Category Archives: Myths of Science

There is no year zero!

I realise that in writing this post I am wasting my time, pissing against the wind, banging my head against a brick wall and all the other colourful expressions in the English language that describe embarking on a hopeless endeavour but I am renowned for being a pedantic curmudgeon and so I soldier on into the jaws of disappointment and defeat. I shall attempt to explain carefully and I hope clearly why the 31st of December of the year 2019 does not mark the end of the second decade of the 21st century. I know, I know but I must.

The core of the problem lies in the fact that we possess two basic sets of counting numbers, cardinals and ordinals. Now cardinals have nothing to do with the Holy Roman Catholic Church, a family of birds or a baseball team from St. Louis but are the numbers we use to say how many items there are in a group, a collection, a heap or as the mathematician prefer to call it a set. Let us look at a well-known example:

I’ll sing you twelve, O

Green grow the rushes, O

What are your twelve, O?

Twelve for the twelve Apostles

Eleven for the eleven who went to heaven,

Ten for the ten commandments,

Nine for the nine bright shiners,

Eight for the April Rainers.

Seven for the seven stars in the sky,

Six for the six proud walkers,

Five for the symbols at your door,

Four for the Gospel makers,

Three, three, the rivals,

Two, two, the lily-white boys,

Clothed all in green, O

One is one and all alone

And evermore shall be so.

This is the final round of an old English counting song the meaning of several lines of which remain intriguingly obscure. Starting with the fourth line from the top we have a set of 12 Apostles i.e. the original twelve follower of Jesus. One line further in, we have a set of 11, who went to heaven, presumably the Apostles minus Judas Iscariot. And so we proceed, each line refers to a group or set giving to number contained in it.

In everyday life we use cardinal numbers all the time. I bought 6 eggs today. There are 28 children in Johnny’s class. My car has 4 wheels and so on and so forth. The cardinal numbers also contain the number zero (0), which indicates that a particular group or set under discussion contain no items at all. There are currently zero kings of France. We can carry out all the usually simple arithmetical operations–addition, subtraction, multiplication and division–on the cardinal numbers including zero, with the exception that we can’t divide by zero; mathematicians say division by zero is not defined. So if Johnny’s class with its 28 members are joined by Jenny’s class with 27 members for the school trip there will be 55 children on the bus. I’m sure you can think up lots of other examples yourselves.

Ordinal numbers have a different function, there signify the position of items in a list, row, series etc. We also use different names for ordinal numbers to cardinal numbers, so instead of one, two three four…, we say first, second, third, fourth…etc. an example would be, Johnny was the fifth person in his class to get the flu this winter. Now, in the ordinal numbers there is no zero, it would be a contradiction in terms, as it can’t exist. Occasionally when there is an existing ordered list of principles or laws people will talk about the ‘zeroeth’ law, meaning one that wasn’t originally included but that they think should precede the existing ones.

When we talk about years we tend to use the words for cardinal numbers but in fact we are actually talking about ordinal numbers. What we call 2019 CE or AD i.e. two thousand and nineteen is in fact the two thousand and nineteenth year of the Common Era or the two thousand and nineteenth year of Our Lord. Whichever system of counting years one uses, Gregorian, Jewish, Muslim, Persian, Chinese, Hindu or whatever there is and never can be a year zero, it is, as stated abve, a contradiction in terms and cannot exist. Therefore the first decade, that is a group of ten year, in your calendrical system consists of the years one to ten or the first year to the tenth year, the second decade the years eleven to twenty or the eleventh year to the twentieth year and so on. The first century, that is a group of one hundred years, consists of the years one to one hundred or the first year to the one-hundredth year. First millennium, that is one thousand years, consists of the years one to one thousand or the first year to the one-thousandth year.

Going back to our starting point the first decade of the 21st century started on the 1st January 2001 and finished on the 31st December 2010. The second decade started on the 1st January 2011 and will end on the 31st December 2020 and not on 31st December 2019 as various innumerate people would have you believe.

 

12 Comments

Filed under Calendrics, History of Mathematics, Myths of Science

The Royal Society really needs to work on its history of the telescope

One would think that the Royal Society being one of the eldest, but not the eldest as they like to claim, scientific societies in Europe when presenting themselves as purveyors of the history of science, would take the trouble to get their facts right. If, however, one thought this, one would be wrong. Last week on the Internet the Royal Society was pushing a slide show, under their own name, on Google Arts and Culture on the history of the telescope in astronomy that in terms of historical accuracy is less than one, as a historian of science, nay of the telescope, might hope or indeed wish for.

The slide show in question is titled, Silent Harmony: astronomy at the Royal Society: Discover how innovation in telescopes and other optical instruments changed the way we see the universe. Following the title slide we have another general blurb slide but things then get serious on the history level, we get told under the heading, The new astronomy:

Galileo_by_leoni

Galileo Portrait by Ottavio Leoni Source: Wikimedia Commons

Galileo Galilei (1564-1642) was the first to explore the solar system using a telescope. His work directly built on famous predecessors such as Nicolaus Copernicus (1473-1543) and Johannes Kepler (1571-1630), who set out to model a heliocentric universe – one in which the sun is at the centre of the universe – and theorise the motion of planets. 

Sometimes I tire slightly of repeating myself but once more into the breach dear friends, once more. Galileo was not the first to explore the solar system using a telescope. That honour goes to a man in London, you know London home of the Royal Society, Thomas Harriot (1560–1621).

thomasharriot

Portrait often claimed to be Thomas Harriot (1602), which hangs in Oriel College, Oxford. Source: Wikimedia Commons

Also at the same time as Galileo was aiming his telescope at the heavens in Padua, Simon Marius (1573–1625) was doing the same in Ansbach in Franconia

houghton_gc6_m4552_614m_-_simon_marius_-_cropped-2

Simon Marius Source: Wikimedia Commons

and Giovanni Paolo Lembo (1570–1618) and Odo van Maelcote (1572–1615) in Rome. Whilst Galileo was more than prepared to call himself a Copernican, he very strongly rejected or ignored the work of Johannes Kepler, so saying that his work directly built on that of Kepler is more than a simple distortion of history. To say that these three theorised the motion of planets is to say the least bizarre, all astronomical models whether heliocentric, geocentric or geo-heliocentric theorise the motion of planets that is a large part of what astronomy is. We are not finished with Signor Galileo:

Galileo’s Starry Messenger was the first published work to incorporate scientific observations made using a telescope.

The treatise contains descriptions of lunar landscapes, new stars in well-known constellations and the major satellites of Jupiter.

This is all correct, however because he was the first to publish people make the mistake of thinking he was the first or even the only one to make telescopic observations in 1609. Moving on, the next slide caption isn’t correct:

Galileo designed and built the most powerful telescope of his generation.

His own instrument, a thirty-power magnifier preserved at the Museo Galileo in Florence, served as model to other instrument-makers for many years.

I’m beginning to think that the Royal Society has got something against Thomas Harriot. Whilst Galileo did indeed build a thirty-power telescope it was not the most powerful telescope of his generation, Harriot built a fifty-power one. However, as in a Dutch telescope (convex objective/concave eyepiece) the field of vision diminishes with magnification the fifty-power telescope proved next to useless. Galileo’s own instrument did not serve as a model to other instrument-makers for many years that, is to put it mildly, total bullshit. Lots of people knew how to construct a simple Dutch telescope and did so without any reference to Galileo.

We skip a few slides and arrive at the most famous President of the Royal Society, Isaac Newton;

GodfreyKneller-IsaacNewton-1689

Portrait of Newton by Godfrey Kneller, 1689 Source: Wikimedia Commons

we get a picture of Newton’s reflecting telescope with the following caption:

NewtonsTelescopeReplica

Replica of Newton’s second reflecting telescope, which he presented to the Royal Society in 1672 Source: Wikimedia Commons

The Royal Society also owns a reflecting telescope made by Newton as a direct application of his theories on light and colour.

This statement is a best misleading and at worst simply wrong depending on how you interpret it. Newton’s theories on light and colour led him to the awareness that the coloured fringes visible on the images of the then normal refracting telescope were the result of chromatic aberration, i.e. the visible light being split up into the colour spectrum when passing through a spherical lenses. This discovery led him to developing a reflecting telescope because he believed falsely that creating an achromatic lens was impossible. It would be more than half a century before Chester Moore Hall invented the first achromatic lens. The principle of the reflecting telescope, which with a suitable mirror, does not suffer from chromatic aberration, had been known since antiquity and Newton was by no means the first to try and construct one. He was, however, the first to succeed in producing a functioning reflecting telescope. You can read an outline of the full history of the reflecting telescope here. Interestingly nobody succeeded in copying Newton’s achievements for the best part of fifty years, when John Hadley (1682–1784), another fellow of the Royal Society, who gets no mention in this slide show, finally succeeded in producing large scale functioning reflecting telescopes; Newton’s instrument was little more than a toy.

The instrument allowed him to make various observations conclusive with his theories on gravity.

This caption is just high-grade rubbish. Newton did not make any observations with this instrument that were in anyway connected with his theory of gravity, let alone conclusive with it.

There are, in the mean time, quite a few good books on the history of the telescope, I have most of them sitting on my book shelf and I’m sure some of them are in the Royal Society’s library, so why didn’t who ever put this slide show together consult them or simply ask an expert?

 

 

 

 

 

 

 

8 Comments

Filed under History of Astronomy, History of Optics, History of science, Myths of Science

Why, FFS! why?

On Twitter this morning physicist and science writer Graham Farmelo inadvertently drew my attention to a reader’s letter in The Guardian from Sunday by a Collin Moffat. Upon reading this load of old cobblers, your friendly, mild mannered historian of Renaissance mathematics instantly turned into the howling-with-rage HISTSCI_HULK. What could possibly have provoked this outbreak? I present for your delectation the offending object.

I fear Thomas Eaton (Weekend Quiz, 12 October) is giving further credence to “fake news” from 1507, when a German cartographer was seeking the derivation of “America” and hit upon the name of Amerigo Vespucci, an obscure Florentine navigator. Derived from this single source, this made-up derivation has been copied ever after.

The fact is that Christopher Columbus visited Iceland in 1477-78, and learned of a western landmass named “Markland”. Seeking funds from King Ferdinand of Spain, he told the king that the western continent really did exist, it even had a name – and Columbus adapted “Markland” into the Spanish way of speaking, which requires an initial vowel “A-”, and dropped “-land” substituting “-ia”.

Thus “A-mark-ia”, ie “America”. In Icelandic, “Markland” may be translated as “the Outback” – perhaps a fair description.

See Graeme Davis, Vikings in America (Birlinn, 2009).

Astute readers will remember that we have been here before, with those that erroneously claim that America was named after a Welsh merchant by the name of Richard Ap Meric. The claim presented here is equally erroneous; let us examine it in detail.

…when a German cartographer was seeking the derivation of “America” and hit upon the name of Amerigo Vespucci, an obscure Florentine navigator.

It was actually two German cartographers Martin Waldseemüller and Matthias Ringmann and they were not looking for a derivation of America, they coined the name. What is more, they give a clear explanation as to why and how the coined the name and why exactly they chose to name the newly discovered continent after Amerigo Vespucci, who, by the way, wasn’t that obscure. You can read the details in my earlier post. It is of interest that the supporters of the Ap Meric theory use exactly the same tactic of lying about Waldseemüller and Ringmann and their coinage.

The fact is that Christopher Columbus visited Iceland in 1477-78, and learned of a western landmass named “Markland”.

Let us examine what is known about Columbus’ supposed visit to Iceland. You will note that I use the term supposed, as facts about this voyage are more than rather thin. In his biography of Columbus, Felipe Fernandez-Armesto, historian of Early Modern exploration, writes:

He claimed that February 1477–the date can be treated as unreliable in such a long –deferred recollection [from 1495]–he sailed ‘a hundred leagues beyond’ Iceland, on a trip from Bristol…

In “Christopher Columbus and the Age of Exploration: An Encyclopedia”[1] edited by the American historian, Silvio A. Bedini, we can read:

The possibility of Columbus having visited Iceland is based on a passage in his son Fernando Colón’s biography of his father. He cites a letter from Columbus stating that in February 1477 he sailed “a hundred leagues beyond the island of Til” (i.e. Thule, Iceland). But there is no evidence to his having stopped in Iceland or spoken with anyone, and in any case it is unlikely that anyone he spoke to would have known about the the Icelandic discovery of Vinland.

This makes rather a mockery of the letter’s final claim:

Seeking funds from King Ferdinand of Spain, he told the king that the western continent really did exist, it even had a name – and Columbus adapted “Markland” into the Spanish way of speaking, which requires an initial vowel “A-”, and dropped “-land” substituting “-ia”.

Given that it is a well established fact that Columbus was trying to sail westward to Asia and ran into America purely by accident, convinced by the way that he had actually reached Asia, the above is nothing more than a fairly tale with no historical substance whatsoever.

To close I want to address the question posed in the title to this brief post. Given that we have a clear and one hundred per cent reliable source for the name of America and the two men who coined it, why oh why do people keep coming up with totally unsubstantiated origins of the name based on ahistorical fantasies? And no I can’t be bothered to waste either my time or my money on Graeme Davis’ book, which is currently deleted and only available as a Kindle.

[1] On days like this it pays to have one book or another sitting around on your bookshelves.

Felipe Fernández-Armesto, Columbus, Duckworth, London, ppb 1996, p. 18. Christopher Columbus and the Age of Exploration: An Encyclopedia, ed. Silvio A. Bedini, Da Capo Press, New York, ppb 1992, p. 314

4 Comments

Filed under History of Cartography, History of Navigation, Myths of Science, Renaissance Science

If you can’t tell your Cassini from your Huygens then you shouldn’t be writing about the history of astronomy.

There I was, mild mannered historian of early modern science, enjoying my first cup of tea on a lazy Sunday morning, whilst cruising the highway and byways of cyberspace, when I espied a statement that caused an explosion of indignation, transforming me into the much feared, fire spitting HISTSCI_HULKTM. What piece of histSTM crap had unleashed the pedantic monster this time and sent him off on a stamping rage?

The object of HSH’s rage was contained in an essay by Vahe Peroomian (Associate Professor of Physics and Astronomy, University of Southern California – Dornsife College of Letters, Arts and Sciences) A brief astronomical history of Saturn’s amazing rings, published simultaneously on both The Conversation and PHYS.ORG 15 August 2019. Peroomian writes:

I am a space scientist with a passion for teaching physics andastronomy, and Saturn’s rings have always fascinated me as they tell the story of how the eyes of humanity were opened to the wonders of our solar system and the cosmos.

He continues:

When Galileo first observed Saturn through his telescope in 1610, he was still basking in the fame of discovering the four moons of Jupiter. But Saturn perplexed him. Peering at the planet through his telescope, it first looked to him as a planet with two very large moons, then as a lone planet, and then again through his newer telescope, in 1616, as a planet with arms or handles.

Galileo_by_leoni

Galileo Portrait by Ottavio Leoni Source: Wikimedia Commons

Galileo actually observed Saturn three times. The first time in 1610 he thought that the rings were handles or large moons on either side of the planet, “I have observed the highest planet [Saturn] to be triple bodied. This is to say to my very great amazement Saturn was seen to me to be not a single star, but three together, which almost touch each other.”

saturn44

Galileo’s 1610 sketch of Saturn and its rings

The second time was in 1612 and whatever it was that he observed in 1610 had simply disappeared, “I do not know what to say in a case so surprising, so unlooked for and so novel.” The Earth’s position relative to Saturn had changed and the rings were no longer visible but Galileo did not know this. In 1616 the rings were back but with a totally altered appearance, “The two companions are no longer two small perfectly round globes … but are present much larger and no longer round … that is, two half eclipses with two little dark triangles in the middle of the figure and contiguous to the middle globe of Saturn, which is seen, as always, perfectly round.” [1]

saturn2

Galileo’s 1616 sketch of Saturn and its rings

There is no mention of a new telescope and it is fairly certain that all three periods of observation were either carried out with the same or very similar telescopes. The differences that Galileo observed were due to the changing visibility of Saturn’s rings caused by its changing relative position to Earth and not to any change of instrument on Galileo’s part.

Although sloppy and annoying, the minor errors in Peroomian’s account of Galileo’s observations of Saturn are in themselves not capable of triggering the HSH’s wrath but what he wrote next is:

Four decades later, Giovanni Cassini first suggested that Saturn was a ringed planet, and what Galileo had seen were different views of Saturn’s rings. Because of the 27 degrees in the tilt of Saturn’s rotation axis relative to the plane of its orbit, the rings appear to tilt toward and away from Earth with the 29-year cycle of Saturn’s revolution about the Sun, giving humanity an ever-changing view of the rings.

giovanni_cassini

Giovanni Cassini (artist unknown) Source: Wikimedia Commons

Now, Giovanni Cassini did record some important observations of Saturn; he discovered four of Saturn’s largest moons and also the gap in the rings that is named after him. Although, Giuseppe Campani, Cassini’s telescope maker, observed the gap before he did without realising that it was a gap. However, it was not Cassini who first suggested that what people had been observing were rings but Christiaan Huygens.

Christiaan Huygens first proposed that Saturn was surrounded by a solid ring in 1655, “a thin, flat ring, nowhere touching, and inclined to the ecliptic.” In 1659 he published his book, Systema Saturnium : sive, De causis mirandorum Saturni phaenomenôn, et comite ejus Planeta Novo detailing how the appearance of the rings varied as the Earth and Saturn orbited the sun.

huygens_phases1

Plate from Huygens’ Systema Saturnium showing the various recorded observations of Saturn made by astronomers before his own times

huygens_phases2

Plate from Huygens’ Systema Saturnium explaining why the appearance of Saturn and its rings changes over time and that all those different appearances can be explained by assuming the existence of the rings

Confusing Cassini and Huygens, two of the greatest observational astronomers of the seventeenth century, who were scientific rivals, is not a trivial error and shouldn’t be made anywhere by anyone. However, to make this error in an essay that is published  on two major Internet websites borders on the criminal. I have no idea what the reach of PHYS.ORG is but The Conversation claims to have a readership of ten million plus. This means that a lot of people are being fed false history of astronomy facts by a supposed expert.

If the good doctor Peroomian had bothered to check his facts, a thing that I thought all scientists were taught to do when receiving their mother milk, he could have easily discovered his crass error and corrected it, even the much maligned Wikipedia gets it right, but apparently he didn’t consider it necessary to do so, after all it’s just history and not real science.

[1]The Galileo and Huygens quotes are taken from Ron Baalke’s excellent time line, Historical Background of Saturn’s Rings.

 

14 Comments

Filed under History of Astronomy, History of science, Myths of Science

Kepler was wot, you don’t say?

 

The Guardian is making a serious bid for the year’s worst piece of #histsci reporting or as Adam Shapiro (@tryingbiology) once put it so expressively, #histsigh! The article in question has the shock, horror, sensation headline: Groundbreaking astronomer Kepler ‘may have practised alchemy’. Ignoring the fact for the moment that he probably didn’t, given the period and the milieu in which Kepler lived and worked saying that he may have been an alchemist is about as sensational as saying he may have been a human being.

1024px-Johannes_Kepler_1610

Johannes Kepler Source: Wikimedia Commons

The period in which Kepler lived was one in which the interest in alchemy was very widespread, very strong and very open. For eleven years he was Imperial Mathematicus at the court in Prague of the German Emperor Rudolph II, which was a major centre for all of the so-called occult sciences and in particular alchemy. In Prague Kepler’s original employer Tycho Brahe had been for years a practitioner of Paracelsian alchemical medicine (a very widespread form of medicine at the time), which to be fair the article sort of says. What they say is that Tycho was an alchemist, without pointing out that his alchemy was restricted to medical alchemy.

Tycho_de_brahe1

Tycho Brahe Source: Wikimedia Commons

One of his colleagues was the Swiss clockmaker Jost Bürgi, who had come to Prague from Hesse-Kassel,

Jost_Bürgi_Porträt

Jost Bürge Source: Wikimedia Commons

where the Landgrave Moritz was a major supporter of alchemy, who appointed Johannes Hartmann (1568–1631) to the first ever chair for chemistry, actually Paracelsian medicine, at the university of Marburg. The real surprise is not that Kepler was an alchemist or practiced alchemy but rather that given the time and milieu in which he lived and worked that he wasn’t and didn’t.

Johannes_hartmann

Johannes Hartmann Source: Wikimedia Commons

How can I be so sure that Kepler didn’t dabble in alchemy? Simply because if he had, he would have written about it. Kepler is a delight, or a nightmare, for the historian, there is almost no figure that I know of in #histSTM, who was as communicative as Kepler. He wrote and published eighty three books and pamphlets in his lifetime covering a very wide range of topics and in all his written work he was always keen to explain in great detail to his readers just what he was doing and his thoughts on what he was doing. He wrote extensively and very openly on his mathematics, his astronomy, his astrology, his family, his private affairs, his financial problems and all of his hopes and fears. If Kepler had in anyway been engaged with alchemy, he would have written about it. If anybody should chime in now with, yes but alchemists kept they activities secret, I would point out in Kepler’s time the people practicing alchemy, particularly the Paracelsians, were anything but secretive. And it was with the Paracelsians that Kepler had the closest contact.

There are a few letters exchanged between Kepler and his Paracelsian physician friends, which show quite clearly that although Kepler displayed the natural curiosity of a scientific researcher in their alchemistic activities he did not accept the basic principles of alchemy. In his notorious exchange with Robert Fludd, he is very dismissive of Fludd’s alchemical activities. Kepler was not an alchemist.

From a historical point of view particularly bad is the contrast deliberately set up in the article between good science, astronomy and mathematics, and ‘dirty’ pseudo- science’, alchemy. This starts with the title:

Groundbreaking astronomer Kepler ‘may have practised alchemy’

Continues with the whole of the first paragraph:

The pioneering astronomer Johannes Kepler may have had his eyes on the heavens, but chemical analysis of his manuscripts suggests he was “willing to get his hands dirty” and may have dabbled in alchemy.

“Kepler, who died in 1630, drew on Copernicus’s work to find laws of planetary motion that paved the way for Isaac Newton’s theory of gravity” is contrasted with “The authors speculate that Kepler could have learned the “pseudo-chemical science.” 

A ‘pioneering astronomer’ with ‘his eyes on the heavens’, serious scientific activity, but ‘dabbled in alchemy’. Whoever wrote these lines obviously knows nothing about Kepler’s astronomical writing nor about early 17thcentury alchemy.

The article through its choice of descriptive terms tries to set up a black/white dichotomy between the man who paved the way for modern astronomy, good, and the practitioners of alchemy in the early seventeenth century, bad. However if we actually look at the real history everything dissolves into shades of grey.

Kepler was not just an astronomer and mathematician but also a practicing astrologer. People might rush in here with lots of Kepler quotes condemning and ridiculing the nativity horoscope astrology of his age, all of them true. However, he famously said one shouldn’t throw the baby out with the bath water defending the basic idea of astrology and presenting his own unique system of astrology based entirely on aspects, that is the angular position of the planets relative to each other. The author of the piece has obviously never turned the pages of either Kepler’s Mysterium Cosmographicum or his Harmonice Mundi. As I commented on Twitter, during a discussion of this article, Kepler’s cosmological heuristic with which he generated all of his successful astronomy was, viewed from a modern rational standpoint, quite simply bat shit insane. Things are not looking good for our pioneering astronomer.

Kepler-solar-system-1

Kepler’s Platonic solid model of the solar system, from Mysterium Cosmographicum (1596) Kepler’s explanation as to why there are only five planets and their order around the sun! Source: Wikimedia Commons

On the other side, as I have noted on several occasions, alchemy included much that we now label applied and industrial chemistry.  For example, alchemists were responsible for the production of pigments for painters and gunpowder for fireworks and cannons, and were often glassmakers. Alchemists were historically responsible for developing the laboratory equipment and methodology for chemical analysis. In the period under discussion many alchemists, including Tycho, were Paracelsian physicians, who are credited with the founding of the modern pharmacological industry. Historians of alchemy tend to refer to the alchemy of the seventeenth century as chymistry because it represents the historical transition from alchemy to chemistry. Not so much a pseudo-science as a proto-science.

Let us now consider the so-called evidence for the articles principle claim. Throughout the article it is stated that the evidence was found on Kepler’s manuscripts, plural. But when the evidence is actually discussed it turns out to be a single manuscript about the moon. On this manuscript the researchers found:

“…very significant amounts of metals associated with the practice including gold, silver, mercury and lead on the pages of Kepler’s manuscript about the moon, catalogued as “Hipparchus” after the classical astronomer.”

Is alchemy the only possible/plausible explanation for the traces of metals found on this manuscript? Could one suggest another possibility? All of these metals could have been and would have been used by a clock and instrument maker such as Jost Bürgi, who was Kepler’s close colleague and friend throughout his eleven years in Prague. Bürgi also had a strong interest in astronomy and might well have borrowed an astronomical manuscript. Of course such a solution doesn’t make for a sensational article, although all the available evidence very strongly suggests that Kepler was not an alchemist.

One final point that very much worries me is the provenance of this document. It is four hundred years old, who has owned it in the meantime? Where has it been stored? Who has had access to it? Until all of these questions can be accurately answered attributing its contamination to Kepler is just unfounded speculation.

 

 

 

 

 

 

 

 

15 Comments

Filed under History of Alchemy, History of Astrology, History of Astronomy, History of science, Myths of Science, Renaissance Science

The House of Wisdom is a Myth

When I first got really interested in the history of science, the history of science of the Islamic empires was not something dealt with in any detail in general works on the topic. If you wanted to get to know anything much about what happened in the various areas of the world dominated by Islamic culture in the period between the seventh and sixteenth centuries then you had to find and read specialist literature produced by experts such as Edward Kennedy. Although our knowledge of that history still needs to be improved, the basic history has now reached the popular market and people can inform themselves about major figures writing in Arabic on various areas of science between the demise of classical antiquity and the European Renaissance such as the mathematician Muḥammad ibn Mūsā al-Khwārizmī, the alchemist Abū Mūsā Jābir ibn Hayyān, the optician, Abū ʿAlī al-Ḥasan ibn al-Ḥasan ibn al-Haytham or the physician Abū Bakr Muhammad ibn Zakariyyā al-Rāzī. These and a handful of other ‘greats’ are not as well known as their later European counterparts but knowledge of them, usually under their popular names, so al-Khwarizmi, Jabir, al-Haytham and al-Razi, is these days quite widespread amongst well educated and well read people. There is even a flourishing popular book market for titles about Islamic science.

Amongst those non-professionals, who interest themselves for the topic, particularly well known is the so-called House of Wisdom, a reputed major centre for scientific translation and research in Baghdad under the Abbasid Caliphs. This reputed academic institution even provided the title for two of the biggest selling popular books on Islamic science Jim al-Khalili’s The House of Wisdom: How Arabic Science Saved Ancient Knowledge and Gave Us the Renaissance and Jonathan Lyons’ The House of Wisdom: How the Arabs Transformed Western Civilisation. Neither Jim al-Khalili nor Jonathan Lyons is a historian of science, let alone Islamic science; al-Khalili is a physicist and broadcaster and Lyons is a journalist and herein lies the rub. Real historians of Islamic science say that the House of Wisdom never existed, at least not in any form remotely resembling the institution presented by al-Khalili, Lyons and other popular sources including, unfortunately Wikipedia, where the article is largely based on Lyons’ pop book.

The picture painted by al-Khalili and Lyons, and to be fair they didn’t create it but copied it from other fantasts, is of a special academic research institution set up by the early Abbasid Caliphs, staffed with leading scientific scholars, who carried out a sponsored programme of translating Greek scientific texts, which they them analysed, commented and developed further. Here academic exchanges, discussions, conferences took place amongst the leading scientific scholars in the Abbasid Empire.

The reality looks very different.[1]To quote Gutas (page 54):

It is in this light that the very scanty reliable reports about the bayt al-hikmashould be evaluated. Much ink has been used unnecessarily on description of the bayt al-hikma, mostly in fanciful and sometimes wishful projections of modern institutions and research projects back into the eighth century. The fact is that we have exceedingly little historical [emphasis in original] information about the bayt al-hikma. This in tself would indicate that it was not something grandiose or significant, and hence a minimalist interpretation would fit the historical record better.

The bayt al-hikma, to give it its correct name, which doesn’t really translate as house of wisdom, was the palace archive and library or repository, a practice taken over by the Abbasid Caliphs from the earlier Sassanian rulers along with much other royal court procedure to make their reign more acceptable to their Persian subjects. The wisdom referred to in the translation refers to poetic accounts of Iranian history, warfare, and romance. The Abbasid Caliphs appear to have maintained this practice now translating Persian historical texts from Persian into Arabic. There is absolutely no evidence of Greek texts, scientific or otherwise, being translated in the bayt al-hikma.

Much is made of supposed leading Islamic scientific scholars working in the bayt al-hikmaby the al-Khalili’s, Lyons et al. In fact the first librarian under the Abbasids was a well-known Persian astrologer, again a Sassanian practice taken over by the Abbasids. Later al-Khwarizmi and Yahya ibn Abi Mansur both noted astronomers but equally noted astrologers served in the bayt al-hikmaunder the Abbasid Caliph al-Ma’mun.

We will give Gutas the final word on the subject (page 59):

The bayt al-hikmawas certainly also not an “academy” for teaching the “ancient” sciences as they were being translated; such a preposterous idea did not even occur to the authors of the spurious reports about the transmission of the teaching of these sciences that we do have. Finally it is not a “conference centre for the meeting of scholars even under al-Ma’mun’s sponsorship. Al-Ma’mun, of course (and all the early Abbasid caliphs), did host scholarly conferences or rather gatherings, but not in the library; such gauche social behaviour on the part of the caliph would have been inconceivable. Sessions (magalis) were held in the residences of the caliphs, when the caliphs were present, or in private residences otherwise, as the numerous descriptions of them that we have indicate.

As a final comment we have the quite extraordinary statement made by Jim al-Khalili on the BBC Radio 4 In Our Time discussion on Maths in the Early Islamic World:

In answer to Melvyn Braggs question, “What did they mean by the House of Wisdom and what sort of house was it? It is supposed to have lasted for 400 years, it is contested”

Jim al-Khalili: “It is contested and I’ll probably get into hot water with historians but let’s say what I think of it. There was certainly potentially something called the house of wisdom a bit like the Library of Alexandria many centuries earlier, which was a place where books were stored it may have also been a translation house. It was in Baghdad this was in the time of al-Ma’mun, it may have existed in some form or other in his father’s palace…”

Bragg: “Was it a research centre, was it a place where people went to be paid by the caliphs to get on with the work that you do in mathematics?”

Al-Khalili: “I believe it very well could have been…” He goes on spinning a fable, drawing parallels with the Library of Alexandria

History is not about what you choose to believe but is a fact-based discipline. Immediately after al-Khalili’s fairy story Peter Pormann, Professor of Classics & Graeco-Arabic Studies at the University of Manchester chimes in and pricks the bubble.

Pormann: “There’s the myth of the House of Wisdom as this research school, academy and so on and so forth, basically there is very little evidence…”

Listen for yourselves!

I find Bragg’s choice of words, repeated by al-Khalili, “it is contested” highly provocative and extremely contentious. It is not contested; there is absolutely no evidence to support the House of Wisdom myth as presented by Lyons, al-Khalili et al. What we have here is another glaring example of unqualified pop historians propagating a myth and blatantly ignoring the historical facts, which they find boring.

[1]The facts in the following are taken from Dimitri Gutas, Greek Thought, Arabic Culture: The Graeco-Arabic Translation Movement in Baghdad and Early Abbasid Society (2nd–4th/8th–10th centuries), Routledge, Oxford, ppb. 1998 pp. 53-60 and Lutz Richter-Bernburg, Potemkin in Baghdad: The Abbasid “House of Wisdom” as Constructed by 1001 inventions In Sonja Brentjes–Taner Edis­–Lutz Richter-Bernburg eds., 1001 Distortions: How (Not) to Narrate History of Science, Medicine, and Technology in Non-Western Science, Biblioteca Academica Orientalistik, Band 25, Ergon Verlag, Würzburg, 2016 pp. 121-129

11 Comments

Filed under History of Islamic Science, History of science, Myths of Science

Unsound History of the Sound of Space

Those readers, who have been around for a number of years, will know that from time to time the Renaissance Mathematicus has hosted guest posts. One thing that we are very proud of is the very high standard of the authors, who have delivered up, at our invitation, those literary #histSTM highpoints. We only host the best! Todays guest post continues this tradition with a real star of the world of science, science writing and #histSTM, Tom McLeish FRS. Tom was Professor of Physics at Durham University, where he was one of the initiators and chief investigators of the on going Ordered Universe international research project: Interdisciplinary Readings of Medieval Science: Robert Grosseteste (c.1170–1253).

800px-Grosseteste_bishop

!4th Century portrait of Robert Grosseteste, Bishop of Lincoln Source: Wikimedia Commons

Tom is now Professor of Natural Philosophy in the Department of Physics at the University of York (I think he’s doing a slow tour of the beautiful cathedral cities of England). His most recent, in fact very recent, publication is a book that you all should read The Poetry and Music of Science: Comparing Creativity in Science and Art (OUP, 2019).

Recently he tweeted some truly horrendous #histSTM errors in a BBC publication, I’ll let him explain further, and I immediately thought that would be something for the HIST_SCI HULKTMbut then thought it would be nice if Tom wrote a guest post about it himself. I asked, he said yes and so I give you the HIST_SCI HULK’s mild mannered, but very erudite cousin Tom McLeish.

For some years now I have been treating myself to the weekly delight and lifelong education in the history of science that is Thony Christie’s ‘Renaissance Mathematicus’ blog. To be invited to write a guest instalment is therefore a great surprise and joy. But I’ll rapidly wrap up my imposter syndrome in a few tight twists of context before getting on with the main task of joining the host author in calling out bad and sloppy history of science – and calling for getting it right – for both writers and readers of this blog know that getting history right matters.

As much as I look forward to the weekly arrival of the R-mathematicus email alert, I also anticipate the annual publication of the BBC Proms guide. Science and music are equal passions for me, and as far as I am concerned, music doesn’t get more exciting than the best classical music festival in the world – the London Promenade series of summer concerts at the Royal Albert Hall. Although the science I do professionally turns around the physics of soft materials and biophysics, astronomy was my childhood gateway to the study of nature, and is still my own amateur scientific passion. So when I discovered that a chosen theme of this year’s Prom concerts was space, responding to the 50thanniversary of the first human moon landing, I became understandably excited. Sure enough, the usually well-researched and written Proms Guide contained a promising article by Neil Brand, The Sound of Space.

The first page takes the reader on a musical pathway through the scores for science fiction films – an area of expertise for Brand, and a good read. But his thesis that the cosmos and music have been linked for centuries requires some history of science. This is where, as is sadly so often the case, the source-checking (frankly even encyclopaedia checking) runs out. A first indication that trouble is afoot appears in the categorisation of Cicero’s Dream of Scipioas a ‘philosophical treatise’. This marvellous dream-discourse is just the closing portion of the 6thbook of Cicero’s De res publica– the whole work really a political treatise, though highly expansive. It is very significant for the imaginative tradition of viewing the Earth from Space, as I have noted elsewhere , but does indeed mention the ‘music of the spheres’, the author’s point. So we read on for now.

Macrobius,_universe_with_the_earth_in_the_centre

The Universe, the Earth in the centre, surrounded by the seven planets within the zodiacal signs Images from a 12th-century manuscript of Macrobius’ Commentarii in Somnium Scipionis Source: Copenhagen, Det Kongelige Bibliotek, ms. NKS 218 4° via Wikimedia Commons

Enter Johannes Kepler (1571-1630), one of my personal Renaissance/Early-Modern astronomical heroes. I ceaselessly find it impressive that Kepler was able to deduce the three propositions concerning planetary motion that we now refer to as ‘Kepler’s Laws’, including the discovery of the elliptical orbit of Mars (and the other planets) from naked eye observations. He could not have done this, however, without the equally heroic contribution of Danish astronomer Tycho Brahe, who improved the accuracy of stellar positional measurements over his predecessors by two orders of magnitude – and this without a telescope. It was Tycho’s observations that enabled Kepler to deduce the elliptical planetary motion, work begun around 1601 but first published in his Astronomia Nova of 1609. Given that the first telescopic astronomical observations were not made until Thomas Harriot and then Galileo Galilei turned their primitive telescopes skyward in 1609, it is strange that Brand is able to assure us that Kepler used ‘observation through early telescope lenses’ to establish his laws of motion.

A decade’s error may perhaps be forgivable (though not the silence on Tycho Brahe), but errors of, several centuries and more stretches all generosity on my part. For Brand then attempts to link Kepler casually to the adoption of music within the ‘quadrivium’ of mathematical subjects taught in medieval universities.

It is elementary educational history that the structure of the ‘Liberal Arts’, for which the quadrivium formed the second year of study, was conceived by the time the late Roman commentator Macrobius wrote about them (interestingly in a lengthy commentary on the Dream of Scipio, see above!) around 430 AD. There is strong corroboration for this early adoption two centuries later from Isidore of Seville in his compendious Etymologies. Music remained a mathematical art from late antiquity, through the cathedral schools and early universities of the high middle ages to Kepler’s own time.

Brand’s final science-history sin is an even stranger one. For in the next section he introduces us to William Herschel, a Hanoverian, who emigrated to England in 1757. Herschel is a fascinating figure, most famous for his discovery of the first new planet since antiquity – Uranus, in 1781.

1024px-william_herschel01

William Herschel 1785 portrait by Lemuel Francis Abbott Source: Wikimedia Commons

But in an astonishingly dense sweep of double confusion, Brand tells us that Herschel managed this feat ‘through careful calculation with superb new and enormously large optical telescopes.’ The discovery was actually made by observing the tiny greenish disk of Uranus move over several nights against the background of stars, and through a relatively small reflecting telescope[1]. Herschel’s massive 40’ reflector was not operational before 1789, and no more than a twinkle in its designer’s eye in 1781. Brand’s other confusion is, of course, with the discovery of Neptune. This was indeed effected by calculation (simultaneously by Le Verrier in France and Adams in England), following perturbations noticed in the orbit of Uranus. Le Verrier’s theoretical predictions of the whereabouts of the planet that accounted for Uranus’ wanderings lead to the 1846 observational discovery of Neptune in Berlin by Johan Galle.

The reason that the mangling of Herschel’s history is strange, especially in a BBC Proms Guide, is that he was first a musician, not an astronomer. Composer, singer and oboist, his first position in England was as director of the military band in Durham. His later moves to Birmingham and then Bath were also to musical posts, and only in the last did his astronomical interests begin to dominate. His famous sister Carolyn accompanied him, also as a singer, and in parallel career development became an astronomer in her own right, discovering several comets, and recording their observations meticulously. But in the musical phase of his career, William himself composed 24 symphonies and three remarkable oboe concertos among other pieces. It is perhaps the greatest pity of all that, in a year dedicated to music and astronomy, none has found a place at any of the 2019 Prom performances, where they might have embodied a beautiful and historical sound of space.

[1]If you are ever in the area, the Herschel Museum of Astronomy  in Bath, situated in Herschel’s old place of residence, is a delight and you can go out into the back garden where he made his discovery of Uranus.

4 Comments

Filed under History of Astronomy, Myths of Science