Category Archives: Myths of Science

Misusing Galileo to criticise the Galileo gambit

Yesterday The Guardian website had an article on climate change denialists entitled, Here’s what happens when you try to replicate climate contrarian papers[1].

The article is headed with this portrait of Galileo

Galileo demonstrating his astronomical theories. Climate contrarians have virtually nothing in common with Galileo. Photograph: Tarker/Tarker/Corbis

Galileo demonstrating his astronomical theories. Climate contrarians have virtually nothing in common with Galileo. Photograph: Tarker/Tarker/Corbis

And it opens with the following paragraph:

Those who reject the 97% expert consensus on human-caused global warming often evoke Galileo as an example of when the scientific minority overturned the majority view. In reality, climate contrarians have almost nothing in common with Galileo, whose conclusions were based on empirical scientific evidence, supported by many scientific contemporaries, and persecuted by the religious-political establishment. Nevertheless, there’s a slim chance that the 2–3% minority is correct and the 97% climate consensus is wrong.

Now it is true that climate change denialists, like denialists in many other areas of scientific consensus, commonly use what is now known as the Galileo Gambit. This involves claiming in some way that Galileo was persecuted for his theories, although he was proved right in the long run. Implying that the denialist will also be proved right in the long run and hailed as another Galileo. Bob Dylan provided the perfect answer to the Galileo Gambit in his song Bob Dylan’s 115th Dream way back in 1965.

I said, “You know they refused Jesus, too”

He said, “You’re not Him

I would not object to the author’s comments on the contrarians misuse of the name of Galileo if her his comment had stopped at, climate contrarians have almost nothing in common with Galileo, however she he goes on to spoil it with what follows.

Although Galileo’s views on heliocentrism, and that is what stands to discussion here, had their origins in empirical observations made with the telescope he unfortunately did not stop there and they were not supported by a consensus of his contemporaries by any means. In fact at the time of Galileo’s trial by the Catholic Church the majority of astronomers qualified to pass judgement on the subject almost certainly rejected heliocentricity, most of them on good scientific grounds.

In his Dialogo, the book that caused his downfall, Galileo knew very well that he did not have the necessary empirical facts to back up the heliocentric hypothesis and so he resorted to polemic and rhetoric and brought as his pièce de résistance, his theory of the tides, which was fatally flawed and contradicted by the empirical evidence even before it hit the printed page.

Although it became largely accepted by the experts by around 1670, the necessary empirical evidence to substantiate heliocentricity didn’t emerge until the eighteenth and in the case of stellar parallax the nineteenth centuries.

I have written about this historical misrepresentation of Galileo’s position on various occasions and I don’t intend to repeat myself in this post. However anybody who is interested can read some of my thoughts in the post collected under the heading, The Transition to Heliocentricity: The Rough Guides. I also strongly recommend Christopher M. Graney’s recently published Setting Aside All Authority: Giovanni Battista Riccioli and the Science against Copernicus in the Age of Galileo, my review of which should, hopefully, appear here in the not to distant future.

Addendum: Seb Falk has pointed out that Dana Nuccitelli is a he not a she and I have made the necessary corrections to the text. I apologise unreservedly to Mr Nuccitelli for this error.

[1] h/t to Seb Falk (@Seb_Falk) for drawing my attention to this latest misstatement of Galileo’s scientific situation.


Filed under History of Astronomy, Myths of Science

Der Erdapfel

Erdapfel is the word for potato in my local Franconia dialect, in fact in most of Southern Germany and Austria. In High Germany a potato is ein Kartoffel. Don’t worry this is not a post about root vegetables or variations in German regional dialects. Der Erdapfel is also the name given to the so-called Behaim Globe, the oldest known surviving terrestrial globe, Nürnberg’s most famous historical artefact. The name, which literally translates as Earth Apple, is thought to be derived from the medieval term Reichsapfel (Empire Apple), which was the name of the Globus Cruciger, or orb, as in orb and sceptre, the symbols of power of the Holy Roman Emperor; the orb symbolising the earth. The Behaim globe, which was conceived but not constructed by Martin Behaim, is together with Behaim, the subject of many historical myths.


Martin Behaim was born in Nürnberg in 1459 and lived with his parent on the market place next door to the businessman Bernhard Walther (1430–1504) who was the partner to Regiomontanus in his printing and astronomical activities during the last five years of his life living in Nürnberg. Martin’s father was one of the rich traders, who dominated Nürnberg culture. In 1576 he was sent away to Flanders to apprentice as a cloth trader. In 1484 he journeyed to Portugal, which is where to mythological part of his life begins. According to the traditional version of his life story he took part in two sea voyages down the west coast of Africa with Diogo Cão. He was knighted by the Portuguese king and appointed to the Portuguese Board of Navigation. All of this took place because he was supposedly a student of Regiomontanus, whose ephemerides, the first ever printed ones and highly accurate, were well known and respected on the Iberian Peninsula. All of this information comes from Behaim himself and some of it can be read in the texts on the Behaim Globe.


Artist's impression of Martin Behaim with his globe. Artist unknown

Artist’s impression of Martin Behaim with his globe. Artist unknown

Between 1490 and 1493 Behaim returned to Nürnberg to sort out his mother’s testament and it was during this period that he persuaded to city council to commission him to produce a globe and a large-scale wall map of the world. It is not certain if the wall map was ever produced and if it was it has not survived but the globe certainly was and it is now, as already said, the oldest known surviving terrestrial globe. It is not however, as is often falsely claimed the oldest or first terrestrial globe. The earliest recorded terrestrial globe was constructed by Crates of Mallus in the second century BCE. Also Ptolemaeus in his Geographia, in his discussion of different methods of cartographical projection, acknowledges that a globe in the only way to accurately represent to earth. The Behaim Globe is not even the earliest European medieval globe as the Pope in known to have commissioned earlier terrestrial globes, which have not survived. Given their method of construction and the materials out of which they are made the survival rate of globes is relatively low.

The globe remained the property of the city council of Nürnberg until the middle of the sixteenth century when it was returned to the Behaim family who basically threw it into the corner of an attic and forgot about it. In the nineteenth century it was rediscovered and studied by various historians of cartography and a copy was made for a museum in Paris. Unfortunately it was also ‘restored’ several times through processes that did far more damage than good. In the early twentieth century it was lent to the Germanische Nationalmuseum in Nürnberg. In the 1930s the Behaim family considered selling the globe, most probably in America, and to prevent this Adolf Hitler bought the globe with his own private money and presented it to the German nations. It still resides in the Germanische Nationalmuseum.

I said that the globe is veiled in myths and we will start to sort them out. Firstly Behaim only conceived the globe he didn’t construct it as many people believe. The globe was made by pasting strips of linen onto a fired clay ball. The ball produced by Hans Glockengiesser (a family name that translates as bell founder) and the globe constructed by Ruprecht Kolberger. After the paste had set the globe was cut free from the clay form by a single cut around its equator and the two halves we then pasted together on a wooded frame. The actually map was painted onto the linen ball by the painter and woodblock cutter Georg Glockendon and the lettering was carried out by Petrus Gegenhart. Behaim only seems to have directed and coordinated these activities.


Another popular myth is that because of Behaim’s activities in Portugal the cartography of the globe is cutting edge up to the minute modern; nothing could be further from the truth. The basis of the cartography is Ptolemaeus with obvious additions from other ancient Greek sources as well as The Travels of Sir John Mandeville and The Travels of Marco Polo. Much of the cartographical work is inaccurate even by the standards of the time, including surprisingly the west coast of Africa that Behaim supposedly had explored himself, which brings us to Behaim’s personal claims.


His claim to have sailed with Diogo Cão is almost certainly a lie. At the time of Cão’s first voyage along the African coast Behaim is known to have been in Antwerp. On his second voyage Cão erected pillars at all of his landing places naming all of the important members of the crew, who were on the voyage, Martin Behaim is not amongst them. They is no confirmatory evidence that Behaim was actually a member of Portuguese Board of Navigation and if he was his membership almost certainly owed nothing to Regiomontanus, as there is absolutely no evidence that he ever studied under him. The historian of navigation, David Waters, suggests that if Behaim was actually a member of this august body then it was because the Portuguese hoped to persuade the rich Nürnberger traders to invest money in their expeditionary endeavours, Behaim thus functioning as a sort of informal ambassador for the Republic of Nürnberg.

The picture that emerges is that Martin Behaim was con artist probably deceiving both the Portuguese court and the Nürnberg city council. The Behaim Globe is an interesting artefact but its historical or scientific significance is minimal. If you are in Nürnberg, I can recommend going to the Germanische Nationalmuseum to see it but when you are there also take a look at the Schöner 1520 terrestrial manuscript globe in the neighbouring room. It’s cartographically much more interesting and Schöner, as opposed to Behaim, plays a very important role in the history of globe making.


Johannes Söner's 1520 terrestrial Globe. Germanische Nationalmuseum

Johannes Söner’s 1520 terrestrial Globe.
Germanische Nationalmuseum




Filed under History of Cartography, History of science, Myths of Science, Renaissance Science, Uncategorized

Sorry Caroline but Maria got there first!

Astronomer Caroline Herschel observed her first comet on 1 August 1786 an anniversary that was celebrated by various people on Twitter yesterday. Unfortunately many of them, including for example NASA History Office (@NASAhistory), claimed that on this date she became the 1st woman to discover a comet. This is quite simply not true.

Maria Margarethe Kirch (née Winkelmann), the wife of Gottfried Kirch the Astronomer Royal of Berlin, discovered the comet of 1702 (C/1702 H1) on 21 March 1702 that is forty-eight years before Caroline Herschel was born. Unfortunately the discovery was published by her husband and it was he who was incorrectly acknowledged as the discoverer. In 1710 Gottfried admitted the error and publically acknowledged Maria as the discoverer but she was never official credited with the discovery.

Both Maria Kirch and Caroline Herschel were excellent astronomers with much important work to their credit. However credit where credit is due, Caroline was not the first woman to discover a comet, Maria was.


Filed under History of Astronomy, Myths of Science

A double bicentennial – George contra Ada – Reality contra Perception

The end of this year sees a double English bicentennial in the history of computing. On 2 November we celebrate the two hundredth anniversary of the birth of mathematician and logician Georg Boole then on 10 December the two hundredth anniversary of the birth of ‘science writer’ Augusta Ada King, Countess of Lovelace. It is an interesting exercise to take a brief look at how these two bicentennials are being perceived in the public sphere.

As I have pointed out in several earlier posts Ada was a member of the minor aristocracy, who, although she never knew her father, had a wealthy well connected mother. She had access to the highest social and intellectual circles of early Victorian London. Despite being mentored and tutored by the best that London had to offer she failed totally in mastering more than elementary mathematics. So, as I have also pointed out more than once, to call her a mathematician is a very poor quality joke. Her only ‘scientific’ contribution was to translate a memoire on Babbage’s Analytical Engine from French into English to which are appended a series of new notes. There is very substantial internal and external evidence that these notes in fact stem from Babbage and not Ada and that she only gave them linguistic form. What we have here is basically a journalistic interview and not a piece of original work. It is a historical fact that she did not write the first computer programme, as is still repeated ad nauseam every time her name is mentioned.

However the acolytes of the Cult of the Holy Saint Ada are banging the advertising drum for her bicentennial on a level comparable to that accorded to Einstein for the centenary of the General Theory of Relativity. On social media ‘Finding Ada’ are obviously planning massive celebrations, which they have already indicated although the exact nature of them has yet to be revealed. More worrying is the publication of the graphic novel The Thrilling Adventures of Lovelace and Babbage: The (Mostly) True Story of the First Computer (note who gets first billing!) by animator and cartoonist Sydney Padua. The Analytical Engine as of course not the first computer that honour goes to Babbage’s Difference Engine. More important Padua’s novel is not even remotely ‘mostly’ true but largely fictional. This wouldn’t matter that much if said book had not received major media attention. Attention that compounded the error by conveniently forgetting the mostly. The biggest lie in the work of fiction is the claim that Ada was somehow directly involved in the conception and construction of the Analytical engine. In reality she had absolutely nothing to do with either its conception or its construction.

This deliberate misconception has been compounded by a, in social media widely disseminated, attempt to get support for a Lovelace, Babbage Analytical Engine Lego Set. The promoter of this enterprise has written in his blurb:

Ada Lovelace (1815-1852) is widely credited as the first computer scientist and Charles Babbage (1791-1871) is best remembered for originating the concept of a programmable computer. Together they collaborated on Babbage’s early mechanical general-purpose computer, the Analytical Engine.

Widely credited by whom? If anybody is the first computer scientist in this set up then it’s Babbage. Others such as Leibniz speculated on what we now call computer science long before Ada was born so I think that is another piece of hype that we can commit to the trashcan. Much more important is the fact that they did not collaborate on the Analytical Engine that was solely Babbage’s baby. This factually false hype is compounded in the following tweet from 21 July, which linked to the Lego promotion:

Historical lego [sic] of Ada Lovelace’s conception of the first programmable computer

To give some perspective to the whole issue it is instructive to ask about what in German is called the ‘Wirkungsgeschichte’, best translated as historical impact, of Babbage’s efforts to promote and build his computers, including the, in the mean time, notorious Menabrea memoire, irrespective as to who actually formulated the added notes. The impact of all of Babbage’s computer endeavours on the history of the computer is almost nothing. I say almost because, due to Turing, the notes did play a minor role in the early phases of the post World War II artificial intelligence debate. However one could get the impression from the efforts of the Ada Lovelace fan club, strongly supported by the media that this was a highly significant contribution to the history of computing that deserves to be massively celebrated on the Lovelace bicentennial.

Let us now turn our attention to subject of our other bicentennial celebration, George Boole. Born into a working class family in Lincoln, Boole had little formal education. However his father was a self-educated man with a thirst for knowledge, who instilled the same characteristics in his son. With some assistance he taught himself Latin and Greek and later French, German and Italian in order to be able to read the advanced continental mathematics. His father went bankrupt when he was 16 and he became breadwinner for the family, taking a post as schoolmaster in a small private school. When he was 19 he set up his own small school. Using the library of the local Mechanics Institute he taught himself mathematics. In the 1840s he began to publish original mathematical research in the Cambridge Mathematical Journal with the support of Duncan Gregory, a great great grandson of Newton’s contemporary James Gregory. Boole went on to become one of the leading British mathematicians of the nineteenth century and despite his total lack of formal qualifications he was appointed Professor of Mathematics at the newly founded Queen’s College of Cork in 1849.

Although a fascinating figure in the history of mathematics it is Boole the logician, who interests us here. In 1847 Boole published the first version of his logical algebra in the form of a largish pamphlet, Mathematical Analysis of Logic. This was followed in 1854 by an expanded version of his ideas in his An Investigation of the Laws of Thought, on which are founded the Mathematical Theories of Logic and Probability. These publications contain the core of Boolean algebra, the final Boolean algebra was actually produced by Stanley Jevons, only the second non-standard algebra ever to be developed. The first non-standard algebra was Hamilton’s quaternions. For non-mathematical readers standard algebra is the stuff we all learned (and loved!) at school. Boolean algebra was Boole’s greatest contribution to the histories of mathematics, logic and science.

When it first appeared Boole’s logic was large ignored as an irrelevance but as the nineteenth century progressed it was taken up and developed by others, most notably by the German mathematician Ernst Schröder, and provided the tool for much early work in mathematical logic. Around 1930 it was superseded in this area by the mathematical logic of Whitehead’s and Russell’s Principia Mathematica. Boole’s algebraic logic seemed destined for the novelty scrap heap of history until a brilliant young American mathematician wrote his master’s thesis.

Claude Shannon (1916–2001) was a postgrad student of electrical engineering of Vannevar Bush at MIT working on Bush’s electro-mechanical computer the differential analyzer. Having learnt Boolean algebra as an undergraduate Shannon realised that it could be used for the systematic and logical design of electrical switching circuits. In 1937 he published a paper drawn from his master’s thesis, A Symbolic Analysis of Relay and Switching Circuits. Shannon switching algebra, applied Boolean algebra, would go on to supply the basis of the hardware design of all modern computers. When people began to write programs for the computers designed with Shannon’s switching algebra it was only natural that they would use Boole’s two-valued (1/0, true/false, on/off) algebra to write those programs. Almost all modern computers are both in their hardware and there software applied Boolean algebra. One can argue, as I have actually done somewhat tongue in cheek in a lecture, that George Boole is the ‘father’ of the modern computer. (Somewhat tongue in cheek, as I don’t actually like the term ‘father of’). The modern computer has of course many fathers and mothers.

In George Boole, as opposed to Babbage and Lovelace, we have a man whose work made a massive real contribution to history of the computer and although both the Universities of Cork and Lincoln are planning major celebration for his bicentennial they have been, up till now largely ignored by the media with the exception of the Irish newspapers who are happy to claim Boole, an Englishman, as one of their own.

The press seems to have decided that a ‘disadvantaged’ (she never was, as opposed to Boole) female ‘scientist’, who just happens to be Byron’s daughter is more newsworthy in the history of the computer than a male mathematician, even if she contributed almost nothing and he contributed very much.


Filed under History of Computing, History of Mathematics, Ladies of Science, Myths of Science

For those who haven’t been paying attention

Galileo Galilei was found guilty and sentenced by the Inquisition on 22 June 1633; as usual this anniversary has produced a flurry of activity on the Internet much of it unfortunately ill informed. This is just a very brief note for all those who haven’t being paying attention.

The crime of which Galileo was found guilty was “vehement suspicion of heresy” and not heresy. This might appear to some to be splitting hairs but within the theological jurisdiction of the Catholic Church the difference is a highly significant one. Had the Inquisition found him guilty of heresy then a death sentence would have followed almost automatically. As they only found him guilty of the lesser charge “vehement suspicion of heresy” it was possible for him to be sentenced to life in prison commuted the next day to house arrest.

And please Richard Coles, and anybody else stupid enough to quote it, the claim that he said Eppur si muove (and yet it moves) upon being sentenced is almost certainty a myth.


Filed under History of Astronomy, Myths of Science

Three strikes and you’re out!

Recently on Twitter I stumbled across the cartoon entitled An Age-Old Argument, reproduced below. It’s not the first time I’ve come across it, as it’s one of those things that does the rounds of the social media sites at regular intervals. This time it was tweeted by Calestous Juma (@calestous) who describes himself as a Harvard Kennedy School Professor working on science & innovation for development. In his tweet he asked for, ‪”Any‪ more examples of such arguments? scientific evidence”. It had been retweeted by @AnneGlover_EU , that is Anne Glover Former Chief Scientific Adviser to Jose Manuel Barroso 2012-2014. These are obviously both people who, when it comes to science, could be expected to know what they are talking about. However it becomes clear that when one analyses the cartoon, which they are boosting that this is not the case.

An age-old argument

As you can see the cartoon has four panels of which the first three supposedly depict episodes from the history of science where ignorant people ignored scientific evidence in the same way as denialists do now in the climate debate. Juma and Glover, like many others, obviously think that the cartoonist has scored three home runs in his historical depictions. However as anyone knowledgeable of the history of science can see what we have here are three hoary old myths of science leading to three strikes and an out. Put differently, people like Juma and Glover should not be spreading ignorant and misleading rubbish as this.

Our first panel has the people in the Middle Ages believing that the earth was flat and refusing to believe that it’s a sphere. This is probably the most widespread and stupid myth in the whole history of science. Since antiquity nobody in Europe qualified to express an opinion on the subject believed that the earth was anything but a sphere. The claim that Europeans in the Middle Ages believed that the world was flat is a baseless myth created in the nineteenth century. So no homerun, strike one!

To be quite honest the second panel baffles me as it depicts something that never ever took place anywhere at anytime. Gravity is a term used since antiquity to describe the fact that if you let something drop it falls to the ground. Nobody ever challenged this purely descriptive term. In the late seventeenth century Isaac Newton demonstrated that the same force that causes things on earth to fall to the ground also prevents orbiting planets from shooting off at a tangent to their orbits, as the law of inertia would require, thus creating the idea of universal gravity. On the whole those capable of understanding Newton’s mathematical theories accepted them but the Cartesians and the Leibnizians objected to Newton’s inability to explain just what exactly the force of gravity was or should be. Their mechanical philosophical understanding of nature making them suspicious of Newton’s action at a distance. This scientific debate took place in the eighteenth century not the seventeenth and never included any denial of the phenomenon of gravity. So no homerun, strike two!

We now turn to the one panel that some people might consider depicts historical reality. We have a man in the nineteenth century rejecting the theory of evolution on the basis of religion. Images of the infamous Oxford debate, between Darwin’s Bulldog, Thomas Huxley, and Samuel, ‘Soapy Sam’ Wilberforce, spring instantly to mind. Unfortunately we have to do with another modern myth. There was no significant religious objection to the theory of evolution during the nineteenth century. I realise here that I’m stepping outside of my historical comfort zone (nineteenth century, life sciences!) and some might challenge my competence to make such a claim. However I offer as substantiation a couple of blog posts by historian and philosopher of biology, and Renaissance Mathematicus friend, John Wilkins at Evolving Thoughts, herehere and here that explain the subject. So no homerun, strike three and out!

I do wish scientist and science communicators who wish to promote scientific thinking against the denialists and their ilk would desist from spreading and propagating rubbishy myths of science, as history of science.


Filed under Myths of Science

Creating a holy cow.

Whenever I think that the deification of Ada Lovelace can’t get anymore ridiculous somebody comes along and ups the ante. The latest idiocy was posted on Twitter by the comedian Stephen Fry (of whom I’m a big fan!). Mr Fry tweeted:

Ada Lovelace & Alan Turing for the next £20 note! Nominate here [link removed] Heroic pioneers in the face of prejudice. [my emphasis]

My comments will only concern Augusta Ada King, Countess of Lovelace, although the comment I have highlighted also has issues when applied to Alan Turing.

Heroic pioneers in the face of prejudice. Let us briefly examine the prejudice that the Countess of Lovelace, née Byron, suffered. Born into the English aristocracy she unfortunately lost her “mad, bad and dangerous to know” father at the tender age of one month. However her mother’s family were extremely wealthy, the main reason Byron who was destitute had married her, and so Ada lacked for nothing throughout her childhood. It should be also pointed out that her mother enjoyed a very high social status, despite her disastrous marriage.

She was, as a young women, tutored and mentored by the elite of the scientific community in Victorian London, including Charles Babbage, Augustus De Morgan, Sir Charles Wheatstone and Mary Somerville, all of whom helped and encouraged her in her scientific studies. She married the wealthy Baron William King who was soon elevated to Earl of Lovelace and who also supported her scientific endeavours without any restrictions. Somehow I fail to see to what the term prejudice could possibly be referring. Rich, pampered and supported by the very elite of London’s scientific community doesn’t sound like prejudice to me.

It was Wheatstone who suggested that she translate the Menabrea memoire on the Analytical Engine in emulation of her mentor Mary Somerville’s translation of Laplace, a far greater and much more complex work. So there is no suggestion of the pioneer here. Somerville herself was just one of several women, albeit the greatest, who wrote works popularizing the mathematical sciences in England in the first half of the nineteenth century. So Ada was in no way a pioneer but rather following the crowd.

It might be argued that her notations to the memoire qualify her as a pioneer, however I remain firmly convinced that the notes were very much a Babbage-Lovelace co-production with Babbage providing the content and Lovelace the turns of phrase. At best she was a scientific journalist or communicator. The pioneer was Babbage. There is strong evidence to support this interpretation, which gets swept under the carpet by the acolytes of the Cult of the Holy Saint Ada.

I shall be writing a longer post on one central aspect of the cult’s mythologizing later in the summer so stayed tuned.


Filed under History of Computing, Myths of Science