Category Archives: Myths of Science

Carl Sagan Skewered

I didn’t have time this week to write a proper blog post, so I thought I would pass on something I read recently. Not necessarily here on the blog but I tend to annoy people when I make rude comments about the American astrophysicist and science populariser Carl Sagan. Many people grew up watching his 1980s TV series Cosmos and regarded him as some sort of science saint. However, whatever his abilities to communicate science Sagan’s presentation of the history of science was terrible. Another thing that is likely to bring out the HIST_SCI HULK is mention of the biopic Agora, supposedly the life story of the ancient Greek mathematician Hypatia. Unfortunately the story line of Agora has more in common with a fairy tale than real history of science.

The medieval volume of the Cambridge History of Science[1]skewers both Sagan and Agora in just one paragraph and one footnote.

Many otherwise well-educated people have long taken this picture for granted. [Complete lack of science in the Middle Ages] No one has diffused it more widely than astronomer Carl Sagan (1934–1996), whose television series Cosmos drew an audience estimated at half a billion. In his 1980 book by the same name, a timeline of astronomy from Greek antiquity to the present left between the fifth and the late fifteenth centuries a familiar thousand-year blank labelled as a “poignant lost opportunity for mankind.” (a) The timeline reflected not the state of knowledge in 1980 but Sagan’s own “poignant lost opportunity” to consult the library of Cornell University, where he taught. In it, Sagan would have discovered large volumes devoted to the medieval history of his own field, some of them two hundred years old. He would also have learnt that the alleged medieval vacuum spawned the two institutions in which he spent his life: the observatory as a research institution (Islamic civilization) and the university (Latin Europe).

(a) Carl Sagan, Cosmos (New York: Random House, 1980), p. 335. Sagan’s outlook recently regained currency thanks to Alejandro Amenábar’s spectacular and spectacularly anachronistic film “Agor” (2009), which portrays Hypatia (d. 415) as on the verge of discovering the law of free fall and heliocentric planetary ellipses before she is murdered by fanatical monks.

[1]The Cambridge History of Science: Volume 2 Medieval Science, ed. David C. Lindberg & Michael H. Shank, CUP, New York, ppb. 2015 pp.9-10



Filed under Myths of Science, Uncategorized

If you’re going to lecture others on the need to learn history then it pays to get your own history right.

The HIST_SCI HULK has been slumbering very peaceably somewhere deep in the catacombs under Mathematicus Mountain the home of the Renaissance Mathematicus’ humble cave. However, the pungent smell of #histsci bullshit drifted downwards on a draft disturbing his slumbers and now he is raging through the underground chambers demanding access to the blog.

In the Guardian, journalist Van Badham has written an article criticising Senator Simon Birmingham’s vetoing of research grants approved by the Australian Research Council, with the following title.

Simon Birmingham is the one who needs a history lesson in western civilisation

Her criticism centres round what she sees as Birmingham’s lack of historical awareness, banging on about the fact that the vetoes are mostly of humanities research and that if Birmingham had more knowledge of history then he would be more aware of the origins of the western civilisation he wishes to defend. For itself Van Badham’s criticism is valid and would be OK if her own knowledge of the history of science weren’t so abysmal, as illustrated by the following paragraph.

It’s a tender solidarity exhibited here by a man of science to the humanities community. The habit of scientists to offend the “common sense” standards of their times with research has historically proven quite dangerous.Rhazes, the medical pioneer of ninth century Baghdad, was beaten blind with his own compendium by a priest. The humanist Michael Servetus, a 16th century physician credited with discovering pulmonary circulation, was tortured and burned along with his books on the shores of Lake Geneva at the personal behest of John Calvin. In the 17th century, Galileo spent his last years under house arrest, forced by the church to recant the heretical belief that the earth orbited the sun.

We can of course assume that Badham got her history of science information from all those professional humanities scholars that she is arguing Birmingham should be supporting with research grants. However, if we did so, we would be very wrong. Her source is a pop article published in Wired in 2012 by a woefully ignorant staff journalist, Olivia Solon, under the title:

Galileo to Turing: The Historical Persecution of Scientists

There are several more horrors in the original article but I shall only deal here with the three examples that Badham paraphrased. The original Rhazes paragraph reads as follows:

Rhazes (865-925)
Muhammad ibn Zakariyā Rāzī or Rhazes was a medical pioneer from Baghdad who lived between 860 and 932 AD. He was responsible for introducing western teachings, rational thought and the works of Hippocrates and Galen to the Arabic world. One of his books, Continens Liber, was a compendium of everything known about medicine. The book made him famous, but offended a Muslim priest who ordered the doctor to be beaten over the head with his own manuscript, which caused him to go blind, preventing him from future practice.


Portrait of Rhazes (al-Razi) (AD 865 – 925), physician and alchemist who lived in Baghdad Wellcome Images via Wikimedia Commons

I love the arrant chauvinism of He was responsible for introducing western teachings, rational thought and the works of Hippocrates and Galen to the Arabic world.It smacks of the old style: the Islamic world only conserved the Greek heritage until Renaissance Europe could inherit it and develop it further. The Persian physician Abū Bakr Muhammad ibn Zakariyyā al-Rāzī (854–925) or al-Rāzī for short was one of the two most significant Islamic medical authorities, who made important original contributions to medical knowledge. He was also, like many other Islamic scholars, a polymath who wrote on medicine, alchemy, philosophy, logic, astronomy and grammar. Historians of medicine are convinced that al-Rāzī suffered from cataracts at the end of a long, very productive and very successful life, which caused him to go blind. There are various anecdotes about the cause of his blindness. One of them attributed to Ibn Jujil (c.944–c.994), an Adulusian Arab physician, says that it was caused by a blow to his head by his patron Mansur ibn Ishaq, the governor of his birthplace Rey and an early employer, for failing to provide proof for his alchemy theories. Note, not a Muslim priest. Another, recorded by Gregory Bar Hebraeus (1226–1286), a Syriac Christian Bishop, and Miguel Casiri (1710–1791), a Maronite scholar, was that it was caused by a diet of only beans. Somehow this differs somewhat from the film ripe fantasy account delivered up by Solon and parroted by Badham

Michael Servetus (1511-1553)
Servetus was a Spanish physician credited with discovering pulmonary circulation. He wrote a book, which outlined his discovery along with his ideas about reforming Christianity – it was deemed to be heretical. He escaped from Spain and the Catholic Inquisition but came up against the Protestant Inquisition in Switzerland, who held him in equal disregard. Under orders from John Calvin, Servetus was arrested, tortured and burned at the stake on the shores of Lake Geneva – copies of his book were accompanied for good measure.


Miguel Serveto Source: Wikimedia Commons

I’ve actually written a whole blog post on the Spanish physician, theologian, cartographer and Renaissance humanist Miguel Serveto (1509 or 1511–1553) under the title Not a martyr for science. Serveto was even more of a polymath than al-Rāzīand made contribution to a bewildering range of topics. His execution had absolutely nothing to do with his discovery of the pulmonary circulation but was entirely the result of his highly heterodox religious views. He did not escape from Spain but from Vienne in France, where he had been imprisoned on suspicion of heresy. Fleeing to Italy he stopped in Geneva, a strange decision as he had already had a major dispute, by exchange of letters, with Calvin on the subject of Christian doctrine. He was arrested, tried, found guilty of heresy and burnt at the stake. Interestingly not only the Catholics and Calvin were happy to see him executed but Luther and Melanchthon as well. Serveto really knew how to make enemies.

Galileo (1564-1642)
The Italian astronomer and physicist Galileo Galilei was trialled and convicted in 1633 for publishing his evidence that supported the Copernican theory that the Earth revolves around the Sun. His research was instantly criticized by the Catholic Church for going against the established scripture that places Earth and not the Sun at the center of the universe. Galileo was found “vehemently suspect of heresy” for his heliocentric views and was required to “abjure, curse and detest” his opinions. He was sentenced to house arrest, where he remained for the rest of his life and his offending texts were banned.


Galileo Galilei. Portrait by Ottavio Leoni Marucelliana Source: Wikimedia Commons

If I were God, I would arrange it so that every time a journalist typed the name Galileo a miniature thermo-nuclear device would materialise over their workplace and upon detonating would reduce their computer to a meagre pile of radioactive dust and a small mushroom cloud.

If Galileo didn’t exist then people like Solon and Badham would have to invent him. He’s the one example that is always used when they want to prove that somebody, in particular somebody religious, tried to suppress science or a scientist. The trial in 1633 had multiple causes of which the nominal scientific one was probably the least important. It was simply the stick used to beat an uppity subject. To stretch an analogy it’s about the same as Al Capone being charged with tax evasion.

The main cause was a clash of egos: Galileo with an ego the size of the Peter’s dome, whose hubris made him blind to every day reality and Maffeo Barberini, Pope Urban VII, with an equally large ego and the manic paranoia of an absolutist ruler beset on all sides by real and imaginary enemies. Galileo’s hubris misled him into thinking that he, a mere mathematicus, could hoodwink an absolutist, paranoid Pope. He discovered that he couldn’t and was brought down to earth rather quickly if, for the circumstances, comparatively gently. As for Galileo “publishing his evidence that supported the Copernican theory”, his problem was that he didn’t really have any. As I have said on previous occasions, Dialogo is strong on polemic but lacking in facts. Galileo’s crowning proof, Day 4’s theory of the tides would be funny if it wasn’t so pathetic. As has been pointed out many times, and not just by me, in 1633 the empirical evidence still spoke clearly in favour of geocentrism and not for heliocentrism. I will add the usual caveat that this does not excuse the Church’s behaviour towards Galileo but also doesn’t let Galileo off the hook for having poked a sleeping bear with a sharp stick.

Ms Badham would have been wise if she had checked her ‘historical sources’ before using them as an example to support her attack on Simon Birmingham’s apparent lack of historical awareness.

P.S. I promise that after three negative ones in a row the next post will be a positive one.








Filed under History of Astronomy, History of medicine, Myths of Science, Uncategorized

Today in something is wrong on the Internet

When I was growing up one of the most widespread #histSTM myths, along with the claim that people in the Middle Ages believed the world was flat and Stone Age people lived in holes in the ground, was that Galileo Galilei invented the telescope. This myth actually has an interesting history that goes all the way back to the publication of the Sidereus Nuncius. Some of Galileo’s critics misinterpreting what he had written asserted that he was claiming to have invented the telescope, an assertion that Galileo strongly denied in a latter publication. Whatever, as I said when I was growing up it was common knowledge that Galileo had invented the telescope. During the 1960s and 1970s as history of science slowly crept out of its niche and became more public and more popular this myth was at some point put out of its misery and buried discretely, where, I thought, nobody would find it again. I was wrong.

When I wrote my essay on the origins of the reflecting telescope for the online journal AEON, my editor, Corey Powell, who is himself a first class science writer and an excellent editor, asked me to provide a list of reference books to help speed up the process of fact checking my essay. I was more than happy to oblige, as even more embarrassing than a fact checker finding a factual error in what I had written, and yes even I make mistakes, would be a reader finding a real clangour after my essay had been published. As it turned out I hadn’t made any mistakes or if I did nobody has noticed yet. Imagine my surprise when I read an essay published two days ago on AEON that stated Galileo had invented the telescope. Hadn’t it been fact checked? Or if so, didn’t the fact checker know that this was a myth?

The essay in question is titled Forging Islamic Science and was written by Nir Shafir and edited by Sally Davies. The offending claim was at the beginning of the second paragraph:

Besides the colours being a bit too vivid, and the brushstrokes a little too clean, what perturbed me were the telescopes. The telescope was known in the Middle East after Galileo invented it in the 17th century, but almost no illustrations or miniatures ever depicted such an object.

I tweeted the following to both the author’s and AEON’s Twitter accounts:

If the author is complaining about forgers getting historical details wrong he really shouldn’t write, “The telescope was known in the Middle East after Galileo invented it in the 17th century…”

The author obviously didn’t understand my criticism and tweeted back:

There are references to the use of telescopes for terrestrial observations, mainly military, in the Ottoman Empire, such as in evliya çelebi.

I replied:

Galileo did not invent the telescope! He wasn’t even the first astronomer to use one for astronomical observations!

Whereupon Sally Davies chimed in with the following:

Thank you for drawing this to our attention! A bit of ambiguity here; we have tweaked the wording to say he ‘developed’ the telescope.

Sorry but no ambiguity whatsoever, Galileo did not in anyway invent the telescope and as I will explain shortly ‘developed’ is just as bad.

Today the author re-entered the fray with the following:

Thank you for bringing this up. It’s always good to get the minor details right.

The invention of the telescope is one of the most significant moments in the whole history of science and technology, so attributing its invention to the completely false person is hardly a minor detail!

About that ‘developed’. A more recent myth, which has grown up around Galileo and his use of the telescope, is that he did something special in some sort of way to turn this relatively new invention into a scientific instrument usable for astronomical observations. He didn’t. The telescope that Galileo used to discover the Moons of Jupiter differed in no way either scientifically or technologically from the one that Hans Lipperhey demonstrated to the assembled prominence at the peace conference in Den Hague sometime between the 25thand 29thof September 1608. Lipperhey’s invention was even pointed at the night sky, “and even the stars which normally are not visible for us, because of the scanty proportion and feeble sight of our eyes, can be seen with this instrument.”[1]

Both instruments consisted of a tube with a biconvex or plano-convex objective lens at one end and a bi-concave or plano-concave eyepiece lens at the other end. The eyepiece lens also had a mask or stop to cut down the distortion caused around the edges of the lens. The only difference was in the focal lengths of the lenses used producing different magnitudes of magnification. Galileo’s use of other lenses to increase magnification was nothing special; it had been done earlier than Galileo by Thomas Harriot and at least contemporaneous if not earlier by Simon Marius. It was also done by numerous others, who constructed telescopes independently in those first few years of telescopic astronomical observation. The claims that Galileo had developed, improved, specialised, etc., etc., the telescope are merely mythological elements of the more general Galileo hagiography. Modern research has even revealed that contrary to his own claims Galileo probably did not (re)-construct the telescope purely from having heard reports about it but had almost certainly seen and handled one before he attempted to construct one himself.

Going back to the offending AEON essay, Sally Davies could have saved herself and Nir Sharfir if she had simply changed the sentence to:

The telescope was known in the Middle East after it was invented  in the late 16th early 17th century…(even I make mistakes)

What I intended to write before my brain threw a wobbly was:

The telescope was known in the Middle East after it was invented in late 1608…

 She doesn’t even need to mention Lipperhey’s name if she wants to avoid the on going debates about who really did invent the telescope.








[1]Embassies of the King of Siam Sent to His Excellency Prince Maurits, Arrived in The Hague on 10 September 1608


Filed under History of Astronomy, History of Optics, History of science, History of Technology, Myths of Science, Renaissance Science, Uncategorized

Some good Copernican mythbusting

For those who haven’t already seen it Tim O’Neill, Renaissance Mathematicus friend and guest blogger, has posted a superb essay on his excellent blog, History for Atheists, on the myths surrounding the dissemination, publication and reception of Copernicus’ heliocentric theory, The Great Myths 6: Copernicus’ Deathbed Publication. Regular readers of the Renaissance Mathematicus won’t learn anything new but it is an excellent summary of the known historical facts and well worth a read. As with this blog the comments are also well worth reading.

The earliest mention of Copernicus’ theory – Matthew of Miechów’s 1514 catalogue

Go on over and give Tim a boost!


Filed under History of Astronomy, Myths of Science, Renaissance Science, Uncategorized

Galileo & Roberto

One of the books that I am currently reading is Rob Iliffe’s Priest of Nature: The Religious Worlds of Isaac Newton (a full review will follow when I finish it but I can already say it will be very positive). I stumbled more than somewhat when I read the following:

…and Lucas Trelcatius’s list of some of the most significant places in Scripture, which was composed as a response to the Catholic interpretations of various texts offered by the great scholar (and scourge of Galileo [my emphasis]) Cardinal Robert Bellarmine.

Four words that caused me to draw in my breath, why? Let as first take a look at the meaning of the word scourge:

A scourge was originally a particularly nasty and extremely cruel multi-thong whip. Transferred to describe a person it means: a person that causes great trouble of suffering. Can Robert Bellarmine really be described as “scourge of Galileo”?

Robert Bellarmine (actually Roberto Bellarmino) (1542-1621) was a Jesuit scholar who was specialist for post Tridentine theology, that is the theological teachings of the Catholic Church as laid down as official church doctrine at the Council of Trent (1545-1563. He rose through the ranks to arch-bishop and then cardinal, was professor for theology at the Collegio Romano, the Jesuit University in Rome, and later the universities rector. In the early seventeenth century he was regarded as the leading Catholic authority on theology and as such he was a powerful and highly influential figure in Rome.


Robert Bellarmine artist unknown Source: Wikimedia Commons

How did Bellarmine’s life interact with that of Galileo? The first contact was very indirect and occurred after Galileo had published his Sidereus Nuncius, making public his telescopic discoveries. Bellarmine inquired of the mathematician astronomers under Clavius’ leadership at the Collegio Romano, whether the discoveries claimed by Galileo were real. Being the first astronomers to confirm those discoveries, Clavius was able to report in the positive.

In 1615 Galileo wrote his Letter to Castelli in which he argued that those Bible passages that contradicted Copernican heliocentricity should be re-interpreted to solve the contradiction. He was stepping into dangerous territory, a mere mathematicus—the lowest of the low in the academic hierarchy—telling the theologians how to interpret the Bible. This was particularly risky, as it was in the middle of the Counter-Reformation given that the Reformation was about who is allowed to interpret the Bible. The Protestants said that everyman should be able to interpret it for themselves and the Catholic Church said that only the Church should be allowed to do so. Remember we are only three years away from the Thirty Years War the high point, or should that be the low point, of the conflict between the two religions, which led to the destruction of most of central Europe and the death of between one and two thirds of its population.


Justus Sustermans – Portrait of Galileo Galilei, 1636 Source: Wikimedia Commons

Galileo’s suggestion in his letter came to the attention of his opponents in the Church and led the Pope, Paul V, to set up a commission of eleven theologians, known as the Qualifiers, to investigate the propositions of heliocentricity.

In the meantime Paolo Antonio Foscarini (c. 1565–June 1616), a Carmelite father, attempted to publish his Epistle concerning the Pythagorean and Copernican opinion of the Mobility of the Earth and stability of the sun and the new system or constitution of the WORLD, which basically contained the same arguments for reinterpreting the Bible as Galileo’s Letter to Castelli. The censor of Foscarini’s order rejected his tract, as too contentious. I should point out at this point something that most people ignore that is all powers both civil and religious in Europe exercised censorship; there was no such thing as free thought or freedom of speech in seventeenth century Europe. Foscarini wrote a defence of his Epistle and sent the two pieces to Bellarmine, as the leading theologian, for his considered opinion. Bellarmine’s answers the so-called Foscarini Letter is legendary and I reproduce it in full below.

My Reverend Father,

I have read with interest the letter in Italian and the essay in Latin which your Paternity sent to me; I thank you for one and for the other and confess that they are all full of intelligence and erudition. You ask for my opinion, and so I shall give it to you, but very briefly, since now you have little time for reading and I for writing.

First I say that it seems to me that your Paternity and Mr. Galileo are proceeding prudently by limiting yourselves to speaking suppositionally and not absolutely, as I have always believed that Copernicus spoke. For there is no danger in saying that, by assuming the Earth moves and the sun stands still, one saves all of the appearances better than by postulating eccentrics and epicycles; and that is sufficient for the mathematician. However, it is different to want to affirm that in reality the sun is at the center of the world and only turns on itself, without moving from east to west, and the earth is in the third heaven and revolves with great speed around the sun; this is a very dangerous thing, likely not only to irritate all scholastic philosophers and theologians, but also to harm the Holy Faith by rendering Holy Scripture false. For Your Paternity has well shown many ways of interpreting Holy Scripture, but has not applied them to particular cases; without a doubt you would have encountered very great difficulties if you had wanted to interpret all those passages you yourself cited.

Second, I say that, as you know, the Council [of Trent] prohibits interpreting Scripture against the common consensus of the Holy Fathers; and if Your Paternity wants to read not only the Holy Fathers, but also the modern commentaries on Genesis, the Psalms, Ecclesiastes, and Joshua, you will find all agreeing in the literal interpretation that the sun is in heaven and turns around the earth with great speed, and that the earth is very far from heaven and sits motionless at the center of the world. Consider now, with your sense of prudence, whether the church can tolerate giving Scripture a meaning contrary to the Holy Fathers and to all the Greek and Latin commentators. Nor can one answer that this is not a matter of faith, since it is not a matter of faith “as regards the topic”, it is a matter of faith “as regards the speaker”; and so it would be heretical to say that Abraham did not have two children and Jacob twelve, as well as to say that Christ was not born of a virgin, because both are said by the Holy Spirit through the mouth of the prophets and the apostles.


Third, I say that if there were a true demonstration that the sun is at the center of the world and the earth in the third heaven, and that the sun does not circle the earth but the earth circles the sun, then one would have to proceed with great care in explaining the Scriptures that appear contrary; and say rather that we do not understand them than that what is demonstrated is false. But I will not believe that there is such a demonstration, until it is shown me. Nor is it the same to demonstrate that by supposing the sun to be at the center and the earth in heaven one can save the appearances, and to demonstrate that in truth the sun is at the center and the earth in the heaven; for I believe the first demonstration may be available, but I have very great doubts about the second, and in case of doubt one must not abandon the Holy Scripture as interpreted by the Holy Fathers. I add that the one who wrote, “The sun also riseth, and the sun goeth down, and hasteth to his place where he arose,” was Solomon, who not only spoke inspired by God, but was a man above all others wise and learned in the human sciences and in the knowledge of created things; he received all this wisdom from God; therefore it is not likely that he was affirming something that was contrary to truth already demonstrated or capable of being demonstrated. Now, suppose you say that Solomon speaks in accordance with appearances, since it seems to us that the sun moves (while the earth does so), just as to someone who moves away from the seashore on a ship it looks like the shore is moving, I shall answer that when someone moves away from the shore, although it appears to him that the shore is moving away from him, nevertheless he knows that it is an error and corrects it, seeing clearly that the ship moves and not the shore; but in regard to the sun and the earth, no wise man has any need to correct the error, since he clearly experiences that the earth stands still and that the eye is not in error when it judges that the it also is not in error when it judges that the stars move. And this is enough for now.

With this I greet dearly Your Paternity, and I pray to God to grant you all your wishes.

At home, 12 April 1615.

To Your Very Reverend Paternity.

As a Brother,

Cardinal Bellarmine


(Source for the English transl.: M. Finocchiaro, The Galileo Affair. A Documentary History (Berkeley, CA: University of California Press, 1989), pp. 67-69.Original Italian text, G. Galilei, Opere, edited by A. Favaro (Firenze: Giunti Barbera, 1968), vol. XII, pp. 171-172.)

A, in my opinion, brilliant piece of measured, diplomatic writing. Bellarmine tactfully suggests that one should only talk of heliocentricity hypothetically, its correct scientific status in 1615, the first empirical proof for the movement of the Earth was found in 1725, when Bradley discovered stellar aberration. He, as the great Tridentine theologian, then reiterates the Church’s position on the interpretation of Holy Scripture. Finally he brings, what is without doubt, the most interesting statement in the letter.

Third, I say that if there were a true demonstration that the sun is at the center of the world and the earth in the third heaven, and that the sun does not circle the earth but the earth circles the sun, then one would have to proceed with great care in explaining the Scriptures that appear contrary; and say rather that we do not understand them than that what is demonstrated is false.

What he says is bring proof and we’ll reinterpret the Bible but until then…

On 24 February the Qualifiers delivered the results of their deliberations on the heliocentricity hypothesis:

( i ) The sun is the centre of the universe (“mundi”) and absolutely

immobile in local motion.

( ii ) The earth is not the centre of the universe (“mundi”); it is not

immobile but turns on itself with a diurnal movement.

All unanimously censure the first proposition as “foolish, absurd in philosophy { i.e. scientifically untenable] and formally heretical on the grounds of expressly contradicting the statements of Holy Scripture in many places according to the proper meaning of the words, the common exposition and the understanding of the Holy Fathers and learned theologians”; the second proposition they unanimously censured as likewise “absurd in philosophy” and theologically “at least erroneous in faith”.

It should be pointed out that although the Qualifiers called the first statement heretical, only the Pope could formally declare something heretical and no pope ever did, so heliocentricity was never officially heretical.

Pope Paul V now ordered Bellarmine to covey the judgement of the Qualifiers to Galileo and to inform him that he may not hold or teach the heliocentric theory. This he did on 26 February 1616. Bellarmine was not one of the Qualifiers and here functioned only as the messenger. By all accounts the meetings between Bellarmine and Galileo were cordial and friendly.

When Galileo returned to Florence rumours started spreading that he had been forced to recant and do penance, which was of course not true. Galileo wrote to Bellarmine requesting a letter explaining that this was not true. Bellarmine gladly supplied said letter, defending Galileo’s honour. However Galileo made the mistake in 1633 of thinking that Bellarmine’s letter was a get out of jail free card.

Bellarmine died in 1621 and between 1616 and his death there was no further contact between the Cardinal and the mathematicus. Personally I can see nothing in the three interactions, indirect and direct, between Bellarmine and Galileo that would in anyway justify labelling Bellarmine as the “scourge of Galileo”. This accusation is historically highly inaccurate and paints a wholly false picture of the relationship between the two men. I expect better of Rob Iliffe, who is without doubt one on Britain’s best historians of seventeenth century science.

NB Before somebody pops up in the comments claiming that Robert Bellarmine was one of the three Inquisition judges, who confirmed the death sentence on Giordano Bruno. He was but that has no relevance to his interactions with Galileo, so save yourself time and energy and don’t bother.


Filed under History of Astronomy, History of science, Myths of Science, Renaissance Science, Uncategorized

Exposing Galileo’s strawmanning

There is a widespread, highly erroneous, popular perception in the world, much loved by gnu atheists and supporters of scientism, that as soon as Petreius published Copernicus’s De Revolutionibus in 1543 the question as to which was the correct astronomical/cosmological system for the cosmos was as good as settled and that when Galileo published his Dialogo[1] everything was finally done and dusted and anybody who still persisted in opposing the acceptance of the heliocentric world view, did so purely on grounds of ignorant, anti-science, religious prejudice. Readers of this blog will know that I have expended a certain amount of energy and several thousand words over the years countering this totally mistaken interpretation of the history of astronomy in the early modern period and today I’m going to add even more words to the struggle.

Galileo is held up by his numerous acolytes as a man of great scientific virtue, who preached a gospel of empirical scientific truth in the face of the superstitious, faith based errors of his numerous detractors; he was a true martyr for science. The fact that Galileo was capable of scientific skulduggery does not occur to them, but not only was he capable of such, his work is littered with examples of it. One of his favourite tactics was not to present his opponents true views when criticising them but to create a strawman, claiming that this represents the views of his opponent and then to burn it down with his always-red-hot rhetorical flamethrower.

Towards the end of The First Day in the Dialogo, Galileo has Simplicio, the fall guy for geocentricity, introduce a “booklet of theses, which is full of novelties.” Salviati, who is the champion of heliocentricity and at the same time Galileo’s mouthpiece, ridicules this booklet as producing arguments full of “falsehoods and fallacies and contradictions” and as “thinking up, one by one, things that would be required to serve his purposes, instead of adjusting his purposes step by step to things as they are.” Galileo goes on to do a polemical hatchet job on what he claims are the main arguments in said “booklet of theses.” Amongst others he accuses the author of “setting himself up to refute another’s doctrine while remaining ignorant of the basic foundations upon which the whole structure are supported.”

The “booklet of theses”, which Galileo doesn’t name, is in fact the splendidly titled:


English translation of the Latin title page Source: Notre Dame Press

Now most of the acolytes who fervently praise Galileo as the great defender of science against superstition probably have no idea who Johann Georg Locher was but they might well have heard of Christoph Scheiner, who was famously embroiled in a dispute with Galileo over the nature of sunspots and who first observed them with a telescope. In fact the authorship of the Mathematical Disquisitions has often falsely attributed to Scheiner and Galileo’s demolition of it seen as an extension of that dispute and it’s sequel in the pages of his Il Saggiatore.

Whereas Galileo’s Dialogo has been available to the general reader in a good English translation by Stillman Drake since 1953, anybody who wished to consult Locher’s Mathematical Disquisitions in order to check the veracity or lack thereof of Galileo’s account would have had to hunt down a 17th century Latin original in the rare books room of a specialist library. The playing field has now been levelled with the publication of an excellent modern English translation of Locher’s booklet by Renaissance Mathematicus friend, commentator and occasional guest contributor Chris Graney[2].


Graney’s translation (Christopher M. Graney, Mathematical Disquisitions: The Booklet of Theses Immortalised by Galileo, University of Notre Dame Press, Notre Dame, Indiana, 2017)  presents a more than somewhat different picture of Locher’s views on astronomy to that served up by Galileo in the Dialogo and in fact gives us a very clear picture of the definitely rational arguments presented by the opponents to heliocentricity in the early part of the seventeenth century. The translation contains an excellent explanatory introduction by Graney, extensive endnotes explaining various technical aspects of Locher’s text and also some of the specific translation decisions of difficult terms. (I should point out that another Renaissance Mathematicus friend, Darin Hayton acted as translation consultant on this volume). There is an extensive bibliography of the works consulted for the explanatory notes and an excellent index.

The book is very nicely presented by Notre Dame Press, with fine reproductions of Locher’s wonderful original illustrations.


Locher’s illustration to his discussion of diurnal rotation p. 32

Graney’s translation provides a great addition to his previous Setting Aside All Authority, which I reviewed here. Graney is doing sterling work in adjusting the very distorted view of the astronomical system discussion in the first half of the seventeenth century and anybody, who is seriously interested in learning the true facts of that discussion, should definitely read his latest contribution.




[1] By a strange cosmic coincidence the first printed copy of the Dialogo was presented to the dedicatee Ferdinando II d’Medici, Grand Duke of Tuscany 386 years ago today on 22 February 1632.

[2] At the end of my review of Setting Aside All Authority I wrote the following, which applies equally to this review; in this case I provided one of the cover blurbs for Chris’ latest book.

Disclosure; Chris Graney is not only a colleague, but he and his wife, Christina, are also personal friends of mine. Beyond that, Chris has written, at my request, several guest blogs here at the Renaissance Mathematicus, all of which were based on his research for the book. Even more relevant I was, purely by accident I hasten to add, one of those responsible for sending Chris off on the historical trail that led to him writing this book; a fact that is acknowledged on page xiv of the introduction. All of this, of course, disqualifies me as an impartial reviewer of this book but I’m going to review it anyway. Anybody who knows me, knows that I don’t pull punches and when the subject is history of science I don’t do favours for friends. If I thought Chris’ book was not up to par I might refrain from reviewing it and explain to him privately why. If I thought the book was truly bad I would warn him privately and still write a negative review to keep people from wasting their time with it. However, thankfully, none of this is the case, so I could with a clear conscience write the positive review you are reading. If you don’t trust my impartiality, fair enough, read somebody else’s review.

Addendum: The orthography of the neologism in the title was change—23,02,18— following a straw pole on Twitter


Filed under Book Reviews, Early Scientific Publishing, History of Astronomy, History of Mathematics, Myths of Science, Renaissance Science

Really! – Did the artist have a Tardis?

Those who read the occasional bursts of autobiographical information that appear here on the blog might be aware that I went to university at the tender age of eighteen as an archaeology student. I actually dropped out after one year but continued to work as a professional field archaeologist (that’s a digger to you mate) for several years. Given that I was already interested in the history of astronomy in those days and would eventually abandon archaeology for it, it would seem logical that I would be interested in archaeoastronomy, in particular because I studied under Richard Atkinson who together with Stuart Piggott carried out the first extensive, modern excavation of Stonehenge, the world’s most famous archaeoastronomical monument, in the 1950s. In fact my father also worked on that excavation. This assumption would be correct with reservations. There has been some excellent work in archaeoastronomy but unfortunately there has also been a large amount of highly dubious speculation on the topic.

In my opinion an example of the latter appeared in articles in The Guardian and on the Hyperallergic website a couple of days ago. The Guardian article was entitled, Two suns? No, it’s a supernova drawn 6,000 years ago, say scientists. This article tells us:

For decades, stone carvings unearthed in the Himalayan territory of Kashmir were thought to depict a hunting scene. But the presence of two celestial objects in the drawings has piqued the interest of a group of Indian astronomers.


Source: The Guardian

They have proposed another theory. According to a study published in the Indian Journal of History of Science, the Kashmir rock drawings may be the oldest depiction of a supernova, the final explosion of a dying star, ever discovered.

 “Our first argument was, there cannot be two suns,” Vahia said. “We thought it must have been an object that appeared and attracted the attention of the artists.”

 They settled on Supernova HB9, a star that exploded around 4,600BC.

Rewinding the map of the sky back that far revealed more clues.

Viewed from Kashmir, the supernova would have occurred somewhere near the Orion constellation. “Which is known as the scene of a hunter,” said Vahia.

“The supernova also went off just above the constellation of Taurus, the bull, which is also seen in the drawing,” Vahia added.


Source: The Guardian

So to summarise a group of astrophysicists decide that the rock drawing depicts a supernova from around 4,600 BCE that was visible in the sky in the area of the constellations Orion the hunter and Taurus the bull, which according to the researchers are also depicted in the drawing. It is by the latter claim that my bullshit detectors went off at full volume. I will explain.

The chosen supernova occurred in 4600 BCE, now I’m not an expert on prehistoric Indian asterisms, I don’t even know anybody who is, but I do know something about the Babylonian and ancient Greek ones. Taurus is indeed one of the oldest known asterisms but the earliest known mention of a bull asterism is in the Sumerian record, the Heaven’s Bull, in the third millennium BCE, that’s a couple of thousand years after the chosen supernova. Even worse it is not known whether the Sumerian asterism is the same one as the later Babylonian/Greek asterism Taurus. With Orion we have even more problems. The Sumerian asterism involving the stars of Orion was a sheep. For the ancient Egyptians the stars depicted their god Osiris. It was first the Greeks who created the asterism Orion although some mythologists see Orion as a representation of the Sumerian King Gilgamesh, who also fought a bull. This is of course highly speculative.

So we have astrophysicists identifying a rock drawing in India that is dated to the fifth millennium BCE with the constellations of Orion fighting Taurus, asterisms which don’t appear to have been identified till several thousand years later. Excuse me if I am somewhat sceptical about this identification. Just as a minor point I don’t think that the animal in the drawing actually looks like a bull, more like a stag in my opinion.






Filed under History of Astrology, History of Astronomy, History of science, Myths of Science, Uncategorized