! 

WARNING: Not suitable for children or viewers with high moral standards: Expletives not deleted!

3 Comments

Filed under History of Astronomy, Myths of Science, Renaissance Science

It’s Galileo time again!

An article in the Sunday Express, not a newspaper I would normally read in fact I would only ever use it as toilet paper in an emergency, starts thus:

Former Supreme Court Judge Lord Sumption has condemned attacks on scientists who challenge “official wisdom” on Covid, comparing their critics to the “persecutors of Galileo”.

A classic case of the Galileo fallacy or Galileo gambit. For anybody not aware of the Galileo fallacy:

Lucy Johnston, Health and social Affairs Editor of the Sunday Express tweeted this article with the following lede:

Lord Sumption: “Scientists behaving like the persecutors of Galileo….forgetting all scientific conclusions are provisional, including their own.

Lucy Johnston’s lede is in fact disingenuous, as she combines two half sentences that are in no way connected in the article, but we will examine it as if they were. Galileo’s persecutors were very well aware that scientific conclusions are provisional as stated very clearly by Roberto Bellarmino in his Foscarini Letter, I quote:

Third, I say that if there were a true demonstration that the sun is at the centre of the world and the earth in the third heaven, and that the sun does not circle the earth but the earth circles the sun, then one would have to proceed with great care in explaining the Scriptures that appear contrary; and say rather that we do not understand them than that what is demonstrated is false. But I will not believe that there is such a demonstration, until it is shown me. 

During the seventeenth century many Catholic astronomers and natural philosophers were involved in providing the necessary evidence to support a heliocentric world view. Many of them were Jesuits or Jesuit educated. They would not have done so if they did not believe that scientific conclusions are provisional. 

This is why I tweeted:

Sorry to introduce some real history into this thread but that is not what Galileo’s prosecutors did.

To which Helen O’Toole an Irish Early Years Educator (her description) replied with the following link:

One should note that the website, which is the website of the History television channel describes itself as “History #1 Factual Entertainment Brand” [my emphasis] History the television channel is notorious for it’s pseudo-documentaries of bullshit woo and the inaccuracies of its historical documentaries.

Here we can read the following: 

1633 April 12 Galileo is accused of heresy

This is in fact false. Galileo was not accused of heresy but of having breached the Church injunction, issued to him personally in 1616, not to hold or teach the heliocentric theory. Before somebody charges in saying, “they had no right to issue such an injunction”, I will point out, for the umpteenth time, that at the beginning of the seventeenth century the Catholic Church was an absolutist political and legal authority and had every right under the prevailing system to do so. 

It is also important to note, again for the umpteenth time, that when Galileo got himself into trouble with the Catholic authorities, the scientific situation was such that the available empirical evidence supported a geocentric or helio-geocentric system and not a heliocentric one, as there was absolutely no evidence that the Earth moved. Also, and this is very important, Galileo or anybody else, for that matter, was free to discuss a heliocentric system hypothetically but not to claim that it was factually true.

On April 12, 1633, chief inquisitor Father Vincenzo Maculani da Firenzuola, appointed by Pope Urban VIII, begins the inquisition of physicist and astronomer Galileo Galilei. Galileo was ordered to turn himself in to the Holy Office to begin trial for holding the belief that the Earth revolves around the sun, which was deemed heretical by the Catholic Church. Standard practice demanded that the accused be imprisoned and secluded during the trial.

Galileo was ordered to turn himself in for holding and teaching the heliocentric hypothesis as proven fact. The heliocentric theory was never formally declared heretical by the Catholic Church. The eleven Qualifiers, appointed by the Church to examine the heliocentric theory, came to the conclusion that the idea that the Sun is stationary is “foolish and absurd in philosophy, and formally heretical since it explicitly contradicts in many places the sense of Holy Scripture…” However, only the Pope can formally declare something heretical and in the case of the heliocentric theory no pope ever took this step.

This is followed by a wonderful case of false information by implication. “Standard practice demanded that the accused be imprisoned and secluded during the trial.” In Galileo’s case, due to his advanced age and his social status, on the one hand he was the most famous natural philosopher and astronomer in Europe and on the other he was a Medici courtier, Galileo was given his own three-room apartment, with servants, in the palace of the Inquisition. This is a somewhat different picture to the usual one, implied here, of Galileo being thrown into prison, or even a dungeon. Galileo even wrote a letter to his daughter saying how well he was being treated.

This was the second time that Galileo was in the hot seat for refusing to accept Church orthodoxy that the Earth was the immovable center of the universe: In 1616, he had been forbidden from holding or defending his beliefs. In the 1633 interrogation, Galileo denied that he “held” belief in the Copernican view but continued to write about the issue and evidence as a means of “discussion” rather than belief. The Church had decided the idea that the sun moved around the Earth was an absolute fact of scripture that could not be disputed, despite the fact that scientists had known for centuries that the Earth was not the center of the universe.

I do wish people wouldn’t in this context use the word belief. Galileo held it for a fact that the cosmos, as it was then known, was heliocentric and was convinced that he could prove it. The Church had not decided that “the idea that the sun moved around the Earth was an absolute fact of scripture that could not be disputed”. The Church said that scripture stated that the Sun revolves around the Earth and the best available empirical evidence at the beginning of the seventeenth century supported that hypothesis. The Church was quite happy to change that view if new evidence to support the heliocentric hypothesis should be found, which it did in the eighteenth century, when that evidence, stellar aberration, was in fact found. 

However, all the above I have gone through in various posts in the past, what drove me to write this new post was the last statement, “despite the fact that scientists had known for centuries that the Earth was not the center of the universe.” [my emphasis], I mean WHAT THE FUCK! It’s truly time for a bit of the HIST_SCI HULK

Can somebody please enlighten me, as to who these scientists were, who had known for centuries that the Earth was not the centre of the universe? 

Remember this was posted on “History #1 Factual Entertainment Brand” [my emphasis], so let us re-examine the actual historical facts. Copernicus published his De revolutionibus, containing his heliocentric hypothesis, in 1543, that’s ninety years before Galileo’s trial, not centuries. Copernicus had deferred the publication for a couple of decades because he couldn’t provide any empirical evidence to support his hypothesis. When he finally published his hypothesis was mathematically plausible but still lacked any empirical evidence. Over the next ninety years despite efforts by numerous astronomers at prove or refute Copernicus’ hypothesis nobody had found any empirical evidence to show that the Earth moved. The best evidence for a heliocentric system was Kepler’s three laws of planetary motion in particular his third law, which interestingly Galileo simply ignored. The other available evidence was the various observations, made by various astronomers, confirming the solar orbits of comets, which Galileo didn’t just ignore but actively rejected. Just for the record, in 1633, the available empirical evidence supported either a geocentric system or more likely a Tychonic helio-geocentric system with the Earth still firmly at the centre.

I find it simply depressing that an organisation with the worldwide reach of the History Channel (which actually just calls itself History these days) is propagating such inaccurate crap as factual history, which is being consumed and believed by such people as Helen O’Toole an Irish Early Years Educator, who drew my attention to this travesty. 

4 Comments

Filed under History of Astronomy, Myths of Science, Uncategorized

To simplify is to falsify; falsification is used to simplify

The past is not neat and orderly, divided up into handy segments that the historian can parcel up and deliver to his expectant readers. The past is a horribly complex, tangled up mess. If the past were string, it would not be a neatly rolled up ball but a labyrinthine, knotted heap with multiple ends sticking out all over the place, some seeming to promise a swift unravelling, others apparently leading nowhere. It is the task of the historian to attempt to unravel than unruly heap of twine and try to reconstruct a picture of an episode, a period, or a process that took place at a particular point or during a passage of time in the past. Some of those lose ends represent fragments of the past that have got lost, as we never have anything like a complete record of the past. Unfortunately, teachers, popularisers, journalists and even some historians simply take a pair of scissors and cut out a segment from the heap, simply ignoring any connections that they thus destroy, trim off any lose ends than don’t fit the picture that they want to present, and then serve this up as history. What they end up with is a nice simple, dare I say clean cut, historical picture which they have falsified through their actions. They are not doing history but rather creating myths. I will try to illustrate this procedure by sketching couple of examples.

It will surprise nobody, who follows this blog that my first example is the conflict between Galileo Galilei and the Catholic Church. In the popular version this is inevitably presented as a conflict between science and religion. Galileo championed heliocentricity a valid scientific theory, which however, was in conflict to Holy Scripture and so the Church punished him, at the same time banning the heliocentric theory. You can find versions of this all over the place but almost all of the details are actually false.

Galileo_Galilei_2

Galileo Galilei, portrait by Domenico Tintoretto Source: Wikimedia Commons

Galileo did, indeed, champion heliocentricity, but, at the time he did so, it was merely an unconfirmed hypothesis and not a validated scientific theory. At that time, around 1615 when the conflict started, the empirical evidence tended to support a competing Tychonic geo-heliocentric model, which either gets simply ignored in the simplified version of the story or dismissed out of hand, because! He came into conflict with the Church not because of his support of heliocentricity, but because in his Letter to Castelli he, a mere mathematicus, had the audacity to tell the theologians how to interpret Holy Scripture. To exacerbate the situation the Carmelite theologian Paolo Antonio Foscarini (c. 1565–1616) did the same thing at the same time. This almost never gets mentioned in the popular version and if mentioned only to say have clever his criticism was. What definitely never gets mentioned is that this was in the middle of the Reformation/Counter Reformation, a major religious dispute over, who has the right to interpret Holy Scripture. Galileo couldn’t have picked a worse time to stick his oar in. What we have here at the core is a religious dispute that only indirectly has to do with science.

 Just in this brief sketch we can see that the popular simplified version sails majestically past the historical truth. The final point that gets completely ignored in the popular versions, in fact the propagators almost always claim the opposite, is that the Church did not ban heliocentricity. It said it was fine to discuss heliocentricity as a hypothesis but not as a validated scientific theory, which was its actual scientific status at the time. Despite the fact that it is almost completely false the simplified version gets trotted out by somebody almost daily.

For our second example we take a look at the world of Early Modern medicine and the work of Andries van Wezel (1514–1564) better known as Andreas Vesalius, with a glance to the side in passing at the anatomical studies of Leonardo da Vinci. Vesalius gets trotted out a lot in popular versions of the history of science because, by coincidence, his anatomy book, De humani corporis fabrica libri septem, was published in 1543, the same year as Copernicus’ De revolutionibus, providing a good excuse to call 1543 the beginning of the scientific revolution.

Vesalius_Fabrica_fronticepiece

Vesalius Fabrica fronticepiece Source: Wikimedia Commons

Very often Vesalius get presented as the first physician to dissect corpses since antiquity. The claim of being first is also attributed to Leonardo. It is in both cases completely false, as is also the claim that the Church forbid dissection of human corpses and Leonardo or Vesalius were forced to do this secretly, also often stated in both cases. I will briefly deal with Leonardo, before returning to Vesalius. The practice of artists studying corpses, in order to better understand the structure of the body was well established by the time Leonardo began his apprenticeship under Andrea del Verrocchio (c. 1435 – 1488), in fact Verrocchio insisted on his apprentices making detailed studies of the human body with its muscles, sinews etc. Leonardo simply took these studies further that his artist colleagues. He carried out his dissections, without any subterfuge, together with the physician and professor of anatomy Marcantonio della Torre (1481–1511).

Studies_of_the_Arm_showing_the_Movements_made_by_the_Biceps

Leonard anatomical study of the arm (c. 1510) Source: Wikimedia Commons

Vesalius is, as already stated, often credited with being the first to practice human dissection since antiquity but as you can see Torre, who died three years before Vesalius was born, was practicing dissection with Leonardo, so Vesalius definitely not the first. In fact, Vesalius was a high point, but by no means the end point in a development that had been going on for at least one and a half centuries. The earliest recorded dissection took place in Padua in 1341 but the Anatomia of Mondino de’ Liuzzi (c. 1270–1326) dates from 1316, indicating an earlier well-established practice. In the late fifteenth century universities began to erect temporary dissection theatres in winter for the anatomy professors to carry out public dissections for their students. These would later be replaced with permanent anatomical theatres, with the first being built in Padua in 1595.

Gravue-Gymnasium-Patavium

The Padua anatomy theatre designed by Hieronymous Fabricius , 1595. In Giacomo Filippo Tomasini, Gymnasum Patavinum (udine: Nicolaus Schirattus, 1654) Houghton Library via Wikimedia Commons

Vesalius worked in such structures well before he published his De fabrica. With his book Vesalius did set new standards, but these were rapidly developed further by his contemporaries and successors. The standard popular story surrounding Vesalius is, in the sense of my title, very much a simplified falsification.

My third example is one on the most well-known figures in the popular history of science, Francis Bacon (1561–1626). Bacon is credited, with his Of Proficience and Advancement of Learning Divine and Human published in 1605 and his New Atlantis published posthumously in 1626, “with presenting a universal reform of knowledge into scientific methodology and the improvement of mankind’s state using the scientific method”, to quote Wikipedia.

Bacon_1628_New_Atlantis_title_page_wpreview

Title page of New Atlantis in the second edition of Francis Bacon’s Sylva sylvarvm: or A naturall historie. In ten centvries. London. Printed by J.H. for William Lee at the Turkes Head in Fleet-street, next to the Miter, 1628 Source: Wikimedia Commons

The only problem with this presentation of Bacon, as the creator of a vision for the future of science is that all the ideas and concepts that he presents had been developed and practiced by natural philosophers over the previous two centuries. Bacon was not presenting a vision for the future but rather a codification and idealisation of what had been evolving in science in the past. Bacon was a recorder of other peoples’ advances and developments and not the visionary prophet, as which he is presented.

 

In the three examples that I have sketched it should be clear that what popularisers attempt to do with their simplifications and falsifications is to create hero stories, myths, rather than confront the complex, tangled up mess that is the real history of science. Or as Will Thomas, Renaissance Mathematicus friend put it in a recent tweet , “Totally different from standing before the vast, unknowable chaos of the historical record.”

 

 

 

 

18 Comments

Filed under History of science, Myths of Science

Illuminating medieval science

 

There is a widespread popular vision of the Middle ages, as some sort of black hole of filth, disease, ignorance, brutality, witchcraft and blind devotion to religion. This fairly-tale version of history is actively propagated by authors of popular medieval novels, the film industry and television, it sells well. Within this fantasy the term medieval science is simply an oxymoron, a contradiction in itself, how could there possible be science in a culture of illiterate, dung smeared peasants, fanatical prelates waiting for the apocalypse and haggard, devil worshipping crones muttering curses to their black cats?

Whilst the picture I have just drawn is a deliberate caricature this negative view of the Middle Ages and medieval science is unfortunately not confined to the entertainment industry. We have the following quote from Israeli historian Yuval Harari from his bestselling Sapiens: A Brief History of Humankind (2014), which I demolished in an earlier post.

In 1500, few cities had more than 100,000 inhabitants. Most buildings were constructed of mud, wood and straw; a three-story building was a skyscraper. The streets were rutted dirt tracks, dusty in summer and muddy in winter, plied by pedestrians, horses, goats, chickens and a few carts. The most common urban noises were human and animal voices, along with the occasional hammer and saw. At sunset, the cityscape went black, with only an occasional candle or torch flickering in the gloom.

On medieval science we have the even more ignorant point of view from American polymath and TV star Carl Sagan from his mega selling television series Cosmos, who to quote the Cambridge History of Medieval Science:

In his 1980 book by the same name, a timeline of astronomy from Greek antiquity to the present left between the fifth and the late fifteenth centuries a familiar thousand-year blank labelled as a “poignant lost opportunity for mankind.” 

Of course, the very existence of the Cambridge History of Medieval Science puts a lie to Sagan’s poignant lost opportunity, as do a whole library full of monographs and articles by such eminent historians of science as Edward Grant, John Murdoch, Michael Shank, David Lindberg, Alistair Crombie and many others.

However, these historians write mainly for academics and not for the general public, what is needed is books on medieval science written specifically for the educated layman; there are already a few such books on the market, and they have now been joined by Seb Falk’s truly excellent The Light Ages: The Surprising Story of Medieval Science.[1]  

falk01

How does one go about writing a semi-popular history of medieval science? Falk does so by telling the life story of John of Westwyk an obscure fourteenth century Benedictine monk from Hertfordshire, who was an astronomer and instrument maker. However, John of Westwyk really is obscure and we have very few details of his life, so how does Falk tell his life story. The clue, and this is Falk’s masterstroke, is context. We get an elaborate, detailed account of the context and circumstances of John’s life and thereby a very broad introduction to all aspects of fourteenth century European life and its science.

We follow John from the agricultural village of Westwyk to the Abbey of St Albans, where he spent the early part of his life as a monk. We accompany some of his fellow monks to study at the University of Oxford, whether John studied with them is not known.

falk02

Gloucester College was the Benedictine College at Oxford where the monks of St Albans studied

We trudge all the way up to Tynemouth on the wild North Sea coast of Northumbria, the site of daughter cell of the great St Alban’s Abbey, main seat of Benedictines in England. We follow John when he takes up the cross and goes on a crusade. Throughout all of his wanderings we meet up with the science of the period, John himself was an astronomer and instrument maker.

Falk is a great narrator and his descriptive passages, whilst historically accurate and correct,[2] read like a well written novel pulling the reader along through the world of the fourteenth century. However, Falk is also a teacher and when he introduces a new scientific instrument or set of astronomical tables, he doesn’t just simply describe them, he teachers the reader in detail how to construct, read, use them. His great skill is just at the point when you think your brain is going to bail out, through mathematical overload, he changes back to a wonderfully lyrical description of a landscape or a building. The balance between the two aspects of the book is as near perfect as possible. It entertains, informs and educates in equal measures on a very high level.

Along the way we learn about medieval astronomy, astrology, mathematics, medicine, cartography, time keeping, instrument making and more. The book is particularly rich on the time keeping and the instruments, as the Abbott of St Albans during John’s time was Richard of Wallingford one of England’s great medieval scientists, who was responsible for the design and construction of one of the greatest medieval church clocks and with his Albion (the all in one) one of the most sophisticated astronomical instruments of all time. Falk’ introduction to and description of both in first class.

falk03

The book is elegantly present with an attractive typeface and is well illustrated with grey in grey prints and a selection of colour ones. There are extensive, informative endnotes and a good index. If somebody reads this book as an introduction to medieval science there is a strong chance that their next question will be, what do I read next. Falk gives a detailed answer to this question. There is an extensive section at the end of the book entitled Further Reading, which gives a section by section detailed annotated reading list for each aspect of the book.

Seb Falk has written a brilliant introduction to the history of medieval science. This book is an instant classic and future generations of schoolkids, students and interested laypeople when talking about medieval science will simply refer to the Falk as a standard introduction to the topic. If you are interested in the history of medieval science or the history of science in general, acquire a copy of Seb Falk’s masterpiece, I guarantee you won’t regret it.

[1] American edition: Seb Falk, The Light Ages: The Surprising Story of Medieval Science, W. W. Norton & Co., New York % London, 2020

British Edition: Seb Falk, The Light Ages: A Medieval Journey of Discover, Allen Lane, London, 2020

[2] Disclosure: I had the pleasure and privilege of reading the whole first draft of the book in manuscript to check it for errors, that is historical errors not grammatical or orthographical ones, although I did point those out when I stumbled over them.

5 Comments

Filed under History of Astrology, History of Astronomy, History of Cartography, History of Mathematics, History of Navigation, History of science, Mediaeval Science, Myths of Science

Galileo was insufficiently woke?

We haven’t had a good Galileo rant here at the Renaissance Mathematicus for some time, but when you just begin to think that maybe people have stopped misusing the Tuscan natural philosopher for their own ends, up pops a new example and we’re off again.

My attention was drawn to today wonderful example by the following exchange on Twitter:

Seb Falk (@Seb_Falk): I’ve heard a lot of nonsense about Galileo, but persecuted by the Church for being insufficiently woke? That’s a new one on me.

Is there a Galileo-related law equivalent to Godwin’s Law? If not, Falk’s Law states that as a culture war continues, the probability that someone will invoke a mythologised account of the trial of Galileo in a specious defence of academic freedom approaches 1.

Dave Hitchcock (@Hitchcokian): Amazing. it shall definitely be known henceforth as Falk’s Law.

Seb Falk: I’m honoured – though I was just thinking that @rmathematicus has been calling this stuff out for so long we should call it Christie’s Law. Bloody history of science, always naming things after the wrong person

James Sumner (@JamesBSumner): Well, now, that’s perfectly consonant with Stigler’s law of eponymy

For those not aware of Stigler’s Law, it states that no scientific discovery is named after its original discoverer. Stigler’s law itself was in fact discovered by Robert K Merton and not Stephen Stigler.

So what was the piece about Galileo that provoked the creation of Falk’s Law?

Trevor Phillips (@MTREVORP) opens an article in the Times newspaper titled University bigots want to control minorities with the following:

Every scientist knows the Galileo story. When one of the greatest minds of the 17th (or any other) century concluded that, contrary to the Catholic Church’s teaching, the Earth was not the still centre of the universe but just one satellite of the sun he was for the high jump.

Subjected to six years at the hands of the Inquisition, character assassination and house arrest, he finally gave in and admitted his “wrongthink” but is reputed to have muttered under his breath “E pur si muove” – “Still, it moves”. The man whom Einstein called the father of modern science was said to be hurt most by the way his fellow philosophers abandoned him for fear of suffering the same fate.

I find it fascinating just how much a supposedly intelligent, educated, well informed writer can get wrong in just two very short paragraphs. We start with the opening sentence; experience has clearly shown that very few scientists know the actual Galileo story; most of them know one or other very mangled version of what might be termed the Galileo myth, which all have something in common, a factual, historical truth content on a par with an episode of Game of Thrones.

We then get the statutory hyperbollocks as soon as Galileo becomes the subject of discourse, “one of the greatest minds of the 17th (or any other) century.” This leads me to the thought, what if Galileo had not been hyped up to this larger than life, once in a century genius, would people be just as outraged if he had been mistreated by the Inquisition. Is it a worse crime if those in power mistreat a brilliant scientist, than if they mistreat Giuseppe, the guy who empties the trash cans? Not just here but in lots of things that I have read, I get the impression that is exactly what a very large number of people think. Are some lives really worth more than others? Their argument seems to be something along the lines of but Galileo changed the world, Giuseppe the trash can guy didn’t. What if the fact that Giuseppe was rotting in an Inquisition dungeon, instead of cleaning the streets led to an outbreak of cholera that wiped out half the population of the city? But I digress.

What follows is a significant misrepresentation of the facts that is dished every time somebody present their mythical version of the Galileo story and one that I have dealt with many times. It wasn’t just the Catholic Church’s teaching that we live in a geocentric cosmos but was the considered, majority opinion of informed astronomers based on the then available empirical evidence. Galileo was involved in a complex scientific debate on the astronomical and cosmological status of the solar system and was not this brilliant scientist taking on the ignorant, non-scientific, religious prejudices of the Catholic Church.  There are a couple of grammatical and lexigraphical anomalies in Phillips’ sentence that should have been picked up by a good sub-editor. If he is going to write Earth with a capital ‘E’ then he should also write sun with a capital ‘S’ and the earth is not a satellite of the sun it is a planet. Satellites orbit planets, planets orbit suns.

Subjected to six years at the hands of the Inquisition? Really? Galileo’s interrogation, trial and the passing of judgement by the Roman Inquisition lasted not quite four months, so I have literally no idea what Phillips is talking about here. I also have absolutely no idea what he means when he writes, “character assassination”, through out the whole affair he was treated with care and consideration and the respect due to him both because of his age and his reputation. Does one really need to repeat that Galileo was not tried for supporting the heliocentric hypothesis but for breaking an injunction from 1616 not to hold or teach the heliocentric theory as fact rather than, as a hypothesis? There was literally no question of “wrongthink”, Galileo was fully entitled to think what he liked about heliocentricity and even to express those thoughts verbally but he was not permitted to claim that heliocentricity was a proven fact. Just for the record, for the umpteenth time, it wasn’t. I find it almost funny that Phillips includes house arrest amongst the mistreatments before Galileo adjured. Having adjured he was, in fact, sentenced to imprisonment, which was immediately commuted to house arrest by the Pope, so after the fact not before.

Of course, having dished up a totally fictional account of Galileo’s dispute with the Church, Phillips doesn’t not spare us the “E pur si muove” – “Still, it moves” myth, in for a penny in for a pound. If we going to present fairy tales in place of historical accuracy then why not go the whole hog? We, natural, get that leading expert on the history of science, Albert Einstein, quoted on Galileo’s status in that history. Why ask a historian when you can ask Uncle Albert, the font of all wisdom? Another reminder, the expression ‘father of’ is a meaningless piece of crap.

Phillips’ last claim leaves me, once more, totally bewildered. “[Galileo] was said to be hurt most by the way his fellow philosophers abandoned him for fear of suffering the same fate.” There are two aspects to this claim. Firstly, the man, who is a serious candidate for the most egotistical and arrogant arsehole in the entire history of science and who spent a large part of his life actively insulting, denigrating and alienating ‘his fellow philosophers’ was hurt because they didn’t support him, really? Secondly, I have spent a life time reading about and studying Galileo and the historical context in which he lived and worked and I have never ever come across anybody claiming anything remotely like this claim made by Phillips. Put differently, Phillips is just making shit up to bolster the argument that he is going to present in his article. This is not history or journalism this is quite simply lying!

People used to refer to the Galileo Gambit, when somebody, almost always a crank, compared having his ‘fantastic ideas’ rejected to the Catholic Church’s persecution of Galileo. To this Bob Dylan delivered up the perfect retort:

He said, “They persecuted Jesus too.”

I said, “You’re not him.”

“I said you know, they refused Jesus, too. He said you’re not him.”

[Correct version of Dylan quote curtesy of Todd Timberlake]

Trevor Phillips delivers up a slightly different variation on the theme. He is using a totally mythical version of the Galileo story to beat people, who he disapproves of or disagrees with around the head. If he can’t make the points that he wishes to make without resorting to lies and deception in that he misuses an episode in the history of science then he should give up pretending to be a journalist.

24 Comments

Filed under Myths of Science, Uncategorized

How to create your own Galileo

Writing this book review caused me a great deal of of stress, even leading to sleepless night when I made the mistake of reading the offending piece of literature as bedtime reading. The review itself has become horrendously long and I must at times fight my instinct to add even more explanations, as to why this or that was wrong. It is in the words of that excellent history of science author, Matthew Cobb, ‘baggy and rambling’ and should actually be radically edited but I just can’t be arsed to do it, so I’m simply posting the whole monstrosity. For those, who don’t want to read the whole thing, and I wouldn’t blame you, the first three and the last five paragraphs offer a sort of synopsis of the whole thing.

Since I began writing book reviews on a more regular basis I have tried only to review books that I personally find good and which I think might be of interest to those who come here to read my weekly scribblings. I decided that on the whole it isn’t worth wasting time and energy writing about uninteresting, mediocre or simply bad books. However, occasionally a book come along that I feel duty bound, given my reputation as a #histSTM grouch, to debunk as a favour to my readers so that they don’t waste their time and energy reading it; today’s review is one such.

Some time back I wrote a post about the Alexandrian mathematician and philosopher Hypatia, which started with the fact that she has been used as a sort of blank slate onto which numerous people down the centuries have projected their images of what they would have wanted her to be. In the case of Hypatia this is fairly easy, as the rest of my post pointed out we know next to nothing about the lady. Another figure, who has been used extensively over the years as a silhouette, which people fill out according to their own wishes is Galileo Galilei; in his case this is more difficult as we actually know an awful lot about the Tuscan mathematician’s life and work. However, this has not prevented numerous authors from creating their own Galileos.

The latest author, who has decided to present the world with his Galileo, is the astrophysicist and very successful author of popular books on mathematics and science, Mario Livio with his Galileo and the Science Deniers.[1] I might not have bothered with this book but Livio is a very successful pop science book author, as is made very clear by the fact that the hardback and paperback were both issued simultaneously and at very low prices; the publishers expect it to sell well, so it will unfortunately have a big impact on uninformed peoples perceptions of Galileo. I say unfortunately, which, of course, gives readers of this review a very strong clue as to what I think of this book. Quite simply don’t bother, it brings nothing new to our knowledge of Galileo and in fact is full of, at times, quite serious historical errors, serious that is if you’re a historian, who takes getting the facts right seriously.

Livio001

The opening sentences starts with a couple of wonderful errors and also lays out Livio’s version of Galileo:

Being an astrophysicist myself, I have always been fascinated by Galileo. He was, after all, not only the founder of modern astronomy and astrophysics–the person who turned an ancient profession into the universe’s deepest secrets and awe-inspiring wonders–but also a symbol of the fight for intellectual freedom.

I think Copernicus, Tycho Brahe and Johannes Kepler might want a word with Livio about, who exactly is the founder of modern astronomy. Also, excuse the language, but what the fuck did Galileo ever do for astrophysics? The final half sentence tells us into which silhouette Livio has decided to pour his Galileo; Livio’s Galileo is the white knight of freedom of speech and freedom of thought, who has mounted his charger and taking up his lance sets off to kill the anti-science dragon of the Holy Roman Catholic Church. This is, of course not a new Galileo but a well-known old model, which historians of science have spent a lot of time and effort dismantling over the last fifty plus years.

Central to the problems with Livio’s book is that he completely ignores the historical context in which the Galileo story took place. His is totally a presentist view in which he applies the social rules and moral judgements of the twentieth-first century to the various occurrences he sketches in the early seventeenth century. This is quite simply very bad historiography. He compounds this error by trying to draw parallels between Galileo’s conflict with the Catholic Church and the current problems with science denialists in our times, hence the title of his book. To do this he simply denies Galileo’s critics any scientific basis for their criticism whatsoever, Galileo is science, his critics are anti-science. A rather simplistic and historically highly inaccurate presentation of the known facts.

Just to make clear what exactly the historical context was, there existed no freedom of speech or freedom of thought under any civil or religious authority anywhere in Europe at the beginning of the seventeenth century; such social concepts still lay in the future. There is a slight irony in the fact that the current wave of science denialists, against whom Livio’s book is directed, are in fact exercising their, protected by law, rights of freedom of thought and speech. More importantly the Holy Roman Catholic Church was not just a religion and a church but also a powerful political and judicial body with judicial rights over all within its dominion and this in an age of absolutism with the Pope as the most absolute of all absolute rulers. All authorities both civil and religious reserved for itself the right to determine what its subject were permitted to express in public, the Catholic Church was in no way unique in claiming and exercising this right.

Still in the preface to Livio’s book we find his first distortion of the historical scientific facts, he writes that Galileo’s telescopic discoveries, “All but destroyed the stability of the Earth-centered Ptolemaic universe.” Here Livio, and not only here, fails to differentiate between Aristotelian cosmology and Ptolemaic astronomy. All of the telescopic discoveries, with the exception of the phases of Venus, demolished aspects of Aristotelian cosmology but had no significance for Ptolemaic geocentric astronomy. The discovery of the phases of Venus, of course, refuted a pure geocentric system but was perfectly compatible with a Tychonic geo-heliocentric system, which then became the default alternative to a heliocentric system. With two notable exceptions that I will deal with later Livio makes no clear mention of the fact that the telescopic discoveries were made within the same approximately three year period not only by Galileo but simultaneous by others, so if Galileo had never used a telescope it would have made very little difference to the subsequent history of astronomy. This makes rather a mockery of Livio’s next dubious claim, “his [Galileo’s] ideas became the basis on which modern science has been erected.” This is much less true than Livio and other Galileo groupies would have us believe. Galileo made a contribution but others in the seventeenth century actually contributed significantly more.

One last comment from the preface, Livio writes:

He insisted on publishing many of his scientific findings in Italian [actually Tuscan not Italian] (rather than Latin), for the benefit of every educated rather than for a limited elite.

In the early seventeenth century almost every educated person would per definition have been able to read and write Latin; Latin was the default language of education.

Reading the opening chapter of Livio’s book, Rebel with a Cause, I constantly had the feeling that I had been transported back to the 1960s and 70s, when I first began to read books about the history of science in general and Galileo in particular. It as if the last fifty plus years of history of science research had never taken place, he even relies on Einstein and Bertrand Russell as his historical authorities, at times I shuddered. He goes so far as to tell us that the Renaissance happened because people discovered that they were individuals! I can’t remember when I last read this particular piece of inanity and I would be curious who actually put it into the world. The final page of this chapter contains all of the classic Galileo clichés.

Perhaps most important, Galileo was the pioneer and star of advancing the new art of experimental science. He realised that he could test or suggest theories by artificially manipulating various terrestrial phenomena. He as also the first scientist whose vision and scientific outlook incorporated methods and results that were applicable to all branches of science.

There is a long historical list of people who would disagree–Archimedes, Ptolemaeus, al-Haytham, Grosseteste, Roger Bacon, William Gilbert and a whole host of alchemists starting with Abū Mūsā Jābir ibn Hayyān (for Livio opinion on alchemy see below)–just to name the most prominent. Modern research has also conclusively shown that artisanal practice in the fifteenth and sixteenth centuries played a significant role in the development of empirical, experimental science. Livio’s last sentence here is also rather dubious, apart from some rather trivial aspects, there are no methods and results that are applicable to all branches of science.

…in four areas he revolutionised the field: astronomy and astrophysics; the laws of motion and mechanics; the astonishing relationship between mathematics and physical reality […]; and experimental science.

Despite everything, Galileo’s contributions to astronomy were rather minimal and he certainly didn’t revolutionise the field, others such as Kepler, whom he ignored, did. I am still trying to work out what his contributions to astrophysics could possibly be? His real major contribution was indeed to motion and mechanics but he was no means alone in this others such as Simon Stevin and Isaac Beeckman made substantial contributions to the new developments in these areas. The mathematics thing, to which Livio keeps returning, is baloney and I shall deal with it separately later. Galileo made contributions to the development of experimental science but he was by no means alone in this and to say he revolutionised it is hyperbole.

The only defense remaining to those obstinately refusing to accept the conclusions implied by the accumulating weight of empirical facts and scientific reasoning was to reject the results almost solely on the basis of religious or political ideology

Here Livio betrays his own tactic, put crudely, throughout the book he twists the historical facts in order to try and make out that there no legitimate scientific objections to Galileo’s claims, however there were.

The next chapter is the usual enthusiastic fan boy description of Galileo’s talents as an all round humanist and contains nothing particularly objectionable but does contain a strong indication of the superficiality of Livio’s historical knowledge. He writes, “First, at age twenty-two, Galileo, already had the chutzpah to challenge the great Aristotle on topics related to motion…” People had been consistently challenging the great Aristotle on topics related to motion since the sixth century CE and Galileo was merely joining a long tradition of such work. Livio also casually calls Aristotle’s theory of motion impetus! Impetus was, of course, a theory initially developed by John Philoponus in the sixth century CE when seriously challenging Aristotle’s theory of motion. On a side note Livio says that the tools to treat such variables such as velocity and acceleration, i.e. calculus, were first developed by Newton and Leibniz. Other seventeenth century mathematicians who contributed substantially to the development of the calculus such as Cavalieri, de Saint-Vincent, Fermat, Pascal, Descarte, John Wallis and Isaac Barrow would be very surprised to hear this. On the same page he repeats the myth that Christoph Clavius was “the senior mathematician on the commission that instituted the Gregorian calendar, he wasn’t, Ignazio Danti was.

Clavius turns up as one of the leading mathematicians, who the young Galileo turned to for mentorship when he was trying to establish a reputation as a mathematician and get support to find an appointment as professor of mathematics. Interestingly Galileo’s other mentor Guidobaldo del Monte (1545–1607) appears nowhere in Livio’s book. This is strange as it was del Monte, who acquired the professorship in Pisa for Galileo through his brother Cardinal Francesco Maria del Monte (1549–1627), who was the de ‘Medici cardinal and recommended Galileo to the Grand Duke. It was also del Monte, who devised the experiment that led Galileo to the parabola law, which Livio calls one of Galileo’s crowning achievements.

In the next chapter on Galileo’s work on the theory of fall Livio can’t help taking a sideswipe at alchemy and astrology:

It is certainly true that, at their inception, the sciences were not immune to false beliefs, since they are sometimes connected to fictitious fields such as alchemy and astrology. This was partly the reason why Galileo decided later to rely on mathematics, which appeared to provide a more secure foundation.

This off hand rejection ignores completely that astrology was the main driving force behind astronomy since its beginnings in antiquity down to the seventeenth century and that all the leading Renaissance astronomers, including Galileo, were practicing astrologers. The practice of astrology/astronomy, of course, requires a high level of mathematical ability. Alchemy developed virtually all of the experimental methods and the necessary equipment to carry out those experiments on which chemistry was built.

Now in Padua, where Galileo was also professor of mathematics, a position that he once again acquired with the assistance of del Monte, we get the story of Galileo’s three lectures on the nova of 1604. Livio informs us that “Christoph Clavius confirmed the null parallax determination–that is, no shift had been observed–but refused to accept its implications as compelling.”

This is once again Livio’s tactic of trying to discredit the Jesuits. The implications that he is talking about are that the heavens are not unchanging as claimed by Aristotle. Clavius observed the nova of 1572 and already in 1581 published a digression on the subject fully accepting that the nova was supralunar and that the heavens were not unchanging. He included this in his Sphaera in 1585, the most widely read astronomy textbook in the late sixteenth and early seventeenth centuries and he probably thus had the most influence in persuading others that change had occurred in the heavens. He also included the same results for the novae of 1600 and 1604, so what is Livio talking about? Clavius was unable to explain what these novae were but then again nobody else in the seventeenth century could either.

We now move on to Galileo, telescopic astronomy and the Sidereus Nuncius. Although he actually talks about other telescopic astronomers–Scheiner, Marius, Harriot, Fabricius–they are only offered bit parts in Livio’s screenplay, which follows the usual path of giving Galileo credit for everything. He attributes the discovery of Earthshine, the Moon illuminated by sunlight reflected by the Earth, to Galileo, whereas it was previously discovered by Leonardo, who didn’t publish, and Michael Mästlin, who did. He attributes the discovery of stars that can’t be seen without a telescope to Galileo, whereas this was already noted in the printed account of the first telescope demonstration in Den Hague, the source of Sarpi’s and thus Galileo’s first knowledge of the telescope. We then get one of the most bizarre claims made by Livio in the book:

Even more consequential for the future of astrophysics was Galileo’s discovery that stars varied enormously in brightness, with some being a few hundred times brighter than others.

Coming from a professional astrophysicist I find this statement mind boggling. The difference in brightness between celestial objects is obvious to anybody with reasonable eyesight, who simply looks up at the night sky in an area without light pollution. Astronomers even use a six-point scale to designate the different levels of brightness, which is termed magnitude; this was first introduced by Ptolemaeus around 150 CE!

We then get a very brief account of the star size argument as originated by Tycho, which Livio falsely claims Galileo dismissed by saying that the observed star discs are merely artefacts. They are in fact merely artefacts but Galileo didn’t say this. He accepts their existence and uses a completely different argument to try and dismiss the star size argument.

We now arrive at the Moons of Jupiter and Simon Marius. Livio mentions Marius several times in his book but insists on calling him Simon Mayr, his birth name, why? Marius issued all of his publications under the Latinised version of his name and so historian refer to him as Simon Marius. Livio doesn’t call Copernicus, Kopernik or Tycho, Tyge their birth names, so why does he call Marius, Mayr? What he writes about Marius and the Moons of Jupiter left me, as a Marius expert, totally flabbergasted:

What would have undoubtedly annoyed Galileo no end is that the Galilean satellites are known today by the names assigned to them by the German astronomer Simon Mayr rather than as the “Medici stars.” Mayr may have independently discovered the satellites before Galileo, but he failed to understand that the moons were orbiting the planet. [my emphasis]

First off, the names were suggested by Kepler not Marius, who however first published them specifically mentioning the fact that they were suggested by Kepler. Secondly Marius discovered the moons, famously, one day later than Galileo, any confusion about who discovered what when being produced by use of different calendars, Gregorian and Julian. Thirdly, the clause that I have emphasised above is pure and utter bullshit. Marius knew very well that the moons orbited Jupiter and he calculated the orbits, calculations that he published before Galileo. Marius’ calculations are also more accurate than those of Galileo. Should Livio doubt any of this I can send him scans of the relevant pages of Mundus Jovialis in the original Latin or in German and/or English translation. Livio now brings the story of Galileo hating Marius because he accused him of being behind Baldessar Capra’s plagiarism of Galileo’s proportional compass pamphlet in 1606. Marius had been Capra’s mathematics teacher earlier in Padua. Livio fails to mention that the accusations are provably false. Galileo in 1607 had himself cleared Marius of any involvement in the case and the whole episode took place a year after Marius had left Padua.

We now move on to the peculiar shape of Saturn and the discovery of the phases of Venus. In the later case we get absolutely no mention that the phases of Venus were discovered independently by Harriot, Marius, and the astronomers of the Collegio Romano, the latter almost certainly before Galileo. Livio notes correctly that the discovery of the phases definitively refutes the possibility of a pure geocentric system. However, it does not refute a geo-heliocentric Tychonic system. Livio admits this very grudgingly:

…but could not definitely dispose of Brahe’s geocentric-heliocentric compromise […]. This left a potential escape route for those Jesuit astronomers who were still determined to avoid Copernicanism.

Throughout his book Livio tries to imply that there is no real justification for supporting the Tychonic system, whereas it was not only the Jesuits, who did so but many other astronomers as well because the empirical evidence supported it more that a heliocentric one, of which more later. However, Livio consistently ignores this fact because it doesn’t fit his fairy-tale narrative.

Livio deals fairly conventionally with the telescopic discovery of sunspots and the discussion on their nature between Galileo and Christoph Scheiner and although he ends his account by noting the publication of Scheiner’s Rosa Ursina sive Sol (1626–1630) he makes no mention of the fact that the book is a masterpiece of astronomy, far better than anything Galileo published in the discipline. As should always be noted, due to the haste in which he wrote and published it, Sidereus Nuncius was closer to a press report than a scientific publication. He does however mention, what he calls “some further comments he made later in the book The Assayer, which the Jesuit astronomer took to be directed at him personally, did turn him into an unappeasable enemy.” Galileo actual vehemently and totally falsely accused Scheiner of plagiarism in The Assayer, which he later compounded by plagiarising Scheiner’s work in his own Dialogo. Scheiner’s antagonism is understandable. We now get the real reason why Livio keeps badmouthing the Jesuits; he sees them as behind Galileo’s trial in 1633. He writes, “This marked just the beginning of a conflict with the Jesuits, which would culminate in the punitive actions against Galileo in 1633.” This is an old myth and quite simply not true, the Jesuits did not come to Galileo defence but they were also not responsible for his trial.

We now come to objections to the telescopic discoveries:

How could anyone be sure that what Galileo was seeing was a genuine phenomenon and not a spurious artifact produced by the telescope itself?

Not only wasn’t there a convincing theory of optics a that could demonstrate that the telescope doesn’t deceive, they contended but also the validity of such a theory in itself based on mathematics, was questionable. [my emphasis]

 

Livio tries to imply that both objections are just anti-science nit picking but they are in fact very solid, very necessary scientific question that had to be asked and to be answered if people were going to accept the validity of the telescopic discovery. To the first general objection, although Galileo, an excellent observer, made none himself, there were numerous cases of published discoveries that turned out to be merely optical artefacts in the early years of telescopic astronomy. Not really surprising given the really poor quality of the instruments being used, Galileo’s included.

That an optical theory of the telescope didn’t exist was a very serious problem, as it would be with any new scientific instrument. If you can’t explain how the instrument works how do you expect people to accept the results? Kepler solved the problem with his Dioptrice published in 1611, which explained fully and scientifically how lenses and lens combinations function, describing various different types of telescope. Galileo dismissed and mocked, what is now regarded as a milestone in the history of geometrical optics. The last clause is, once again, Livio spouting total crap. Theories of optics had been geometrical, i.e. mathematical, since at least, in the fourth century BCE and even Aristotle classified optics as one of the mixed sciences, i.e. those such as astronomy that are dependent on mathematics for their proofs. Kepler’s book was accepted by all those qualified to pass judgement on the matter, with the notable exception of Galileo, who didn’t want to share the limelight with anybody, and together with Kepler’s earlier Pars Optica (1604) formed the foundations of modern scientific optics.

The reference to mathematics here is Livio’s attempt to create or propagate a myth that before Galileo, nobody conceived of a mathematics-based science. It is time to tackle that myth. Livio argues that Aristotle rejected mathematics in science and that Aristotelians regarded anything proof based on mathematics as not valid. He, of course, finds an obscure Aristotelian contemporary of Galileo’s to quote to prove this but does not quote any evidence to the contrary or even appear to think that some might exist. He is very wrong in this. Because, in Aristotle’s opinion, mathematics does no deal with the real world the results of mathematic are not episteme or scientia or as we would say knowledge. He however makes allowances for the so-called mixed sciences, astronomy, optics and statics. Livio acknowledges this status for astronomy but argues with the medieval Aristotelians that astronomical mathematical models are mere calculating devices and not models of reality; describing cosmological reality was the domain of the philosophers and not the mathematical astronomers. He also claims that this was still the situation in the second decade of the seventeenth century, it wasn’t. Beginning with Copernicus astronomers began to claim that their mathematical models were models of reality and by the time of Galileo’s first dispute with the Catholic Church this had become the generally accepted state of the discipline. The debate was which mathematical model describes the real cosmos?

It is a standard cliché in the history of science that one of the major factors that drove the so-called scientific revolution was the mathematization of science. Like many clichés there is more that a modicum of truth in this claim. Livio believes it is absolutely central and one of the major themes of his book is that Galileo was the first to mathematize science in his experiments on motion and the laws of fall. This is quite simply not true and Livio can only maintain his claim by steadfastly ignoring the history of mathematics in science prior to Galileo or did he even bother to look if there was any?

Starting with Galileo’s researches into motion and fall there is a three hundred year history of experimental and mathematical investigation into exactly this area starting with the Oxford Calculatores, who derived the mean speed theorem, which lies at the heart of the laws of fall and going down to Giambattista Benedetti (1530–1590), who produced all of the arguments and thought experiments on the subject for which Galileo is famous. There is much more, which I have already dealt with in an earlier post and won’t repeat here.Galileo knew of all of this work. The Archimedean renaissance in mathematics and the sciences, replacing the authority of Aristotle with that of Archimedes, in which Galileo is a major figure, does not start with Galileo but goes back at least to Regiomontanus (1436–1476).  The works of Archimedes were edited by Thomas Venatorius (1488–1551) and printed and published in a bilingual Greek and Latin edition in Basel in 1544. In general the sixteenth century saw a massive increase in the application of mathematics to a wide range of subjects, a development that was already well underway in the fifteenth century, including linear perspective in art, cartography, surveying, navigation, physics and astronomy. Galileo in no way started the mathematization but represents, together with several of his contemporaries such as Johannes Kepler, Simon Stevin, Christoph Clavius and Isaac Beeckman, a temporary high point in these developments. All four of those contemporaries were actually better mathematicians than Galileo.

On the question of the epistemological status of mathematical proofs, which Livio clearly states was still doubted in Galileo’s time, Christoph Clavius, who many people don’t realise was an excellent epistemologist, had already changed perceptions on this when Galileo was still a child. Clavius a Jesuit and thus by definition a Thomist Aristotelian used Aristotle’s own arguments to demonstrate that mathematical proofs have the same epistemological status as philosophical proofs. He even went to the extent of translating parts of the Elements of Euclid into Aristotelian syllogisms to show that mathematical proofs transport truth in the same way as philosophical, logical ones. Clavius’ influence was massive, he fought to get mathematics accepted as part of the educational reform programme of the Jesuits and then got the mathematical sciences established as a central part of the curriculum in Catholic schools, colleges and university also training the necessary teachers to carry out his programme. There is a reason why the young Galileo turned to Clavius, when seeking a mentor for his mathematical ambitions.

Taking all of this together the roll of mathematics and status of mathematical proofs in the sciences was very different in the early seventeenth century than the picture that Livio serves up. Far from being ground breaking Galileo’s (in)famous quote from The Assayer  “the book of nature is written in the language of mathematics” (which Livio offers up several times in his book) was actually stating a truth that had been generally accepted by many natural philosophers and mathematicians for many decades before Galileo put pen to paper.

Returning to Galileo’s telescope discoveries, Livio tells us that Kepler published his letter praising Galileo’s telescopic discoveries under the title Dissertio cum Nuncio Sidero (1610) then goes on to write: “Galileo was clearly pleased with its content, the letter was reprinted in Florence later in the year.” What Livio neglects to mention is that Galileo was responsible for that edition in Florence, which was a pirate edition published without Kepler’s knowledge and without his permission or consent. Livio makes it appear that the Jesuit astronomers of the Collegio Romano only reluctantly started to try and confirm Galileo’s discoveries and then only when ordered to do so. This is a complete distortion of what actually happened.

The astronomers in the Collegio Romano had their own telescopes and had been making astronomical telescopic observations well before Galileo published the Sidereus Nuncius. They immediately leapt on the pamphlet and set out to try and confirm or refute his observations. They had some difficulties constructing telescopes good enough to make the necessary observations and Christoph Grienberger (1561–1636), who was acting head of the school of mathematics due to Clavius’ advanced age, corresponded with Galileo, who provided copious advice and tips on observing and telescope construction. This was a work of friendly cooperation under fellow mathematicians. After some difficulties they succeeded in providing the necessary confirmation, which they made public and celebrated by throwing a banquet for Galileo when he visited Rome in 1611. As already stated above the Jesuit astronomers probably observed the phases of Venus before Galileo.

Livio then goes on to draw parallels with the fact that, “The current debate on global warming had to go […] through a similar painful [my emphasis] type of confirmation process.” I find this statement, quite frankly, bizarre coming from a scientist. All scientific discoveries have to be independently confirmed by other scientists, it is a central and highly important part of the whole scientific process. What the astronomers of the Collegio Romano did for Galileo was in no way “painful” but a necessary part of that scientific process for which Galileo was very thankful. I find it particularly bizarre given the very lively current debate on the significant number of scientific papers that have to be retracted because of failing confirmation. Reading Livio in the worst possible light, and not just here but at numerous other points in his narrative, he seems to be saying, if Galileo says it is so, then it must be true and anybody, who dares to criticise him, is in the wrong.

Of course, Livio cannot avoid the myth that, “First Copernicus and Galileo removed the Earth from its central position in the solar system.” Having previously quoted the “Copernicus principle”: the realisation that the Earth, and we human beings, are nothing special…” Also: “ What’s more the Copernican system was bound to be at odds with a worldview that had placed humans at the very center of creation, not only physically but also as a purpose and focus of for the universe’s existence.” Although geometrically central, the philosophers and astronomers in the Renaissance did not regard the Earth’s position as central in any special way. It was far more the bottom, the dregs of the universe. Trying to move the Earth into the heavens was moving it into an exalted place. At least Livio is honest enough to admit that Galileo remained blind to Kepler’s work, although Livio reduces it to just the discovery of elliptical orbits, whereas Kepler actually contributed more to modern astronomy than Copernicus and Galileo together.

Livio now moves on to Galileo’s entry into theology and his Letter to Castelli. As with all Galileo apologists, whist admitting that Galileo was trespassing in the territory of the theologians, he thinks that Galileo was right to do so and what he wrote was eminently sensible and should have been acknowledged and accepted. What Galileo did struck at the vey heart of the Reformation/Counter Reformation dispute that had been raging in Europe for one hundred years and just three years later would trigger the Thirty Years War, which devastated central Europe and resulted in the death of somewhere between one and two thirds of the entire population. The Catholic Church had always claimed that they and only they were permitted to interpret Holy Scripture. Luther claimed in opposition to this that every man should be allowed to interpret it for themselves. This led to schism and the Reformation. The Catholic Church confirmed, with emphasis, at the Council of Trent that only the Church’s own theologians were permitted to interpret the Bible. Now along comes a mere mathematicus, the lowest rang in the academic hierarchy, and cheerfully tells the theologians how to interpret the Holy Writ. The amazing thing is that they didn’t simply throw him into a foul dungeon and throw away the key.  I mentioned earlier that the Church was a judicial organ and the decisions of the Council of Trent were binding laws on all Catholics. Galileo knowingly and very provocatively broke that law and got mildly and unofficially admonished for doing so. Whatever a modern observer may think about the quality of Galileo’s theological arguments is completely irrelevant, it’s the fact that he made them at all that was the offence. However, in doing so he together with Foscarini provoked the Church into taking the heliocentric hypothesis under the microscope. He had been warned, as early as 1613, by various friends including Cardinal Maffeo Barberini, the future Pope Urban VIII not to do so.

Livio thinks that because he finds Galileo’s arguments in the Letter to Castelli reasonable and ‘because of science’ that the Catholic Church should have cut Galileo some slack and let him reinterpret the Bible. The Catholic Church should abandon their exclusive right to interpret Holy Writ, one of the fundaments of their entire religion, so that a nobody, and despite his celebrity status, in the grand scheme of things Galileo was a nobody, could promote an unproven astronomical hypothesis! This is the same exclusive right for which the same Church was prepared to engage in one of the most devastating wars in European history, just three years later. In his pseudo-historical narrative Livio has here completely lost touch with the historical context.  In fact Livio is not writing history at all but making presentist moral judgements with hindsight.

There is another bizarre statement by Livio where he writes:

All this notwithstanding, however, the Church might have still accommodated (albeit with difficulty) a hypotheticalsystem that would have made it easier for mathematicians to calculate orbits, positions, and appearances of planets and stars as long as such a system could be dismissed as not representing a true physical reality. The Copernican system could be accepted as a mere mathematical framework: a model invented so as to “save the appearances” of astronomical observations–that is, to fit the observed motion of the planets.

I am frankly baffled by this paragraph because that is exactly what the Church did in fact do. They fully accepted heliocentricity as a hypothesis, whilst rejecting it as a real physical description of the cosmos. This is shown very clearly by their treatment of Copernicus’ De revolutionibus, which unlike Kepler’s books, for example, was not placed on the Index of forbidden books but was only placed on it until corrected. This correction was carried out by 1620 and consisted only of changing or removing the comparatively few statement in the book claiming that heliocentricity was a real physical description of the cosmos. From 1621 Catholics were free to read the now purely hypothetical De revolutionibus. Livio relates all of this fairly accurately and then drops another clangour. He writes:

In reality, the modifications introduced by Cardinal Luigi Caetani and later by Cardinal Francesco Ingoli were indeed relatively minor and the publication of the revised version was approved in 1620. However, the new edition never reached the press, and so Copernicus’s book remained on the Index of Prohibited Books until 1835!

This is once again complete rubbish. The Catholic Church never intended to publish a new or revised edition of De revolutionibus. What they did was to issue the list of corrections deemed necessary and every Catholic owner of the book was expected to carry out the corrections in the own copies themselves. Quite a few obviously did and we have a number of surviving copies, including Galileo’s own private copy, with the corrections carried out according to the issued instructions. Interestingly almost all of the thus censored copies are in Italy or of Italian provenance, it seems that Catholics outside of Italy didn’t take much notice of the Vatican’s censorship order. De revolutionibuswas of course removed from the Index in 1620 having been corrected. Also, I know of no case of anyone being prosecuted for reading or owning an uncensored copy of the book.

Livio tries to counter the argument that I have presented above that Galileo was admonished because he meddled in theology by claiming that the motivation was one of anti-science. Livio. “[They] were trying only to convince Galileo not to meddle in theology, as a few modern scholars have concluded.” To counter this he brings statements from Grienberger and Bellarmino saying that elements of Copernicus theory contradict passages of Holy Writ. He writes:”[they] were quite intent on crushing the Copernican challenge as a representation of reality because, from their perspective, they were vindicating the authority of Scripture in determining truth.” Dear Dr Livio that is theology! As Bellarmino wrote in his letter to Foscarini, if a contradiction exists between Holy Writ and a proven scientific fact, the heliocentric hypothesis was of course at this point in time no where near being a proven scientific fact, then the theologians have to very carefully considered how to reinterpret Holy Writ; that is what theologians do!

This brings us to Roberto Bellarmino famous letter to Paolo Antonio Foscarini. Foscarini, a monk, had written a book defending heliocentricity and reinterpreting the Bible in a similar way to Galileo. Criticised, he sent his book to Roberto Bellarmino for his judgement; he hoped it would be favourable. The title contains the word Pythagorean, so Livio explains that the Pythagoreans thought Earth etc. orbited a central fire, therefore the comparison with Copernicus’ theory. Livio then writes, “Greek philosopher Heraclides of Pontus added, also in the fourth century BCE that the Earth rotated on its axis too…” As far as can be determined Heraclides proposed diurnal rotation in a geocentric system and not in a heliocentric or Pythagorean one.

Livio goes into a lot of detail about Foscarini’s text and Bellarmino’s letter but I will only mention two points. Livio quotes the paragraph that I have already paraphrased above, “…if there were a true demonstration that the sun is at the center of the world and the earth in the third heaven, and that the sun does not circle the earth but the earth circles the sun, then one would have to proceed with great care in explaining the Scriptures that appear contrary, and say rather that we do not understand them, than what is demonstrated is false.” Livio adds, “But I will not believe that there is such a demonstration, until it is shown me. Nor is it the same to demonstrate that by supposing the sun to be at the center and the earth in heaven one can save the appearances, and to demonstrate that in truth the sun is at the center and the earth in the heaven; for I believe the first demonstration may be available, but I have very great doubts about the second, and in case of doubt one must not abandon the Holy Scripture as interpreted by the Holy Fathers.”

This is of course eminently sensible and rational. If you want me to accept you scientific theory then show me the proof! Livio doesn’t accept this and goes of into a long diatribe, which demonstrates his own prejudices rather more than any faults in Bellarmino’s logic. He then comes with a totally spurious argument:

If two theories explain all the observed facts equally well, scientists would prefer to adopt, even if tentatively, the simpler one. Following Galileo’s discoveries, such a process would have definitely favoured the Copernican system over the Ptolemaic one, which was what Galileo had been championing all along. The requirement of simplicity would have also given an advantage to Copernicanism over Tycho Brahe’s hybrid geocentric-heliocentric model.

Ignoring the fact that the Ptolemaic system was dead in the water after the discovery of the phases of Venus and so the comparison is a waste of time, any alert reader will immediately spot the massive error in this argument. The two theories, Copernicus and Brahe, do not explain all the observed facts equally well. The Copernican system requires something very central that the Tychonic system does not, terrestrial motion. Livio adds this in a very off hand way, “Of course the ultimate test would have been to find direct proof for the Earth’s motion…” There was in fact absolutely no empirical proof of the Earth’s motion and wouldn’t be until Bradley discovered stellar aberration in 1725! To give the “advantage to Copernicanism over Tycho Brahe’s hybrid geocentric-heliocentric model” would be under the circumstances actually unscientific.

A little bit further on Livio delivers another highly spurious comment, he writes, “…but Bellarmino’s position was extremely rigid. He did not believe that a proof of Copernicanism could ever be found.” Livio is here putting words into Bellarmino’s mouth, who never said anything of the sort, rather he expressed doubt that that such a proof existed.  Livio finishes off his series of spurious attacks on Bellarmino by claiming to prove him theologically wrong. I find it slightly amusing that a twenty-first century astrophysicists claims that Bellarmino, who was universally regarded as the greatest living Catholic theologian and whose reputation as a theologian was such that at the end of his life he was both head of the Index and head of the Inquisition, was theologically wrong.

Things developed as they must and we now have Galileo rushing off to Rome to try and rescue the situation with his infamous theory of the tides. Livio explains the theory and its possible origins then he drops the following jewel:

Albeit wrong, Galileo’s commitment to mechanical easy-to-understand causation made his theory of tides at least plausible.

There is only one possible answer to this claim, bullshit! A theory that states there is only one high tide and one low tide at the same time every day, when there are in fact two of each of which the times travel around the clock over the lunar month (a strong indication of the correct theory of the tides) is anything but a plausible theory. It is as I said bullshit.

We now turn to the committee of consultors set up to examine the theological implications of heliocentricity. Livio of course has much to say against this. His first objection:

Ironically, the same office that had objected vehemently to scientists intruding into theology was now asking the theologians to judge on two purely scientific questions–two of the central tenets of he Copernican model.

Once again Livio appears to have no idea what theology is. The discipline of theology covers all forms of human activity in their entirety. There is absolutely nothing in human existence that doesn’t fall under the remit of theology. Secondly the function of the consultors in this case were being asked to examine the two central tenets of heliocentricity in relation to Catholic religious belief, not a scientific question at all.

Next up, Livio objects to the consultors themselves: “Not one was a professional astronomer or even an accomplished scientist in any discipline.” All of the consultors were highly educated, learned men, who would have had a solid instruction to Ptolemaic astronomy during there education and were more than capable of asking an expert for his advice if necessary.

Consultor: Is there any empirical evidence that the Earth moves and the Sun stands still?

Astronomer: No

Consultor: Is there any empirical evidence that the Sun and not the Earth is at the centre of the cosmos?

Astronomer: No

Simple wasn’t it.

 

The decisions of the consultors are well know:

On February 24 the Qualifiers delivered their unanimous report: the proposition that the Sun is stationary at the centre of the universe is “foolish and absurd in philosophy, and formally heretical since it explicitly contradicts in many places the sense of Holy Scripture”; the proposition that the Earth moves and is not at the centre of the universe “receives the same judgement in philosophy; and … in regard to theological truth it is at least erroneous in faith. (Wikipedia)

Foolish and absurd in philosophy is the scientific judgement and sounds somewhat harsh but can be simply translated as, is not supported by the available empirical evidence. Livio would disagree with both the judgement and my interpretation of it but it is historically fundamentally accurate. The second part of each judgement is of course the theological one. As is also well known the Pope commissioned Cardinal Bellarmino to inform Galileo of the decision and to instruct him not to hold or teach the heliocentric theory. Books, such as those of Kepler, claiming the physical reality of heliocentricity, were placed on the Index and De revolutionibus, as detailed above until corrected, which it was.

Bewilderingly Livio accuses Bellarmino and the Jesuits of failing to support Galileo against the Pope, which displays an incredible ignorance of the Catholic Church, the Pope and the Jesuit Order in the seventeenth century. As stated at the beginning the Catholic Church was a religious, political and judicial power in an age of absolutism and the Pope was an absolutist ruler. The Society of Jesus (Jesuits), and Bellarmino was also a Jesuit, is a religious order dedicated to and directly under the authority of the Pope. Livio’s accusations are totally insane.  He, of course, can’t resist making ahistorical and inaccurate comments about the decision, he writes:

The ruling made by officers of the Church for whom retaining authoritative power over areas totally outside their expertise took priority over open-minded critical thinking informed by scientific evidence.

Livio here continues to ignore/deny the simple fact that the scientific evidence in the early seventeenth century simply did not support an interpretation of heliocentricity as a physical reality and whilst it appears somewhat draconian the Church decision doesn’t actually say anything else.

Livio also launches the presentist moral outrage attack, “[some] argue that some of the responsibility for the prohibition of Copernicanism lies with Galileo himself, because he wouldn’t keep his mouth shut. Such claims are outrages.” Firstly the heliocentric hypothesis was never prohibited only the heliocentric theory, which given its scientific status at the time was in fact, although unnecessarily harsh, justifiable and secondly if Galileo had displayed somewhat more tact, instead of behaving like the proverbial bull in a china shop, things would never have taken the turn that they did.

We move on to the dispute over the nature of comets between the Jesuit astronomer Orazio Grassi and Galileo. Here Livio again displays his ignorance of the history of astronomy. He writes:

Grassi’s theory of comets deviated courageously from the Aristotelian view, which placed comets at about the distance of the Moon. Instead following Tycho Brahe, Grassi proposed that the comets were further out between the Moon and the Sun.

[…]

As to the actual nature of comets, many astronomers at the time were sill adopting Aristotle’s theory, which stated that these represented exhalations of the Earth that became visible above a certain height due to combustion, disappearing from view as soon as that inflammable material was exhausted. Grassi, however, again followed Brahe in suggesting that comets were some sort of “imitation planets.”

 

The modern debate on the nature of comets and whether they were sub- or supralunar began in the fifteenth century with Toscanelli (1397–1482), who tried to track the path of Comet Halley in 1456, as if it were a supralunar object. The debate continued in the work of Georg von Peuerbach (1423–1461), Toscanelli’s one time student, and Peuerbach’s student, Regiomontanus (1436–1476), who wrote a work on how to detect parallax in a moving comet. The debate continued in the 1530’s with many leading European astronomers taking part, including, Johannes Schöner (1477–1547), who published Regiomontanus’ work on comets, Peter Apian (1495–1552), after whom the law concerning comets’ tails in named, Copernicus (1473–1543), Gerolamo Cardano (1501–1576) and Jean Pena (1528–1558). The latter two both proposed a theory that comets were translucent, supralunar, bodies that focused the Sun’s rays like a lens creating the comets tail. Tycho’s comet, the great comet of 1577 was observed by astronomers all over Europe and Tycho, Michael Mästlin (1550-1631) and Thaddaeus Hagecius ab Hayek (1525–1600), three leading astronomers, all determined that comets were supralunar. Clavius accepted these results and included the fact that comets were supralunar in his Sphaera. This meant that the official view of the Catholic Church in general and the Jesuits in particular was that comets were supralunar. This view was confirmed again by astronomers throughout Europe observing Comet Halley in 1607. The was nothing courageous about Grassi’s theory of comets and in fact you would be hard put to it to find a serious European astronomer, apart from Galileo, who still adhered to Aristotelian cometary theory in 1618. In the same year Grassi’s Jesuit colleague Johann Baptist Cysat (c. 1587–1657), a student of Christoph Scheiner, became the first astronomer to observe a comet with a telescope giving the first ever description of a comet’s nucleus in his Mathemata astronomica de loco, motu, magnitudine et causis cometae qui sub finem anni 1618 et initium anni 1619 in coelo fulsit. Ingolstadt Ex Typographeo Ederiano 1619 (Ingolstadt, 1619). He followed Tycho Brahe in believing that comets orbited the sun. He also demonstrated the orbit was parabolic not circular.

Galileo, who due to ill health had not observed the comets of 1618, launched a vicious and insulting, unprovoked attack on Grassi’s publication, presenting a view of comets that was totally out of date, ignoring all of the accumulated scientific evidence from the last two centuries on the nature of comets just to put one over on the Jesuits and the supporters of Tycho’s theories. Livio does his best to defend Galileo’s disgusting behaviour but even he admits that Grassi was principally in the right and Galileo simply wrong. Livio goes as far as to claim that because comets has an elongated elliptical orbit (actually only some do) that Galileo’s claim that they travel in straight lines was more correct than Grassi’s claim that they orbit the Sun. In all other instances Livio goes out of his way to emphasise that hindsight shows that Galileo was right and his critics wrong so why the opposite tack here? Comets do orbit the Sun. Livio scrabbles around in the cesspit that is Galileo’s paper on comets looking for crumbs for which he can give Galileo credit.

Livio now criticises Grassi’s answer to Galileo’s attack because it contained sarcastic attacks on Galileo. Talk about pot calling the kettle black. He even brings up the obtuse suggestion that it was actually written by Christoph Scheiner because of his antagonism towards Galileo. This theory has a small problem; Scheiner only became antagonistic towards Galileo after Galileo had viciously insulted him in The Assayer, a publication that still lay in the future. Livio’s whole account of the affair is biased in Galileo’s favour so that it serves as a lead up to The Assayer, for the time being the last document in the dispute, because, as already mentioned, Livio sees it as the document in which Galileo established the place of mathematics in science. Livio’s account of The Assayer and its significance is more than somewhat outlandish.

With very little evidence to base this opinion upon, Galileo thought in 1623 that he knew the answer: the universe “is written in the language of mathematics.” It was this dedication to mathematics that raised Galileo above Grassi and the other scientist of his day, even when his specific arguments fell short of convincing–and even though he assigned to geometry a more important role than it seemed to deserve at the time. His opponents, he wrote, “failed to notice that to go against geometry is to deny truth in broad daylight.”

This whole paragraph contains so much that is wrong that it is difficult to know where to start.  I have already explained above that by the time Galileo wrote this infamous piece of purple prose it was widely accepted by both mathematician and natural philosophers that the future of science lay in an intensive mathematization. A process that was well under way when Galileo wrote something that was not new and sensational but a common place. A lot of contemporary scientists were dedicated to mathematics, such as Johannes Kepler, Simon Steven and Isaac Beeckman. In fact the last two both contributed at least as much to the development of mathematical physics in the seventeenth century as Galileo if not more. Unfortunately their achievements tend to get blended out on the popular level by the Galileo myth machine of which, Livio is just the latest in a long line of operators.

To raise Galileo above Grassi because of his dedication to mathematics is more than a joke; it’s grotesque. Earlier in his account of the dispute between Grassi and Galileo, Livio acknowledged that Grassi was an excellent optical physicist and an equally excellent architect both disciplines are fundamentally mathematical disciplines. He also points out that Grassi succeeded Grienberger as professor for mathematics at the Collegio Romano, who had succeeded Clavius. The chair for mathematics at the Collegio Romano was unique in European universities. Clavius had set up what we would now call an institute for advanced mathematics, a roll that both Grienberger and Grassi kept alive. This institute was dedicated to exemplifying, establishing and developing the roll of mathematics in the sciences. The Collegio Romano was quite simply the most advanced school for mathematics and its application anywhere in Europe. As far as geometry goes the standard textbook for geometry throughout most of the seventeenth century was Christoph Clavius’ Euclides Elementorum Libri XV, Rom 1574, note the date. This was not simply a new translation of Euclid’s classic but a modernised, simplified, streamlined textbook that was used extensively by both Catholic and Protestant educational establishments; the last edition was printed in 1717.

Shortly after the above passage on Galileo’s supposed revolutionary thoughts on mathematics we get the following throwaway line:

Galileo introduced the revolutionary departure from the medieval, ludicrous notion that everything worth knowing was already known.

When I read this I didn’t know whether to laugh, cry, rip my hair out (if I had any), or simply go out and throw myself off a high cliff in the face of such imbecilic drivel. I strongly suspect that any of my history of medieval science friends and colleagues will react similarly should they happen to read the above sentence. Starting at the very latest with the translation movement in the twelfth century medieval science was an evolving developing field with advances in a wide range of disciplines. The medieval scholars laid the foundations upon which Galileo built his own achievements. I would be quite happy to give Dr Livio a very long reading list of good books on medieval science to help him find a way out of his ignorance.

At the end of his chapter on The Assayer Livio warms up the old discovery of Pierto Redondi that Galileo was denounced to the Inquisition for the bits of primitive atomism contained in The Assayer. This was indeed true but the accusation was dismissed and nothing came of it, as Livio admits. Livio, however, now writes a whole paragraph about how important atomism, he actually means particle physics, is in modern physics, mentioning quarks, leptons, gage bosons etc., etc. I wonder how Livio would react if he knew that the principle source of atomism in the seventeenth century is now considered to be the German alchemist Daniel Sennert (1572–1637) reviving the theories of the thirteenth century alchemist Paul of Taranto. You remember alchemy one of those fictitious fields together with astrology that scientists sometime connected to.

Next up the Dialogo: Livio acknowledges that there were external political and social factors that affected the situation within the Vatican in the years leading up to the publication of the Dialogo. He starts with the astrological scandal. In 1630 an astrological prognostication predicting the Pope’s death was made and circulated by, to quote Livio, the abbot of Saint Praxedes in Rome. Livio then tells us, “some of Galileo’s adversaries tried to pin the blame on Galileo…” What Livio neglects to mention is that although Galileo was in this case innocent there were plausible ground for suspecting him, it was a case of guilt by association. Firstly, Galileo was known to be a practicing astrologer. Secondly, the abbot of Saint Praxedes, Orazio Morandi had been a good friend of Galileo’s since at least 1613. Thirdly, following an audience with the Pope concerning the forthcoming Dialogo in 1630, Galileo took part in a supper with Moriandi in Saint Praxedes together with Rafaello Visconti (Master of the Sacred Palace), another friend of Galileo’s, who read the manuscript of the Dialogo for Niccolò Ricardi the censor, who never actually read it, and an appraiser of the Inquisition. When Morandi was arrested for his horoscope and thrown into the Vatican’s dungeon, Visconti was also implicated and banished from the Vatican. That Galileo came under suspicion by association is hardly surprising. This was not a plot against Galileo as Livio claims.

We then have a wonderfully mangled piece of history from Livio, who write:

Unfortunately, this was not the end of the trials and tribulations Galileo had to endure for the publication of the Dialogo. Most significant of these was the sudden death on August 1, 1630, of Federico Cesi, the founder and sole source of funding for the Accademia dei Lincei. As a result the printing had to be done in Florence, outside of Riccardi’s jurisdiction. After some negotiations, it was agreed that Father Jacinto Stefani, a consultor of the Inquisition in Florence, would be in charge, but only after Riccardi approved the introduction and conclusion.

Although Cesi’s death was a serious blow to Galileo’s plans because he Cesi was supposed to finance the publication of the Dialogo, but this was not the reason why it was published in Florence and not in Rome. What actually happened is that after Galileo had returned to Florence from Rome with his manuscript the plague broke out in Florence. Restrictions on travel imposed by the authorities meant that Galileo could not return to Rome to oversee the printing and publication of his book. He requested permission from Riccardi to get the book published in Florence instead, but as already mentioned Riccardi hadn’t actually read the book intending to review the pages as they came of the printing press instead, having accepted Visconti’s recommendation. Riccardi was now in a pickle and wanted Galileo to send him a copy of the manuscript but due to the immense cost of producing such a copy, Galileo was very reluctant to do so.  Riccardi agreed to Galileo just sending the introduction and conclusion to Rome to be controlled and the rest being controlled in Florence by Stefani. Galileo and his circle of supporters now manipulated and even oppressed the two censors and played them against each other. The result was that the imprimatur was granted by Stefani under the impression that Ricarrdi had already cleared the manuscript for publication in Rome, he hadn’t, without actually controlling the text himself. Galileo had an imprimatur that had been obtained under false pretences, which meant that he didn’t actually have an imprimatur at all. All of this came out during the investigations following publication, which contributed to Galileo’s being prosecuted but did not play a role in the actual trial.

All of this, which Livio doesn’t mention at all, is important because when dealing with the trial Livio several times emphasises that the Church had given Galileo to publish the book as it was because he had not one but two imprimaturs, whereas in fact formally he didn’t have one at all.

Livio now tells us:

There is a certain sleight of hand in the title. [Dialogue Concerning the Two Chief Systems of the World, Ptolemaic and Copernican, Propounding Inconclusively in the Philosophical Reasons as Much for the One Side as for the Other] Even if one were to ignore the fact that the Aristotelian and the Ptolemaic systems were not identical, there was at least one other world system that in terms of agreement with observations was superior to the Ptolemaic: Tycho Brahe’s Hybrid system in which the planets revolved around the Sun, but the Sun itself revolved around the Earth. Galileo always regarded that system as unnecessarily complex and contrived, and he also thought that he’d found proof for the Earth’s motion through the phenomenon of the tides, so in striving to hand Copernicanism a clear victory (although formally the book was inconclusive) he probably didn’t want to confuse the issue with superfluous qualifications.

Once again so much to unpick. Livio obviously doesn’t understand that the system propagated by the Catholic Church before Copernicus was an uneasy mixture of Ptolemaic astronomy and Aristotelian cosmology, not Aristotelian astronomy, which is a whole different kettle of fish that had been revived by some in the sixteenth century and against which Clavius had fought tooth and nail. In fact he devotes much more space to refuting the Aristotelian homocentric astronomy in his Sphaera than he devotes to refuting Copernicus. The developments in astronomy since Copernicus published De revolutionibus had left Aristotelian cosmology in shreds and Clavius had been quite happy to also jettison that, so for Clavius, speak the Catholic Church, the world system was simply the Ptolemaic.

In fact Galileo’s whole title and thus his whole book is a complete sham By 1630 the two chief systems of the world were the Tychonic system and Johannes Kepler’s elliptical heliocentric system, which was regarded as separate from and as a competitor to Copernicus’ system. The Ptolemaic system had been killed off by the discovery of the phases of Venus and the plausible assumption that Mercury would also orbit the Sun as its general behaviour was identical to that of Venus; the phases of Mercury were first observed in 1639. Galileo just used Ptolemy as a fall guy for his sham Copernican victory. Copernicus’ heliocentric system had been rendered totally obsolete by Kepler’s discovery of the three laws of planetary motion, empirically based mathematical laws I would point out, which Galileo just completely ignored clinging to Copernicus’ ‘unnecessarily complex and contrived’ system of deferents and epicycles. Livio’s dismissal of the Tychonic system as ‘superfluous qualifications’ is put quite simply a joke, especially given that the Tychonic system was at the time the leading contender as the world system because of the failing evidence of terrestrial motion.

Livio without realising it now points out the central problem with the Dialogo:

The Dialogo is one of the most engaging science texts ever written. There are conflicts and drama, yes, but also philosophy, humor, cynicism, and poetic usage of language, so that the sum is much more than its parts.

All of the above is true except that as a piece of astronomy the sum is much less than its parts, which I will explain shortly. There is no doubt whatsoever that for all of his undeniably polymathic talents, Galileo’s greatest gift was as a polemicist. A friend of mine, who is a Galileo expert, calls him the first science publicist and this is a function that he carried out brilliantly. Yes, the Dialogo is a brilliant piece of literature, which is probably unequalled by any other scientific publication in the entire history of science. However, its literary brilliance appears to have blinded many of its readers to the fact that as a piece of astronomy it’s total crap.

As already mention, Galileo struts on to the stage to discuss what he calls the two chief world systems but actually delivers up is a sham battle between two obsolete and refuted systems. He clung stubbornly to his completely false theory that comets are mere optical illusions originating on the Earth against a mass of solid, empirical, scientific evidence that comets were in fact supralunar celestial objects that orbited the Sun. Something that Galileo was no prepared to accept because it was first proposed by Tycho, who saw it as supporting evidence for his system. He clung to Copernicus’ deferents and epicycles rather than acknowledge Kepler’s much simpler, empirically proven elliptical orbits. In fact, Galileo completely ignores Kepler’s three laws of planetary motion, by far and away, the best scientific supporting evidence for a heliocentric system because if he did acknowledge them he would have to hand the laurels for proving the superiority of the heliocentric system to Kepler instead of winning them for himself, his one and only aim in the whole story. Last but by no means least he structures his whole book and his argument around his totally ludicrous theory of the tides. One of the greatest mysteries in Galileo’s life is why he, an undeniably brilliant scientist, clung so tenaciously to such an obviously bankrupt theory.

Galileo’s masterwork sailed majestically past the actually astronomy debate in the 1630s and played little or no role in the ensuing astronomical discussion of the seventeenth century in which it was largely ignored being of no real relevance. It only became crowned as a classic in the late eighteenth and early nineteenth centuries when Galileo was declared to be a scientific martyr

Livio, like so many others, blinded by the radiance of Galileo’s rhetoric sees the matter somewhat differently. In a surprisingly short presentation of the book he praises Galileo’s achievements. There are a couple of minor points that I would like to pick up on, Livio delivers up once again the myth of heliocentricity removing the Earth from its central place in the cosmos:

More important, the act of removing humans from their central place in the cosmos was too brutal to be remedied by some philosophical pleasantries at the end of a debate from a very different tone.

The whole central place in the cosmos myth is one created in the late eighteenth century and I know of no seventeenth century use of it to criticise the heliocentric hypothesis. In a bit of waffle towards the end of this chapter Livio says the “He [Galileo] did his best…” If Galileo had truly done his best he would not have ignored the most compelling evidence for the heliocentric hypothesis, Kepler’s laws of planetary motion. He goes on to say that, “History has indeed proved that Galileo was right,” it hasn’t Galileo was wrong and Kepler was right.

Livio gives a fairly short and largely accurate account of Galileo’s trial by the Inquisition and the events leading up to following the publication of the book. The only major error being, as mentioned above, his insistence that the book had two imprimaturs. Livio acknowledges that the judgement of the three clerics, commissioned to read the book and determine whether Galileo taught or defended in anyway the heliocentric theory, that he had in fact done just that and thus broken the order from 1616 was correct. Although he can’t avoid a dig at Melchior Inchofer, the Jesuit under the three. This was the charge that was brought against Galileo and of which he was found guilty. He also can’t avoid turning up the emotional rhetoric, “What happened on the following day remains one of the most shameful events in our intellectual history.” Galileo deliberately and wilfully broke the law and received the standard punishment for having done so, which included abjuring. There is an old saying under criminals, if you can’t do the time don’t do the crime. Galileo was arrogant enough to think that he could put one over on the Catholic Church and get away scot-free, it turned out that he couldn’t.

We get a short, once again, rather gushing account of the Discorsi, Galileo real claim to fame but Livio rather spoils it by once again trying to claim that Galileo created modern science.

Through an ingenious combination of experimentation (for example, with inclined planes), abstraction (discovering mathematical laws), and rational generalisation (understanding that the same laws apply to all accelerated motions), Galileo established what has since become the modern approach to the study of all natural phenomena.

Although in the case of the studies presented by Galileo in the Discorsi he proved himself to be an excellent experimental scientist, all of these things had been done by others before Galileo and independently by others contemporaneously to Galileo. He was only one amongst other who helped to establish this methodology. Galileo was part of the evolution of a new scientific methodology that had started long before he was born and which he did not initiate. Like many others before him Livio also falsely attributes Newton’s first law, the principle of inertia, to Galileo. Whilst Galileo did indeed produce a version of the principle of inertia, Newton took his first law from the works of René Descartes, who in turn had taken it from Isaac Beeckman, who had formulated it independently of Galileo.

The next chapter of Livio’s book is an obtuse story of an account of the Galileo affair commissioned by the Vatican in the 1940s and then not published but then published under the name of a different author in the 1960s. The sole aim of this chapter is simply to take another gratuitous swing at the Catholic Church. The book closes with a fairly long digression on Einstein’s views on science and religion, which brings us to a major problem with the book, apart from the historical inaccuracies, it tries to be too many things at once.

One thing that I have mentioned in passing is Livio’s attempts to draw parallels between what happened to Galileo and the current crop of science deniers. The analogies simply don’t work because no matter how hard Livio tries to claim the opposite, Galileo’s critics in astronomy, especially the Jesuits, were not science deniers but just as much scientists as Galileo, who argued for an equally valid, in fact empirically more valid, system of astronomy, the Tychonic one, as Galileo’s heliocentric system. All the way through the book Livio keeps trying to disqualify the Tychonic system as unscientific but in the first half of the seventeenth century it was just as scientific as the heliocentric hypothesis. The only person practicing science denial here is Livio. He also wants to present the book as a discussion of the general relationship between science and religion but the whole time he argues from a presentist standpoint and refuses to view the relationship in Galileo’s time in its correct historical context. Lastly he actually wants to sell the book as a new biography of Galileo presented with the insights of a working astrophysicist, his own claim at the beginning of the book. Unfortunately it is here that he fails most.

He enters his story with a preconceived image of Galileo as a white knight on his mighty charger fighting for freedom of speech and freedom of thought in the sciences and as the originator and creator of modern experimental and mathematical science. With this image firmly in mind, from the start of his narrative, he fills out the picture with a classic case of confirmation bias. He completely ignores any real facts from the history of science that might force him to rethink his preconceived image of his hero. There is no mistaking the fact that is a strong element of hero worship in Livio’s vision of Galileo. Instead of describing the real state of science in the early seventeenth century, he present the reader with a comic book version of Aristotelian philosophy from the thirteenth century making it easier for him to present Galileo as some sort of superman, who dragged natural philosophy kicking and screaming into the modern world, whilst singlehandedly creating modern science. Edward Grant the eminent historian of medieval science (a discipline that Livio probably thinks doesn’t exist, because he seems to think that there was no medieval science), once very perceptively wrote that Aristotelian philosophy was not Aristotle’s philosophy and went on to point out that it is very difficult to define Aristotelian philosophy, as it kept on evolving and changing down the centuries. The Thomist philosophy of the Jesuits in the first third of the seventeenth century was a very different beast to the Aristotelian philosophy that Thomas Aquinas propagated in the thirteenth century. The historical distortions that Livio presents would be funny if they weren’t so grotesque.

On the question of Galileo being ‘a symbol of the fight for intellectual freedom, a lifetime of studying and thinking about Early Modern science has brought me to the conclusion that he wasn’t. In my opinion Galileo didn’t really care about such abstractions as freedom of thought, freedom of speech or intellectual freedom, all he cared about was his own vainglory. As Mario Biagioli clearly shows in his Galileo Courtier,[2] Galileo was a social climber. He was a relatively unknown, middle aged, professor of mathematics, who overnight became the most celebrated astronomer in Europe because of his telescopic discoveries. Alone the way he presented those discoveries shows his principle aim was to see what he could gain socially from them. Galileo loved his celebrity status and revelled in it. His engagement for heliocentricity was all motivated by the thought that if he could prove it true, then he would become even more famous and even more feted. To achieve this aim he lied, cheated and plagiarised. He attacked and viciously stomped on all those he regarded as competitors in his strivings for fame and adulations. He also deliberately ignored any evidence for heliocentricity presented by others (see Kepler’s laws of planetary motion) that might mean that they get the laurels and not he. Galileo might have been a great scientist but he was also a vain egoist. I think all of this might go someway to explaining his extraordinary blindness to the enormous inadequacies of his theory of the tides.

Reading this book made me very angry. The only positive thing I can say about it is that Livio is an excellent writer and the book is very well written and easy to read, but in the end even this must be viewed negatively. Mario Livio is a prominent scientist and the very successful author of popular books on mathematics and science. Because of his reputation non-specialist journals will have glowing reviews of his book, mostly written by people, who are neither Galileo experts and nor historians of science. If it follows the normal pattern for such books, specialist journals and professional historians of science will decline to review it, because it’s a pop book. The book will almost certainly become a genre bestseller and another generation of readers will acquire a mythical image of Galileo Galilei and a totally false impression of Renaissance science, something I have battled against in the eleven years that I have been writing this blog.

[1] Mario Livio, Galileo and the Science Deniers, Simon & Schuster paperbacks, New York, London, Toronto, Sydney, New Delhi, 2020

[2] Mario Biagioli, Galileo Courtier: The Practice of Science in the Culture of Absolutism, University of Chicago Press, Chicago & London, ppb. 1994

25 Comments

May 27, 2020 · 8:35 am

Annus mythologicus

Almost inevitably Newton’s so-called Annus mirabilis has become a social media meme during the current pandemic and the resulting quarantine. Not surprisingly Neil deGrasse Tyson has once again led the charge with the following on Twitter:

When Isaac Newton stayed at home to avoid the 1665 plague, he discovered the laws of gravity, optics, and he invented calculus.

Unfortunately for NdGT and all the others, who have followed his lead in posting variants, both positive and negative, the Annus mirabilis is actually a myth. So let us briefly examine what actually took place and what Isaac actually achieved in the 1660s.

GodfreyKneller-IsaacNewton-1689

Portrait of Newton at 46 by Godfrey Kneller, 1689 Source: Wikimedia Commons

We will start with the calculus, which he didn’t actually invent at all, neither in the 1660s nor at any other time. Calculus has a more than two thousand year history stretching back to fourth century BCE. The development of calculus accelerated in the seventeenth century beginning with Kepler and Cavalieri and, previous to Newton, reaching a high point in the work of John Wallis. What Newton, like Leibniz, did was to collate, order and expand the work that others had already produced. Let us take a closer look at what Newton actually achieved in the 1660s.

But before we start, one point that various people have made on the Internet is that during this time Newton was a completely free agent with no commitments, obligations or burdens, a bachelor without children. In college his chambers were cleaned by servants and his meals were prepared by others. At home in Woolsthorpe all of his needs were also met by servants. He could and did devote himself to studying without any interruptions.

Newton, who entered Trinity College Cambridge in June 1661, was an indifferent student apparently bored by the traditional curriculum he was supposed to learn. In April 1664 he was due to take a scholarship exam, which would make him financially independent. The general opinion was not positive, however he did pass as he also passed his BA in the following year, when the prognosis was equally negative. Westfall suggests that he had a patron, who recommended that Cambridge retain him.

Freed by the scholarship, Newton now discovered his love and aptitude for the modern mathematics and set off on a two-year intensive study of the subject, almost to the exclusion of everything else, using the books of the leading mathematicians of the period, Descartes (but in the expanded, improved Latin edition of van Schooten), Viète and Wallis. In October 1666 Newton’s total immersion in mathematics stopped as suddenly as it had begun when he wrote a manuscript summarising all that he had internalised. He had thoroughly learnt all of the work available on the modern analytical mathematics, extended it and systematised it. This was an extraordinary achievement by any standards and, although nobody knew about it at the time, established Newton as one of the leading mathematicians in Europe. Although quite amazing, the manuscript from 1666 is still a long way from being the calculus that we know today or even the calculus that was known, say in 1700.

It should be noted that this intense burst of mathematical activity by the young Newton had absolutely nothing to do with the plague or his being quarantined/isolated because of it. It is an amusing fact that Newton was stimulated to investigate and learn mathematics, according to his own account, because he bought a book on astrology at Sturbridge Fair and couldn’t understand it. Unlike many of his contemporaries, Newton does not appear to have believed in astrology but he learnt his astronomy from the books of Vincent Wing (1619–1668) and Thomas Street (1621–1689) both of whom were practicing astrologers.

I said above that Newton devoted himself to mathematics almost to the exclusion of everything else in this period. However, at the beginning he started a notebook in which he listed topics in natural philosophy that he would be interested in investigating further in the future. Having abandoned mathematics he now turned to one of those topics, motion and space. Once again he was guided in his studies by the leaders in the field, once again Descartes, then Christiaan Huygens and also Galileo in the English translation by Thomas Salusbury, which appeared in 1665. Newton’s early work in this field was largely based on the principle of inertia that he took from Descartes and Descartes’ theories of impact. Once again Newton made very good progress, correcting Descartes errors and demonstrating that Galileo’s value for ‘g’ the force of acceleration due to gravity was seriously wrong. He also made his first attempt to show that the force that causes an object to fall to the ground, possibly the legendary apple, and the force that prevents the Moon from shooting off at a tangent, as the principle of inertia says it should, were one and the same. This attempt sort of failed because the data available to Newton at the time was not accurate enough. Newton abandoned this line of thinking and only returned to it almost twenty years later.

Once again, the progress that the young Newton made in this area were quite impressive but his efforts were very distant from his proof of the law of gravity and its consequences that he would deliver in the Principia, twenty year later. For the record Newton didn’t discover the law of gravity he proved it, there is an important difference between the two. Of note in this early work on mechanics is that Newton’s concepts of mass and motions were both defective. Also of note is that to carry out his gravity comparison Newton used Kepler’s third law of planetary motion to determine the force holding the Moon in its orbit and not the law of gravity. The key result presented in Principia is Newton’s brilliant proof that Kepler’s third law and the law of gravity are in fact mathematically equivalent.

The third area to which Newton invested significant time and effort in the 1660s was optics. I must confess that I have absolutely no idea what Neil deGrasse Tyson means when he writes that Newton discovered the laws of optics. By the time Newton entered the field, the science of optics was already two thousand years old and various researchers including Euclid, Ptolemaeus, Ibn al-Haytham, Kepler, Snel, and Descartes had all contributed substantially to its laws. In the 1660s Newton entered a highly developed field of scientific investigation. He stated quite correctly that he investigated the phenomenon of colour. Once again his starting point was the work of others, who were the leaders in the field, most notably Descartes and Hooke. It should be clear by now that in his early development Newton’s debt to the works of Descartes was immense, something he tried to deny in later life. What we have here is the programme of experiments into light that Newton carried out and which formed the basis of his very first scientific paper published in 1672. This paper famously established that white light is made up of coloured light. Also of significance Newton was the first to discover chromatic aberration, the fact that spherical lenses don’t sharply focus light to a single point but break it up into a spectrum, which means the images have coloured fringes. This discovery led Newton to develop his reflecting telescope, which avoids the problem of chromatic aberration.

rsta20140213f02

Newton’s sketch of his crucial experiment. Source: Royal Society

Here trying to establish a time line of when and where he carried out these experiments is very difficult, not alone because Newton’s own statements on the subject are contradictory and some of them are provably false. For example he talks about acquiring a second prism from Sturbridge Fair in a year when one didn’t take place. Also Newton’s source of light was sunlight let into a darkened room through small hole in the shutters. This was only possible at certain times of year and certain times of day when the sun is in the right position respective the window. Newton claims experiments made at times where these conditions weren’t met. That not all the experiments were made in Woolsthorpe Manor is clear, as many of them required two operators, which means that they were made when Newton was back in his chambers in Trinity College. The best guestimate is that this programme of experiments took place over the period 1660 to 1670, so once again not in Newton’s year of quarantine.

Another thing that keeps getting mentioned in connection with this story is that during his experiments on light Newton, shock-horror, stuck a pin in his eye! He didn’t. What he did was to insert a bodkin, a flat, blunt, threading needle, into his eye-socket between his skull and his eyeball in order to apply pressure to the back of his eyeball. Nasty enough, but somewhat different to sticking a pin in his eye.

All in all the developments that the young Newton achieved in mathematics and physics in the 1660s were actually spread out over a period of six years. They were also not as extensive or revolutionary as implied in Neil deGrasse Tyson brief tweeted claim. In fact a period of six intensive years of study would be quite normal for a talented student to acquire the basics of mathematics and physics. And I think we can all agree that Newton was very talented. His achievements were remarkable but not sensational.

It is justified to ask where then does the myth of the Annus Mirabilis actually come from? The answer is Newton himself. In later life he claimed that he had done all these things in that one-year, the fictional ones rather than the real achievements. So why did he claim this? One reason, a charitable interpretation, is that of an old man just telescoping the memories of his youth. However, there is a less charitable but probably more truthful explanation. Newton became in his life embroiled in several priority disputes with other natural philosophers over his discoveries, with Leibniz over the calculus, with Hooke over gravity and with Hook and Huygens over optics. By pushing back into the distant past some of his major discoveries he can, at least to his own satisfaction, firmly establish his priority.

The whole thing is best summarised by Westfall in his Newton biography Never at Rest at the end of his chapter on the topic, interestingly entitled Anni mirabiles, amazing years, not Annus mirabilis the amazing year, on which the brief summary above is largely based. It is worth quoting Westfall’s summary in full:

On close examination, the anni mirabiles turn out to be less miraculous than the annus mirabilis of Newtonian myth. When 1660 closed, Newton was not in command of the results that have made his reputation deathless, not in mathematics, not in mechanics, not in optics. What he had done in all three was to lay foundations, some more extensive than others, on which he could build with assurance, but nothing was complete at the end of 1666, and most were not even close to complete. Far from diminishing Newton’s stature, such a judgement enhances it by treating his achievements as a human drama of toil and struggle rather than a tale of divine revelation. “I keep the subject constantly before me, “ he said, “and wait ‘till the first dawnings open slowly, by little and little, into full and clear light.” In 1666 by dint of keeping subjects constantly before him, he saw the first dawnings open slowly. Years of thinking on them continuously had yet to pass before he gazed on a full and clear light.[1]

Neil deGrasse Tyson has form when it comes to making grand false statements about #histSTM, this is by no means the first time that he has spread the myth of Newton’s Annus mirabilis. What is perhaps even worse is that when historians point out, with evidence, that he is spouting crap he doesn’t accept that he is wrong but invents new crap to justify his original crap. Once he tweeted the classic piece of fake history that people in the Middle Ages believed the world was flat. As a whole series of historians pointed out to him that European culture had known since antiquity that that the world was a sphere, he invented a completely new piece of fake history and said, yes the people in antiquity had known it but it had been forgotten in the Middle Ages. He is simply never prepared to admit that he is wrong. I could bring other examples such as my exchange with him on the superstition of wishing on a star that you can read here but this post is long enough already.

Bizarrely Neil deGrasse Tyson has the correct answer to his behaviour when it comes to #histSTM, of which he is so ignorant. He offers an online course on the scientific method, always ready and willing to turn his notoriety into a chance to make a quick buck, and has an advertising video on Youtube for it that begins thus:

One of the great challenges in this world is knowing enough about a subject to think you’re right but not enough about the subject to know you’re wrong.

This perfectly encapsulates Neil deGrasse Tyson position on #histSTM!

If you want a shorter, better written, more succinct version of the same story then Tom Levenson has one for you in The New Yorker 

[1] Ricard S. Westfall, Never at Rest: A Biography of Isaac Newton, CUP; Cambridge, ppb. 1983, p. 174.

 

45 Comments

Filed under History of Astronomy, History of Mathematics, History of Optics, Myths of Science, Newton