The swashbuckling, philosophical alchemist

If you go beyond the big names, big events version of the history of science and start looking at the fine detail, you can discover many figures both male and female, who also made, sometime significant contribution to the gradual evolution of science. On such figure is the man who inspired the title of this blog post, the splendidly named Sir Kenelm Digby (1603–1665), who made contributions to a wide field of activities in the seventeenth century.

Kenelm Digby (1603-1665) Anthony van Dyck Source: Wikimedia Commons

To show just how wide his interests were, I first came across him not through my interest in the history of science, but through my interest in the history of food and cooking, as the author of an early printed cookbook, The Closet of the Eminently Learned Sir Kenelme Digbie Kt. Opened (H. Brome, London, 1669).

Source: Wikimedia Commons

Born 11 June in Gayhurst, Buckinghamshire, in 1603 into a family of landed gentry noted for their nonconformity, he, as we will see, lived up to the family reputation. His grandfather Everard Digby (born c. 1550) was a Neoplatonist philosopher in the style of Ficino, and fellow of St John’s College Cambridge, (Fellow 1573, MA 1574, expelled 1587), who authored a book that suggested a systematic classification of the sciences in a treatise against Petrus Ramus, De Duplici methodo libri duo, unicam P. Rami methodum refutantes, (Henry Bynneman, London, 1580, and what is considered the first English book on swimming, De arte natandi, (Thomas Dawson, London, 1587). The latter was published in Latin but translated into English by Christopher Middleton eight years later. 

Source: Wikimedia Commons
Source: Wikimedia Commons

His father Sir Everard Digby (c. 1578–1606) and his mother Mary Mulsho of Gayhurst were both born Protestant but converted to Catholicism.

Sir Everad Digby artist unknown Source: Wikimedia Commons

His father was executed in 1606 for his part in the Gunpowder Plot and Kenelm was taken from his mother and made a ward first of Archbishop Laud (1573–1645) and later of his uncle Sir John Digby (1508-1653), who took him on a sixth month trip (August 1617–April 1618) to Madrid in Spain, where he was serving as ambassador.

Sir John Digby portrait by Cornelis Janssens van Ceulen Source: Wikimedia Commons

Returning from Spain, the fifteen-year-old Kenelm entered Gloucester Hall Oxford, where he came under the influence of Thomas Allen (1542–1632).

Thomas Allen by James Bretherton, etching, late 18th century Source: wikimedia Commons

 Thomas Allen was a noted mathematician, astrologer, geographer, antiquary, historian, and book collector. He was connected to the circle of scholars around Henry Percy, Earl of Northumberland (1564–1632), the so-called Wizard Earl, through whom he became a close associate of Thomas Harriot (c. 1560–1621). Through another of his patrons Robert Dudley, Early of Leicester, (1532–1588) Allen also became an associate of John Dee (1527–c. 1608). Allen had a major influence on Digby, and they became close friends. When he died, Allen left his book collection to Digby in his will: 

… to Sir Kenelm Digby, knight, my noble friend, all my manuscripts and what other of my books he … may take a liking unto, excepting some such of my books that I shall dispose of to some of my friends at the direction of my executor.

Digby donated this very important collection of at least 250 items, which contained manuscripts by Roger Bacon, Robert Grosseteste, Richard Wallinford, amongst many others to the Bodleian Library.

Digby left Oxford without a degree in 1620, not unusual for a member of the gentry, and took off on a three-year Grand Tour of the continental. In France Maria de Medici (1575–1642) is said to have cast an eye on the handsome young Englishman, who faked his own death and fled France to escape her clutches. In Italy he became accomplished in the art of fencing. In 1623 he re-joined his uncle in Madrid, this time for a nearly a year and became embroiled in the unsuccessful negotiations to arrange a marriage between Prince Charles and the Infanta Maria. Despite the failure of this mission, when he returned to England in 1623, the twenty-year-old Kenelm was knighted by James the VI &I and appointed a Gentleman to Prince Charles Privy Chamber at the time converting to Anglicanism. In 1625 he secretly married his childhood sweetheart Venetia Stanley (1600–1633). They had two sons Kenelm (1626) and John (1627) before the marriage was made public. 

Venetia, Lady Digby by Anthony van Dyck Source: Wikimedia Commons

Out of favour with Buckingham, Digby now became the swashbuckler of the title. Fitting out two ships, the 400-ton Eagle under his command and the 250-ton Barque under the command of Sir Edward Stradling (1600–1644), he set off for the Mediterranean to tackle the problem of French and Venetian pirates, as a privateer, a pirate sanctioned by the crown.

Arbella, previously the Eagle Digby’s flagship

Capturing several Flemish and Dutch prize on route, on 11 June 1628 they attacked the French and Egyptian ships in the bay of Scanerdoon, the English name for the Turkish port of Iskender. Successful in the hard-fought battle, Digby returned to England with both ships loaded down with the spoils, in February 1629, where he was greeted by both the King and the general public as a hero. He was appointed a naval administrator and later Governor of Trinity House. 

The next few years were spent in England as a family man surrounded by a circle of friends that included the poet and playwright Ben Johnson (1572–1637), the artist Anthony van Dyck (1599–1641), the jurist and antiquary John Seldon (1584–1654), and the historian Edward Hyde (1609–1674) amongst many others. Digby’s circle of friends emphasises his own scholarly polymathic interests. His wife Venetia, a notable society beauty, died unexpectedly in 1633 and Digby commissioned a deathbed portrait and from van Dyck and a eulogy by Ben Johnson, now partially lost. 

Venetia Stanley on her Death Bed by Anthony van Dyck, 1633, Dulwich Picture Gallery Source: Wikimedia Commons

Digby stricken by grief entered a period of deep mourning, secluding himself in Gresham College, where he constructed a chemical laboratory together with the Hungarian alchemist and metallurgist János Bánfihunyadi (Latin, Johannes Banfi Hunyades) (1576–1646), where they conducted botanical experiments. 

In 1634, having converted back to Catholicism he moved to France, where he became a close associate of René Descartes (1596–1650). He returned to England in 1639 and became a confidant of Queen Henrietta Maria (1609–1669) and becoming embroiled in her pro-Catholic politics made it advisable for him to return to France.

Henrietta Maria portrait by Anthony van Dyck Source: Wikimedia Commons

Here he fought a duel against the French noble man Mont le Ros, who had insulted King Charles, and killed him. The French King pardoned him, but he was forced to flee back to England via Flanders in 1642. Here he was thrown into goal, however his popularity meant that he was released again in 1643 and banished, so he returned to France, where he remained for the duration of the Civil War.

Henrietta Maria established a court in exile in Paris in 1644 and Digby was appointed her chancellor. In this capacity he undertook diplomatic missions on her behalf to the Pope. Henrietta Maria’s court was a major centre for philosophical debates with William Cavendish, the Earl of Newcastle, his brother Charles both enthusiastic supporters of the new sciences, William’s second wife Margaret Lucas, who had been one of Henrietta Maria’s chamber maids and would go on to great notoriety as Margaret Cavendish prominent female philosopher, Thomas Hobbes, and from the French side, Descartes, Pierre Gassendi (1592–1655), Pierre Fermat (1607–1665), and Marin Mersenne. Digby was in his element in this society.

Margaret Cavendish and her husband, William Cavendish, 1st Duke of Newcastle-upon-Tyne portrait by Gonzales Coques Source: Wikimedia Commons

After unsuccessfully trying to return to England in 1649, in 1653, he was granted leave to return, perhaps surprisingly he became an associate of Cromwell, whom he tried, unsuccessfully, to win for the Catholic cause. He spent 1657 in Montpellier to recuperate, but returned to England in 1658, where he remained until his death. 

He now became friends with John Wallis (1616–1703), Robert Hooke (1635–1703), and Robert Boyle (1627–1691) and was heavily involved in the moves to form a scientific society, which would lead to the establishment of the Royal Society of which he was a founder member. On 23 January 1660/61 he read his paper A discourse concerning the vegetation of plants before the founding members of the Royal Society at Gresham College, which was the first formal publication to be authorised by that still unnamed body. The Discourse would prove to be his last publications, as his health declined, and he died in 1665.

Source: Wikimedia Commons

Up till now the Discourse is the only publication that I’ve mentioned, but it was by no means his only one. Digby was a true polymath publishing works on religion, A Conference with a Lady about choice of a Religion(1638), Letters… Concerning Religion (1651), A Discourse, Concerning Infallibility in Religion (1652). Autobiographical writings including, Articles of Agreement Made Betweene the French King and those of Rochell… Also a Relation of a brave and resolute Sea Fight, made by Sr. Kenelam Digby (1628), and Sr. Kenelme Digbyes honour maintained (1641). Critical writings on Sir Thomas Browne, Observations upon Religio Medici (1642), and on Edmund Spencer, Observations on the 22. Stanza in the 9th Canto of the 2d. Book of Spencers Faery Queen (1643). 

What, however, interests us here are his “scientific” writings. The most extensive of these is his Two Treatises, in One of which, the Nature of Bodies; in the Other, the Nature of Mans Soule, is looked into: in way of discovery, of the Immortality of Reasonable Soules originally published in Paris in 1644 but with further editions published in London in 1645, 1658, 1665, and 1669. Although basically still Aristotelian, this work shows the strong influence of Descartes and contains a positive assessment of Galileo’s Two New Sciences, which was still relatively unknown in England at the time. It also contains a form of mechanical atomism, which, however, is different to those of Epicure or Descartes.


Digby’s most controversial work was his A late discourse made in solemne assembly … touching the cure of wounds by the powder of sympathy, originally published in French in 1658 and then translated into English in the same year. This was a discourse that Digby had held publicly in Montpellier during his recuperation there.


This was a variation on Weapon Salve, an ointment that was applied to the weapon that caused a wound rather than to the wound itself. Digby was by no means the first to write positively about this supposed cure. It has its origins in the theories of Paracelsus and the Paracelsian physician Rudolph Goclenius the Younger (1572–1621), professor at the University of Marburg, first published on it in his Oratio Qua defenditur Vulnus Non Applicato Etiam Remedio, in 1608. In England the divine William Forster (born 1591), the physician and alchemist Robert Fludd (1574–1637), and the philosopher Francis Bacon (1561–1626) all wrote about it before Digby, but it was Digby’s account that attracted the most attention and ridicule. In 1687, an anonymous pamphlet suggested using it to determine longitude. A dog would be wounded with a blade and placed aboard a ship before it sailed. Then every day at noon the weapon salve would be applied to the blade causing the dog to react, thus tell those on board that it was noon at their point of departure. 

Also in 1658, John Wallis dedicated his Commercium epistolicum to Digby who was also author of some of the letters it contained.

John Wallis by Sir Godfrey Kneller Source: Wikimedia Commons

In 1657, Wallis had published his Arithmetica Infinitorum, an important contribution to the development of calculus.


Digby brought the book to the attention of Pierre Fermat and Bernard Frénicle de Bessy (c. 1604 – 1674) in France, Fermat wrote a letter to the English mathematician, posing a series of problems to be solved. Wallis and William Brouncker (1620–1684), who would later become the first president of the Royal Society, took up the challenge and an enthusiastic exchange of views developed between the French and English mathematicians, with Digby acting as conduit for the correspondence. Wallis collected the letter together and published them as his Commercium epistolicum

As already stated, A discourse concerning the vegetation of plants was Digby’s final publication and was to some extent his most interesting. Digby was interested in the question of how to revive dying plants and his approach was basically alchemical. He argued that saltpetre was necessary to the process of revival and that it attracted vital air, which is the food of the lungs. He is very obviously here close to discovering oxygen and in fact he supports his argument with the information that Cornelius Drebbel had used saltpetre to refresh the air in his submarine. In the paper he also hypothesises something very close to photosynthesis. Others such as Jan Baptist van Helmont (1580–1644) were conducting similar investigations at the time. These early investigations would lead on in the eighteenth century to the work of Stephen Hales (1677–1761) and the pneumatic chemists of the eighteenth century. 

Digby made no major contributions to the advancement of science, but he played a central role as facilitator and mediator between groups of philosophers, mathematicians, and scientists promoting and stimulating discussions in both France and England in the first half of the seventeenth century. He also played an important role in raising the awareness in England of the works of Descartes and Galileo. Although largely forgotten today, he was in his own time a respected member of the scientific community.

Digby is best remembered, today, for two things, his paper on the powder of sympathy, which I dealt with above, and his cookbook, to which I will now return. The Closet of the Eminently Learned Sir Kenelme Digbie Kt. Opened was first published posthumously by one of his servants in 1669 and has gone through numerous editions down to the present day, where it is regarded as a very important text on Early Modern food history. However, this was only one part of his voluminous recipe collection. Two other parts were also published posthumously. Choice and experimental receipts in physick and chirugery was first published in 1668 and went through numerous editions and translation by 1700, and A choice collection of rare chymical secrets and experiments in philosophy first published in 1682, which also saw many editions. What we have here is not three separate recipe collections covering respectively nutrition, medicine, and alchemy but three elements of a related recipe spectrum. We find a similar convolute in the work of Katherine Jones, Viscountess Ranelagh (1615–1691), Robert Boyle’s sister, an alchemist/chemist in her own right and an acquaintance of Digby’s. 

There is little doubt in my mind that Sir Kenelm Digby Kt. was one of the most fascinating figures of the seventeenth century, a century rich in fascinating figures. 

As was also believed when he died on his birthday in 1665, his epitaph read

‘Under this Tomb the Matchless Digby lies;

Digby the Great, the Valiant, and the Wise:

The Ages Wonder for His Nobel Parts;

Skill’d in Six Tongues, and Learn’d in All the Arts.

Born on the Day He Dy’d, Th’Eleventh of June,

And that Day Bravely Fought at Scanderoun.

‘Tis Rare, that one and the same Day should be

His Day of Birth, of Death, and Victory.’


Filed under History of Alchemy, History of Chemistry, History of Mathematics, History of science

Renaissance science – XXXVI

As I have sketched in recent episodes of this series, the adoption of materia medica into the curriculum for medical studies at the Renaissance universities, led fairly rapidly to an empirical turn in the study of simples (i.e., medical herbs) and over time the study of plants in general. Initially, this consisted largely of going out into nature and observing growing plants in their natural habitat and recording those observations. At first just individual physicians acquiring knowledge for themselves and their teaching and then later taking the students out on field trips and doing the teaching on the growing plants rather than in the lecture halls. Academics very soon took the next natural step and began collecting plants within the universities as teaching and research material. At first, in the form of living plants in the newly created university botanical gardens, modelled on the earlier monastic medical herb gardens. The next step was dried plants collected in herbaria, to provide study and teaching material, when the living plants were not available in winter etc. The final step was to transfer the newly acquired empirical knowledge onto the printed page in a new generation of herbals containing both illustrations and verbal descripts of the plants together with instructions in their usage. 

These collections of plants–living, dried, printed–all had one limiting factor in common, their scope.  If you restricted your botanical excursions or field trips, commonly called botanising or herborizing, to what could be reached by foot in a day, a weekend or even a week, then your plant collections are going to be by definition local. However, the botanical physicians of the sixteenth century were very much interested in extending their plant collection beyond, in fact well beyond, the local. How could they achieve this? The first possibility, and one that was indeed utilised, was travel. Longer journeys, beyond the local radius, to go botanising in other areas, other regions and this is exactly what some of those Renaissance botanical physicians did. 

Perhaps, the most extreme example of the roving Renaissance botanist was Charles de l’Écluse, L’Escluse (1526–1609), better known under his nom de plume Carolus Clusius, who during his lifetime travelled extensively throughout Europe, studying the local flora wherever he went.

Portrait attributed to Jacob de Monte Source: Wikimedia Commons

In the 1560s, Employed by the Augsburger banking dynasty, the Fuggers, as a tutor to one of the sons of Aton Fugger (1493–1560), he undertook a plant collecting expedition to Spain, which resulted in his,  Rariorum alioquot stirpium per Hispanias observatarum historia: libris duobus expressas, published by Christoph Plantin in Antwerp in 1576. Whilst in Spain, he also took the opportunity to question those travellers returning from the Americas about the flora of the New World. 

Anton Fugger portrait by Hans Maler zu Schwaz (1480/1488–1526/1529) Source: Wikimedia Commons

In 1573, he was appointed director of the imperial botanical garden in Vienna by Emperor Maximilian II. Here, he used the opportunity to carry out an extensive survey of the flora of Austria. This included ascents of the Ötscher and Schneeberg mountains in Lower Austria in order to study their botany. This knowledge flowed into his Caroli Clusii Atrebatis Rariorum aliquot stirpium: per Pannoniam, Austriam, & vicinas quasdam provincias observatarum historia, quatuor libris expressa also published by Christoph Plantin in 1583. Pannonia is the Roman name for the western part of Hungary

Maximilian II portrait by Nicolas Neufchatel Source: Wikimedia Commons

He continued his botanical surveys in the area around Frankfurt am Main, where he resided from 1587 to 1593, then he was appointed professor of botany at the University of Leiden, where he established the Hortus Botanicus, the oldest botanical garden in the Netherlands.

Hortus Botanicus Leiden in 1610. Print by Jan Cornelisz. Woudanus and Willem Isaacsz. van Swanenburg. Source: Wikimedia Commons

As well as his longer periods in Spain, Austria, and Frankfurt, Clusius also travelled extensively throughout Europe observing and collecting botanical data wherever he went. He travelled to England four times: 

Rarer but important were long-distant journeys to visit colleagues. Often, combined with herborizing, such trips could take weeks or months. Clusius, ever the restless soul, made four trips to England in the course of his career–twon in 1579 and 1580, when he was residing in Vienna. On the second, he had originally planned to go only as far as the Netherlands, but on learning that Francis Drake’s expedition had returned to Plymouth after circumnavigating the world, he took ship across the Channel to meet the explorer and his crew. In his Exoticorum libri (1605), Clusius described many of the objects he had acquired on that trip, including a root that he named after Drake. En route, he visited friends, colleagues, and patrons, including Wilhelm, Landgrave of Hessen, noted for his interest in the observational sciences.[1]

In terms of his wanderings, Clusius, whilst, here given as an example of the travelling botanist, is exceptional, other physicians and proto-botanists also travelled throughout Europe and also further afield, observing and recording the flora in the regions that they passed through. They transmitted the information that they thus acquired to other interested colleagues throughout Europe by publication or by correspondence. The latter brings us to the other widespread method of acquiring botanical knowledge from outside of your own locality, the botanical Republic of Letters. 

There were no scientific societies or scientific institutions other than the universities but the herborizing and botanising physicians, apothecaries and fellow travellers formed a Europa wide community via their republica literaria. In the first instance this referred to those who had published on materia medica, herbals or other botanical works but it also referred to the extensive exchange of letters between these practitioners. Returning to Clusius, as well as being a constant traveller, was also an inexhaustive letter writer corresponding with fellow botanists all over Europe and beyond. His surviving correspondence numbers about 1500 letters from 320 correspondents in six languages between 1560 and 1609. 

Clusius was by no means unique in the scope of his correspondence. Conrad Gessner (1516–1565), who was one of Clusius’ correspondents, had an even bigger circle of correspondents, who supplied much of the natural history information that landed in his publications. Many others we have encountered, including Felix Platter (!536–1614) and Joachim Camerarius the Younger (1534–1598) had large correspondence circles. As in other areas of the Republic of Letters, recipients of letters often passed on the information that they contained to their own circle of correspondents and also locally by word of mouth. Interestingly, the students of medicine, from all over Europe, studying at the major university medical faculties in Norther Italy, Montpellier and later Leiden, often acted as postal couriers carrying letters and packages in both direction between hometowns and universities. Through these exchanges the newly acquired botanical knowledge permeated the whole of Europe.

As well as illustrations and verbal descriptions the postal missives often contained herbaria, seeds, bulbs, or even complete plants thus enabling botanists to extend their public and private botanical gardens beyond the local. Clusius notoriously commissioned imperial representatives in Constantinople to supply him bulbs for his imperial botanical garden in Vienna.

Gessner described tulips flowering in the garden of Heinrich Herwart in 1559. However, it was Clusius, who having planted tulips in the imperial botanical garden in Vienna in 1573, who published the first major work on tulips in 1592, planting them in the Hortus Botanicus in Leiden in 1593. This was the start of the tulip mania, which culminated in the massive financial crash in the tulip market in 1640.

A tulip, known as “the Viceroy” (viseroij), displayed in the 1637 Dutch catalogue Verzameling van een Meenigte Tulipaanen. Its bulb was offered for sale for between 3,000 and 4,200 guilders (florins) depending on weight (gewooge). A skilled craftsworker at the time earned about 300 guilders a year Source: Wikimedia Commons

This notorious episode is symptomatic of a change in the botanical Republic of Letters at the end of the sixteenth century and beginning of the seventeenth century. Throughout the sixteenth century the exchange of seeds, bulbs, and plants was carried out on the basis of friendship and common interest, without money being involved, By the turn of the century a flourishing commercial market in plants and flowers had begun to develop throughout Europe of which the tulip mania was the most extreme development.

[1] Brian W. Ogilvie, The Science of DescribingNatural History in Renaissance Europe, University of Chicago Press, Chicago and London, 2006, ppb 2008, p. 77

Leave a comment

Filed under History of botany, History of medicine, Renaissance Science

Around the World in One Thousand and Eighty-three Days 

Growing up in the UK in the 1950s, history lessons in primary school, that’s elementary school for Americans, still consisted to a large extent of a glorification of the rapidly fading British Empire. The classroom globes were still covered in swathes of pink and there, at least, the sun never set on the empire that was. Another popular theme, in this collection of fairy tales and myths, was the great period of European exploration and discovery in the Early Modern Period, in which Columbus, Vasco da Gama and Magellan were presented as larger than life, heroic, visionary adventurers, who respectively discovered America, became the first European to sail to India, and, perhaps the greatest achievement of all, circumnavigated the globe. 

At grammar school history became modern European history–Napoleon, Vienna Conference, Franco-Prussian War, unification of German, First World War, rise of Fascism and Hitler, and Second World War–my generation was after all born in and grew up in the aftermath of WWII. The “heroes” of the so-called age of discovery faded into the background, becoming nothing more than a handful of half-remembered facts–1492 Columbus sailed the ocean blue. Somewhere down the line those early tales of daring do became tarnished by inconvenient facts, such as the information that the Vikings almost certainly got to America before Columbus or that Vasco da Gama only managed to sail from Africa to India because he employed a local navigator, who knew how to get there. On the whole it was not a topic that particularly interested me in the early part of my adult life. As far as history went, it didn’t seem to me at that time to be part of the history of mathematics, boy was I wrong on that, so I largely ignored it. 

However, I was aware of the gradual dethroning of Columbus, who having been appointed governor by the Spanish Crown of the islands he had discovered was later stripped of his title because of incompetence and brutality towards the indigenous population. Also, that de Gama had had to use military force to persuade the Indians to trade with him. These men were not the saints they had been painted as in my youth. However, through it all Magellan remained a heroic role model, the first man to circumnavigate the globe. 

I first became more interested in more detail about the so-called age of discovery about fifteen years ago when I became aware that the Renaissance mathematici, who now occupied a large part of my historical activities, were not mathematicians in anything like the modern sense of the word but were, as the English term has it, mathematical practitioners. That is, that they were actively engage in particle mathematics, not to be confused with the modern term applied mathematics, which included navigation and map making, as well as the design and production of mathematical instruments for navigation, surveying, and cartography. All of these activities have, of course, a direct and important connection to those voyages of discovery. This was brought home to me when I discovered that one of my favourite mathematici, the Nürnberger Johannes Schöner (1477–1547 most well known as a pioneer in the production of printed globes, had probably produced a terrestrial globe in 1523 displaying Magellan’s circumnavigation. As I wrote in a blog post from 2010:

So, what does all of this have to do with Magellan and the first circumnavigation? As Schöner was in Kirchehrenbach in his banishment he tried to curry favour with his Bishop in that he dedicated his newest terrestrial globe to him, produced in 1523 this globe featured the route of Magellan’s circumnavigation only one year after those 18 seamen struggled back to Spain. At least we think he did! The accompanying cosmographia for the globe exists but none of the globes has survived the ravages of time. How did Schöner manage to transfer the knowledge of this epic voyage so quickly into a printed globe? In this day and age where the news of Ms Watson’s achievement is blasted around the globe in all form of media within seconds of her landfall, we tend to forget that such news sometimes took years to permeate through Europe in the 16th century. At the instigation of Cardinal Matthäus Lang a great sponsor of science in this age Maximilianus Transylvanus interviewed the survivors in Spain and published his account of the voyage in 1523 and it was this account, which Schöner, who made sure to always acquire the latest travel reports through a network of contacts, used to make his globe. I said that none of his Magellan globes have survived but there is a set of globe gores in New York that appear to be those of Schöner’s 1523 globe. Globes were printed on gores, these are strips of paper shaped like segments of an orange that were then glued on to a papier mâché sphere and coloured by hand. The set of gores in New York have Schöner’s cartographical style and Magellan’s route printed on them and although there are some dissenting voices, in general the experts think that they are Schöner’s original.

Included in this quote in the information that only a very small number of the 237 seamen, who set out on this much acclaimed voyage actually made it back to Spain, and only one of the original five ships. Moreover, Magellan was not amongst the survivors having been killed in an imperial attack on indigenous natives on the island of Mactan, who refused to accept the authority of the king of Spain. I had personally garnered this information somewhere down the line.

I became increasingly interested in the mathematical aspects of the so-called age of discovery and became embroiled in an Internet debate on the naming of America with a famous, British pop historian, who was erroneously claiming that it was far more likely that America was named after the Welsh merchant, Richard Ap Meric, an investor in John Cabot’s voyages of discovery, than after Amerigo Vespucci. Being well aware of the reasons why Waldseemüller and Ringmann had named America after Vespucci on their 1507 map of the world, I wrote a long blog post challenging this twaddle. 

As part of my study of this piece of history I acquired my first book by historian extraordinary of exploration, Felipe Fernández-Armesto, his excellent biography of Vespucci, AmerigoThe Man who Gave His Name to America.[1] This was quickly followed by his equally good biography of Columbus,[2] and somewhat later by his PathfindersA Global History of Exploration.[3] So, when it was announced that Felipe Fernández-Armesto’s latest book, he’s incredibly prolific, was to be a biography of Magellan, I immediately ordered a copy and this blog post is a review of  his STRAITSBeyond the myth of Magellan.[4]

I will start by saying that Fernández-Armesto does not disappoint, and this biography of the man and his infamous voyage is up to his usual very high standards. If you have a serious interest in the topic, then this is definitely a book you should read. Although this is a trade book rather than an academic tome, Fernández-Armesto has scrupulously researched his topic and all of the book’s statements and claims are backed up by detailed endnotes. While we are by the apparatus the book also has an extensive and very comprehensive index but no general bibliography. This is one of several new books that I have without a general bibliography, meaning that if you become interested in a referenced volume and it’s not the first reference, then you have to plough your way back through the endnotes, desperately searching for that all important first reference, which contains the details that you require to actually find the book. Staying briefly with the general description, each chapter has a frontispiece consisting of a contemporary print with a detailed descriptions that related to the following chapter. There are also five grey tone maps scattered throughout the book showing places referred to in the narrative.

One thing that Fernández-Armesto makes very clear throughout his book is that the sources for actual hard information about Magellan are very thin and those that do exist are often contradictory. Because he very carefully qualifies his statements concerning Magellan, weighing up the sources and explaining why he believes the one version rather than the other, this makes the book, whilst not a hard read, shall we say a very intense read. Put another way, Fernández-Armesto doesn’t present his readers with a smooth novel like narrative, lulling them into thinking that we know more than we do, but shows the reader how the historian is forced to construct their narrative despite inadequate sources. This is a lesson that other trade book authors could learn.

The central myth of the Magellan story that Fernández-Armesto tackles in his book is that of the inspirational figure, who set out to circumnavigate the world. Not only did Magellan personally fail to do so, a fact that is so often swept under the carpet in the simple claim that he was the first man to do so, but that he in fact never had the intention of doing so. 

In the somewhat less than first half of his book Fernández-Armesto takes the reader through the details of what we know about Magellan’s life before that infamous voyage. His origins, his life and education on the Portuguese court, his service for the Portuguese Crown both as a seaman and a soldier. His reasons for leaving Portugal and moving to Spain, where he offered his services to the Spanish Crown instead. All of this leads up to his plans for that voyage and the motivation behind it. His intended aim was not to sail around the world but to find a passage through the Americas from the Atlantic to the Pacific, or Southern Sea, as it was generally known then, and then to sail across the Pacific to the Moluccas (Spice Islands), today known as the Maluka Islands, and hopefully demonstrate that they lay in the Spanish half of the globe, as designated by the Pope’s Tordesillas Treaty. Having done so to then return to Spain by the same route. Nobody actually knew in which half of the globe the Moluccas lay, as the treaty only specified the demarcation line or meridian in the Atlantic and it was not known where the anti-meridian lay in the Pacific, which in general everybody, including Magellan, thought was much smaller than it actually is.

Due to the uncertainties that this plan, was there even a passage through the Americas joining the two oceans, was it possible to cross the Pacific by ship, did the Moluccas actually lay within the Spanish hemisphere, the negotiations to set up the voyage and the persuade the Spanish Crown to finance it were tough and complex and Fernández-Armesto takes the reader through them step by step. Having succeeded, we then set sail with Magellan on a voyage that was an unmitigated disaster every single sea mile of the way.

The somewhat more than second half of Fernández-Armesto’s narrative is a detailed account, as far as it is possible to reconstruct it, of what might be described, with only slight exaggeration, as the voyage to hell and back with long periods in purgatory. Possibly the only thing that is admirable about Magellan and the voyage is his tenacity in the constant face of doom and disaster, although that tenacity takes on more and more maniacal traits as the voyage proceeds.

Fernández-Armesto’s biography of the man and his voyage is a total demolition of the myths that have been created and propagated over the last five centuries, leaving no trace of valour, heroism, or gallant endeavour. The voyage was an unmitigated disaster perpetrated by a ruthless, driven monomaniac. At the end of his excellent tome Fernández-Armesto illustrates how the myth of Magellan and his circumnavigation was put into the world, starting almost as soon as the Victoria, the only one of the five ships to complete the circumnavigations, docked in Spain more than a thousand days after it set sail with only a handful of the crews that started that voyage. Fernández-Armesto also list some of the myriad of organisations, objects, institutes, prizes etc. that proudly bear Magellan’s name, his attitude to all this being summed up perhaps by his comment on the Order of Magellan awarded by the Circumnavigators Club of New York:

Though it seems astonishing that an award for “world understanding should be named for a failed conqueror who burned villages ad coerced and killed people. (p. 277)

As a final comment on this possibly definitive biography, I learnt in reading this book that the early explorers, Columbus, da Gamma, Magellan et al identified both themselves and their endeavours with the heroic knights in the medieval tales of chivalry and romance, riding their ships out on quests of discovery that would bring the fame, fortune, and honour. Magellan’s quest was about as far removed from this image as it was possible to get. 

[1] Felipe Fernández-Armesto, AmerigoThe Man who Gave His Name to America, Weidenfeld & Nicolson, London, 2006.

[2] Felipe Fernández-Armesto, Columbus, OUP, Oxford & London, 1991, ppb Duckworth, London, 1996

[3] Felipe Fernández-Armesto, PathfindersA Global History of Exploration, W W Norton, New York, 2006, ppb 2007

[4] Felipe Fernández-Armesto, STRAITSBeyond the myth of Magellan, Bloomsbury, London, Oxford, New York, New Delhi, Sydney, 2022


Filed under Book Reviews, History of Navigation, Renaissance Science

Is he  Moonstruck? 

Definition of moonstruck: affected by or as if by the moon: such as: mentally unbalanced

There was a total lunar eclipse on Monday 16 May. This celestial event was, of course, widely announced in advance on social media, with experts giving start and end times as well as duration. They also give detailed explanation of why, how, and when lunar eclipses take place. This meant that worldwide literally millions of people were happily, even excitedly, looking forward, weather permitting, to observing it. So, TV celebrity and aging popinjay Neil deGrasse Tyson decided to dump on all of these people when he tweeted to his 14.6 million followers the following tweet on 16 May:

Lunar eclipses are so un-spectacular that if nobody told you what was happening to the Moon you’d probably not notice at all. Just sayin’.

Ignoring, for a second, the glaring, factual inaccuracy contained in this tweet, it has to be a very serious candidate for the most mean-spirited tweet of the year if not of the decade. One has to seriously ask, why did he do this? Has he become such a desperate, attention-seeking whore that he needs to try and ruin the simple enjoyment of millions world-wide just to provoke a reaction on Twitter?

As a historian of both astronomy and astrology, I expect a man, who once upon a time in his life was an astrophysicist, not to display such ignorance, so publicly in such a spectacular manner. “Lunar eclipses are so un-spectacular…” really? “If nobody told you what was happening to the Moon you’d probably not notice at all,” only if you’ve got your head firmly entrenched in your posterior orifice.

The moon glows red over Columbus, Ohio on Sunday Source

The phenomenon of light pollution, which makes life so difficult for modern astronomers, is actually a very recent development that only became a factor in celestial observation during the course of the twentieth century. Before the eighteenth century, street lighting was confined to large towns and consisted candles or oil lamps and didn’t cause serious light pollution. Even the invention of gas street lighting in the eighteenth century, or of electric street lighting in the nineteenth had no noticeable effect on the night sky. It was first in the twentieth century with the widespread use of strong electric lighting at night that the night skies in towns and cities became so artificially bright as to obscure the night-time celestial sphere. Even then a full moon remains clearly visible for all who are not visually handicapped. 

In the millennia of human existence before the invention of street lighting, the moon was the brightest object in the sky, particularly when full, on a clear night. Lunar eclipses only occur at full moon, and if you happened to be outside in, shall we say, for example, in the eighth century CE, during full moon and the moon started to disappear finally vanishing completely behind a dark shadow, you just might happen to notice. “Just sayin’.” 

Of course, people fucking noticed! Every culture on the Earth, that existed before they discovered the scientific explanation of why lunar eclipses take place has myths, legends, and folktales to explain what happened, when the full moon suddenly started to disappear. For the Maya and the Inca in Middle America, the moon got devoured by a jaguar, which also explained the colour of the so-called blood moon. In ancient Mesopotamia, it was belived that the eclipse was the result of demons attacking the moon and that it presaged an attack upon, or even the death of the king. For the ancient Chinese a lunar eclipse was caused by a dragon biting the moon. For something they didn’t notice, people went to a lot of trouble to invent reasons to explain it.

Tyson, as per usual, doubled down on his mean-spirited tweet with a follow up:

Lunar eclipses occur on average every two or three years and are visible to all the billions of people who can see the Moon when it happens. So, contrary to what you may have been told, lunar eclipses are not rare.

Yes, Mr “I used to be an astrophysicist”, we now know the frequency of lunar eclipses, what sort of eclipse will occur, total, partial penumbral, and can predict the occurrence and duration down to the minute, but have you taken the trouble in your arrogance to ask how we acquired that knowledge? 

Tyson is one of those science communicators, who looks down his nose at the occult sciences, and if he mentions them at all, it is only to sneer at them and the gullible people who believe in them. However, it is to the Babylonian belief in astrology that we owe our original scientific knowledge of the frequency of lunar eclipses. The moon played a central role in Babylonian omen astrology and as noted above, lunar eclipses were considered to presage danger or even death to the king. Because of this, beginning in about 700 BCE the Babylonians began a series of systematic accurate observations and records of eclipses which they continued for about seven hundred years. From this accumulated data they derived the saros series an accurate predictive cycle for eclipses. To quote Wikipedia:

A series of eclipses that are separated by one saros is called a saros series. It corresponds to:

  • 6,585.321347 solar days
  • 18.029 years
  • 223 synodic months
  • 241.999 draconic months
  • 18.999 eclipse years (38 eclipse seasons)
  • 238.992 anomalistic months

The 19 eclipse years means that if there is a solar eclipse (or lunar eclipse), then after one saros a new moon will take place at the same node of the orbit of the Moon, and under these circumstances another eclipse can occur.

The saros series is still used today to predict eclipses. This is a first-class example of how science works: make observations, collect data, look for patterns, derive a law.

I could go on about full moons and lunar eclipses throughout the history of astronomy, but I think I have made my point and will just briefly mention a couple of other examples.

One of the early scientific societies, the Lunar Society of Birmingham, known popularly as The Lunatics, which included Erasmus Darwin, James Watt, Matthew Boulton, Josiah Wedgewood, and even Benjamin Franklin amongst its shifting membership over the years, derived its name from the fact that their meetings were always held at full moon, so that the members could safely find their way home. If a a lunar eclipse fell on a full moon, they would all, being amateur astronomers, have stayed at home to observe it.

As an American, one would have thought that Tyson might have mentioned one of the most famous lunar eclipse stories in history. On his fourth voyage in 1504, Columbus beached his last two remaining ships on the island of Jamaica on 25 June. The indigenous population of the island were reluctant after many months to continue feeding Columbus and his crew. He persuaded them to do so by using the ephemerides of Abraham Zacuto to predict the total lunar eclipse of 1 March 1504. 

Tyson could have used the total lunar eclipse of 16 May as a teaching moment to interest people for astronomy and its history, instead he chose to mock and ridicule those, who were looking forward to observing this celestial phenomenon. He has the cheek to call himself a science communicator, words fail me.


Filed under History of Astrology, History of Astronomy

Renaissance science – XXXV

Whether they were introducing materia medica into the medical curriculum at the universities, going out into the countryside to search for and study plants for themselves, leading students on field trips to do the same, establishing and developing botanical gardens, or creating their herbaria, the Renaissance humanist physicians in the first half of the sixteenth century always had their botanical guides from antiquity to hand. Mostly one or other edition of Dioscorides but also Theophrastus on plants, Pliny’s Historia Naturalis, and Galen’s texts on medical simples. The work of all four of these authors concentrated largely on plants growing around the Mediterranean, although they did include some medical herbs from other areas, India for example. The North Italian, Renaissance, medical humanists also started out studying the Mediterranean plants, but soon their field of study widened, as the changes they had initiated spread throughout Europe led to other medical humanists to search for and study the plants of their own local regions. This expansion became even larger as colleagues began to study and compare the plants growing in the newly discovered land in the so-called age of exploration. Reports began coming into Europe of plants growing in the Americas and Asia. These developments meant that Dioscorides et al were no longer adequate guides for the teaching of medical herbal lore and the age of the Early Modern printed herbal began. 

As already noted in an earlier episode of this series Dioscorides’ De Materia Medica, which is, of course, a herbal, was well known and widely available throughout the Middle Ages, but it was by no means the only medieval herbal. Herbal medicine was widely used throughout the Middle Ages and many monks, apothecaries, and herbalists, who utilised herbal cures, compiled their own herbals, some of which were copied and distributed amongst others. A few of these herbals were printed during the incunabula period in the second half of the fifteenth century. Many printer publishers in this early period were on the lookout for potential money earning publications and herbals certainly fit the mould.

The earliest of these was the De proprietatibus rerum of the Franciscan friar Bartholomeus Anglicus (before 1203–1272), written in the thirteenth century and printed for the first time about 1470, which went through twenty-five editions before the end of the century. This was an encyclopaedia containing a long section on trees and herbs.

De proprietatibus rerum, Lyon 1482, erste Seite (Eisenbibliothek, Schlatt) via Wikipedia Commons

This was followed by the herbal of Apuleius Platonicus, also known as Pseudo-Apuleius, about whom almost nothing is known, but it is assumed he probably wrote his herbal the Herbarium Apuleii Platonici in the fifth century; the oldest known manuscript dates from the sixth century. It is a derivative text based on Dioscorides and Pliny. It is a much shorter and simpler herbal than Dioscorides, but was immensely popular throughout the Middle Ages, existing in many manuscripts. The first printed edition appeared in Rome in 1481. 

Herbarium Apuleii Platonici Print Rome 1481. Plantago, Arnoglossa Source: Wikimedia Commons
Herbarium Apuleii Platonici  Print Rome 1481. Dracontea Source: Wikimedia Commons

Shortly after the Herbarium Apuleii Platonici, three other medieval herbals were printed and published in Mainz in Germany. The Latin Herbarius (1484), and the Herbarius zu Teutsch or German Herbarius (1485), which evolved into the Hortus or Ortus sanitates (1491).

Fruits of Paradise. Hortus sanitatis 1491 Source: Wikimedia Commons

These herbals probably date back to the Early Medieval Period but unlike the Herbarium Apuleii Platonici there is no hard proof for this. All three books went through numerous editions under various titles in various languages. In England the first printed herbal was by Rycharde Banckes in which the title page begins Here begynneth a newe mater, the whiche sheweth and treateth of ye vertues and proprytes of herbes, the which is called an Herball, which appeared in 1525.

Bankes Herbal Source

It had no illustrations. This was followed by the more successful The grete herbal, printed by Peter Treveris in 1526 and then again in 1529. Many of the illustrations were taken from the French Le Grant Herbier, but which originated in the Herbarius zu Teutsch, continuing an old process of copying illustrations from earlier books, which as we will see continued with the new Renaissance herbals to which we now turn.


Whereas the printed medieval herbals were largely derived from the works of Dioscorides and Pliny, the Renaissance humanist physicians produced new printed herbals based on new material, which they and their colleagues had collected on field trips. However, these new herbals were still based in concept on Dioscorides’ De materia medica, were medical in detail, although they gradually led towards botany as an independent discipline throughout the century.

We begin with four Germans, who are often described as “The Fathers of Botany”. The first of these was Otto Brunfels (possibly 1488–1534), a Carthusian monk, who converted to Lutheran Protestantism and became a pastor.

Otto Brunfels portrait by Hans Baldung Grien Source: Wikimedia Common

He was the nominal author of the Herbarum vivae eicones published in three volumes between 1530 and 1536 and the German version of the same, Contrafayt Kräuterbuch published in two volumes between 1532 and 1537. Both publications were published by Hans Schott in Straßburg and were illustrated by Hans Weiditz the Younger (1495–c. 1537). I said nominal author because it is thought that the initiative for the book was Schott’s centred around Weidnitz’s illustrations with Brunfels basically employed to provide the written descriptions of the plants. Weidnitz’s illustrations, drawn from nature, are excellent and set new standards in the illustration of herbals.

Nymphaea alba, also known as the European White Waterlily, White Lotus, or Nenuphar from “Herbarium Vivae Eicones” Hans Weiditz the Younger Source: Wikimedia Commons

They are, however, not matched by Brunfels’ descriptions, which are very poor quality, simply cobbled together from early descriptions.

The second of the so-called “German Fathers of Botany” was Hieronymus Bock (1498–1554), whose Latin texts were published under the name Hieronymus Tragus (Tragus is the Greek for the German bock, a male goat).

David Kandel (1546) – Kreütter Büch, (1546) a Herbal Source: Wikimedia Commons

Like Brunfels he converted from Catholicism to Lutheran Protestantism. His knowledge of plants was acquired empirically on botanical excursions. His first publication was De herbarum quarundam nomenclaturis, a tract linking Greek and Latin names to local plants, which, interestingly was published in the second volume of Brunfels’ Herbarum vivae eicones. It was also Brunfels who persuaded him to publish his own herbal. This was titled Neu Kreütterbuch and appeared in 1539. Unlike Brunfels book, Bock’s herbal had no illustration, however, his plant descriptions were excellent, setting new standards. In 1546 there was a second expanded edition with illustration by David Kandel (1520–1592).

Neu Kreütterbuch  Steinbrech David Kandel Source: Wikimedia Commons

A third expanded edition was published in 1551 of which a Latin translation, De stirpium, maxime earum, quae in Germania nostra nascuntur …, was published in 1552. All these editions were published by Wendel Rihel in Straßburg, who produced an edition without the text in 1553 and several editions after Bock’s death. 

The original German edition without illustrations had less impact that Brunfels’ herbal but after the addition of the illustrations and the Latin edition his work became successful. Bock was very innovative in that instead of listing the plants in his book in alphabetical order, he listed them in groups based on what he perceived as their similarities. An early step towards systematic classification.

The third of the German herbal authors Leonhart Fuchs (1501–1566) was the most well-known and successful of the quartet.

Leonhart Fuchs portrait by Heinrich Füllmaurer Source: Wikimedia Commons

He received his doctorate in medicine from the University of Ingolstadt in 1524. After two years of private practice followed by two as professor of medicine in Ingolstadt, he became court physician to George von Brandenburg Margrave of Ansbach. He acquired a very good reputation and was reappointed to the professorship in Ingolstadt in 1533. As a Lutheran, he was prevented from taking up the appointment and became professor for medicine in Tübingen instead in 1535, where he remained until his death despite many offers of other positions. In Tübingen he created the botanical garden. He edited a Greek edition of Galen’s work and translated both Hippocratic and Galenic medical texts. Fuchs became somewhat notorious for his bitter controversies with other medical authors and the sharpness of his invective.

Unlike Brunfels and Bock, whose herbals were based on the own empirical studiers of local German herbs, Fuchs concentrated on identifying the plants described by the classical authors, although when published his herbal included a large number of reports on local plants as well as new plants discovered in the Americas. In 1542 he published his De Historia Stirpium Commentarii Insignes (Notable commentaries on the history of plants) in Latin and Greek, it contained 512 pictures of plants, which are even more spectacular than the illustrations in Brunfels’ Herbarum vivae eicones. 

Cannabis plant from ‘De historia stirpivm commentarii insignes … ‘ Source: Wellcome Library, London. via Wikimedia Commons

In a rare innovation he named the Illustrators, Heinrich Füllmaurer and Albrecht Meyer along with the woodcutter Veit Rudolph Speckle including portraits of all three.

Portrait of the three engravers of Fuchs’ ‘de Historia….’ Credit: Wellcome Library, London. via Wikimedia Commons

A German translation New Kreüterbuch was published in 1543. Alone, during Fuch’s lifetime 39 editions of the book appeared in Dutch, French, German, Latin, and Spanish. Twenty years after his death an English edition was published.

Fuchs influence went further than the editions of his own books. The excellent illustrations in his Historia Stirpium were borrowed/pirated reused in a number of later herbals and botanical books:

The majority of the wood-engravings in Doeden’s Crūÿdeboek (1554), Turner’s New Herbal (1551-68), Lyte’s Nievve Herball (1578), Jean Bauhin’s Historia plantarum universalis (1650/1), and Schinz’s Anleitung (1774), are copied from Fuchs, or even printed from his actual wood-blocks, while use was made of his figures in the herbals of Bock, Egenolph, d’Aléchamps, Tabernaemontanus, Gerard, Nylandt, etc., and in the commentaries on Dioscorides of Amatus Lusitanus and Ruellius. It was not the large woodcuts in De Historia Stirpium (1542) which chiefly served for these borrowings, but the smaller versions of the blocjks, made for Fuchs’ octavo herbal of 1545.[1]

If Fuchs is the most well known of the so-called four German “Fathers of Botany”, then Valeriuis Cordus (1515–1544) is the least well known.

Artist unknown Source: Wikimedia Commons

His father was Euricius Cordus (1486–1535), who published his Botanologican, a guide to the empirical study of plants in 1534. Valerius can be said to have gone into the family business, studying medicine and botany under his father at the University of Marburg from the age of twelve in 1527. He graduated bachelor in 1531 and changed to the University of Leipzig, also working in the apothecary shop of his uncle Johannes Ralla (1509–1560), where he learnt pharmacology. In 1539 he changed to the University of Wittenberg, where he once again studied medicine and botany, and lectured on the De materia medica of Dioscorides. In Wittenberg he continued his studies of pharmacology in the apothecary shop of the painter Lucas Cranach the Elder (c. 1473–1553), where he wrote his Dispensatorium, a pharmacopoeia, a systematic list of medicaments. During a short visit to Nürnberg in 1542, there were strong ties between Wittenberg and Nürnberg, Cordus presented his Dispensatorium to the city council, who awarded him with 100 gulden, paid for it to be printed posthumously in 1546, as the Dispensatorium Norimbergense. It was the first officially government approved pharmacopoeia, Nürnberg being a self-governing city state. It soon became the obligatory standard throughout Germany. 

Source: Wellcome Library, London. via Wikimedia Commons

On the last of his many journeys from Wittenberg, Cordus travelled through Italy visiting Padua, Lucca, Florence, and Rome, where he died, aged just twenty-nine in 1544. When he died, he had published almost nothing, his Dispensatorium, as already stated was published posthumously as were two further important books on botany. In 1549, Conrad Gessner published the notes on his Wittenberg lectures on Dioscorides De materia medica, which had collected by his students, as Annotationes in Dioscoridis de materia medica lihros in Straßburg.


Gessner also published his Historiae stirpium libri IV (Straßburg 1561), which was followed in 1563 by his Stirpium descriptionis liber quintus. As with the other German herbals, Cordus’ books were issued in many further editions. Like Brock, Cordus rejected the alphabetic listing of the earlier herbals and in fact went much further down the road of trying to distinguish what we now call species and genus.

Not considered one of the “German Fathers of Botany”, the work of Joachim Camerarius the Younger (1534–1598) was also highly influential.

Joachim Camerarius the Younger Engraving by Bartholomaeus Kilian Source: Wikimedia Commons

Son of the famous philologist and the friend and biographer of Philip Melanchthon, Joachim Camerarius the Elder (1500–1574), he studied at Wittenberg and other universities before completing his doctorate in medicine in Bologna in 1562. Following graduation, Camerarius returned to Nürnberg where he set up as a physician practicing there for the rest of his life. Already a lifelong fan of botany, influenced by his time in North Italy he set up a botanical garden in his home city. He was a central figure in the reforms in the practice of medicine in Nürnberg similar to those I outlined in episode XXXII of this series, of which the publication and adoption of Cordus’ Dispensatorium was an important element.[2] Camerarius was also a central figure in the medical-botanical republic of letters that I will deal with in a later episode. As well as his own herbal Hortus Medicus et Philosophicus (Frankfurt/M., 1598), he published an expanded German translation of the Di Pedacio Dioscoride Anazarbeo Libri cinque Della historia, et materia medicinale tradotti in lingua volgare italiana (1554 and later editions) of Pietro Andrea Mattioli (1501–c. 1577), as Kreutterbuch deß hochgelehrten unnd weitberühmten Herrn D. Petri Andreae Matthioli : jetzt widerumb mit viel schönen neuwen Figuren, auch nützlichen Artzeneyen, und andern guten Stücken, zum andern mal auß sonderm Fleiß gemehret und verfertigt (Frankfurt, 1586).

J. Camerarius. Mattiolisches Kräuterbuch Cichorium intybus Source: Wikimedia Commons

As with the introduction of the materia medica into the university medical curriculum, the field trips, the botanical gardens, and the herbaria, which all spread out through Europe from Northern Italy, the new style herbals also spread throughout the continent during the sixteenth century.

In the Netherlands, the printer-publisher and bookseller Christophe Plantin (c. 1520–1589), who I dealt with fairly extensively in an earlier post, contributed much to the dissemination of herbals and other plant books. The first notable Flemish author was the physician and botanist Rembert Dodoens (1517–1585), who published a herbal in Dutch, his Cruydeboeck, with an emphasis on the local flora of the Netherlands, with 715 images, 515 borrowed from the Dutch edition of Fuchs’ herbal, and 200 drawn by Pieter van der Borcht the Elder (c. 1530–1608) with the blocks cut by Arnold Nicolai (fl. 1550–1596), published in Antwerp in 1554 and again in 1563.

Rembert Dodoens portrait by Theodor de Bry Source: Wikimedia Commons

Unlike Fuchs, who still listed his herbs alphabetically, Dodoens grouped his herbs according to their properties and reciprocal affinities, making his book as much a pharmacopoeia as a herbal. The Cruydeboeck was translated into French by Charles de l’Ecluse (1526–1609) in 1557, Histoire des Plantes, into English via the l’Ecluse French by Henry Lyte, A new herbal of historie of plants in 1578. Later in 1583, it was translated into Latin Stirpium historiae pemptades sex. Both the French and the Latin translations were commissioned and published by Platin. It is claimed that it was the most translated book after the bible during the late sixteenth century and in its numerous versions it remained a standard text for two hundred years.

Title page of the Crvydt-Boeck (1618 ed.) Source: Wikimedia Commons

Charles de l’Ecluse, better known as Carolus Clusius, was himself a physician and botanist, a student of Guillaume Rondelet (1507–1566) at the University of Montpellier, he became one of the leading medical botanists in Europe.

This portrait is the only known painted portrait of Clusius. It was made in 1585 when Clusius was in Vienna. Attributed to Jacob de Monte Source: Wikipedia Commons

Clusius had two great passions languages and botany. He was said to be fluent in Greek. Latin, Italian, Spanish, Portuguese, French, Flemish, and German He was also a polymath deeply knowledgeable in law, philosophy, history, cartography, zoology, minerology, numismatics, and epigraphy. In 1573, he was appointed director of the imperial botanical garden in Vienna by Maximillian II (1564–1576) but dismissed again shortly after Maximillian’s death, when Rudolph II (1576–1612) moved the imperial court to Prague. Later in his life, when he was called to the University of Leiden in 1593, he created the university’s first botanical garden. His first botanical publication was his translation into French of Dodoens’ Cruydeboeck.This was followed by a Latin translation from the Portuguese of Garcia de Orta’s Colóquios dos simples e Drogas da IndiaAromatum et simplicium aliquot medicamentorum apud Indios nascentium historia (1567) and a Latin translation from Spanish of Nicolás Monardes’  Historia medicinal delas cosas que se traen de nuestras Indias Occidentales que sirven al uso de la medicina, , De simplicibus medicamentis ex occidentali India delatis quorum in medicina usus est (1574), with a second edition (1579), both published by Plantin.His own  Rariorum alioquot stirpium per Hispanias observatarum historia: libris duobus expressas (1576), based on an expedition to Spain and Portugal followed.  Next up Rariorum aliquot stirpium, per Pannoniam, Austriam, & vicinas quasdam provincias observatarum historia, quatuor libris expressa … (1583). All of these were printed and published by Plantin. His Rariorum plantarum historia: quae accesserint, proxima pagina docebit (1601) was published by Plantin’s son-in-law Jan Moretus, who inherited the Antwerp printing house. Appended to this last publication was a Fungorum historia, the very first publication of this kind. In his publications on plants, Clusius definitely crossed the boundary from materia medica into the discipline of botany qua botany.

Title page, Rariorvm plantarvm historia Source: Wikimedia Commons
Chestnuts Source: Wikimedia Commons

The third Platin author, who made major contributions to the herbal literature was another of Guillaume Rondelet’s students from Montpellier, Mathias de l’Obel (1538–1616), a Frenchman from Lille also known as Lobilus. 

Matthias de l’Obel by Francis Delaram, print, 1615 Source: Wikimedia Commons

His Stirpium aduersaria noua… (A new notebook of plants) was originally published in London in 1571, but a much-extended edition, Plantarum seu stirpium historia…, with 1, 486 engravings in two volumes was printed and published by Plantin in 1576.

Plantarum, seu, Stirpium historia /Matthiae de l’Obel page 111 Source: Wikimedia Commons

In 1581 Plantin also published a Dutch translation of his herbal, Kruydtboek oft beschrÿuinghe van allerleye ghewassen… There is also an anonymous Stirpium seu Plantarum Icones (images of plants) published by Plantin in 1581, with a second edition in 1591, that has been attributed to Loblius but is now thought to have been together by Plantin himself from his extensive stock of plant engravings. Like others already mentioned, de l’Obel abandoned the traditional listing of the plants alphabetically and introduced a system of classification based on the character of their leaves.

The major Italian contributor to the new herbal movement in Europe was Pietro Andrea Gregorio Mattioli (1501–c. 1577),

Pietro Andrea Mattioli portrait by Moretto da Brescia Source: Wikimedia Commons

who, as already mentioned in the episode on the publication of the classical texts as printed books, produced a heavily annotated Italian translation version of Dioscorides’ De materia medica, which included descriptions of one hundred new plants, Commentarii in libros sex Pedacii Dioscoridis Anazarbei, de medica materia, which went through four editions between 1544 and 1550, published by Vincenzo Valgrisi (c. 1490– after 1572) in Venice, and selling thirty-two thousand copies by 1572.

Source: Wikimedia Commons

Mattioli’s annotations, or commentaries, were translated into translated into French (Lyon, 1561), Czech (Prague, 1562) and German (Prague, 1563). 

Another Italian botanist was Fabio Colonna (1567–1640)

Fabio Colonna artist unknown Source: Wikimedia Commons

who disappointed by the errors that he found in Dioscorides researched and wrote two herbals of his own Phytobasanos (plant touchstone), published in Naples, 1592 and Ekphrasis altera, published in Rome, 1616. Both books display a high standard in the illustrations and in the descriptions of the plants. 

Fabio Colonna, Phytobasanos Sive Plantarum Aliquot Historia Source

The main Portuguese contribution was the Coloquios dos simples, e drogas he cousas mediçinais da India by Garcia de Orta (1501–1568) published in Goa in 1563, one of the earliest European books printed in India, which as we have seen was translated into Latin by Clusius.

Statue of Garcia de Orta by Martins Correia at the Institute of Hygiene and Tropical Medicine, Lisbon Source: Wikimedia Commons
Title page of Colóquio dos Simples de Garcia de Orta. Goa, 1563. Source: Wikimedia Commons

It was the Portuguese, who brought the herbs of Asia into the European herbals in the sixteenth century, those of the newly discovered Americas were brought into Europe by the Spanish, most notably by Nicolás Monrades (1493–1588).

Nicolás Monrades Source: Wikimedia Commons

Monrades learnt about the American herbs and drugs not by visiting the Americas but by collecting information at the docks in Seville. He published the results initially in three separate parts the first two parts in 1569 and 1571 and in complete form in 1574 under the title Primera y Segunda y Tercera partes de la Historia medicinal de las cosas que se traen de nuestras Indias Occidentales que sirven en Medicina

Nicolas Monardes, Dos libros, 1565, title page Source: Wikimedia Commons

This is the book that once again Clusius translated into Latin. It was also translated into English by John Frampton, a merchant, who specialised in books on various aspects of exploration, and published under the titles The Three Books of Monardes, 1577, and Joyfull newes out of the new founde worlde, 1580. 

Nicolas Monardes, John Frampton translation Joyfull newes out of the new-found world (1596), University of Liverpool Special Collections and Archives, SPEC Fraser 567. Source

The most significant herbal produced in Switzerland didn’t become published in the sixteenth century. This was the general history of plants, Historia plantarum compiled by the polymath Conrad Gessner (1516–1565), which was still unfinished when he died.

Conrad Gesner by Tobias Stimme Source: Wikimedia Commons

It was partially published in 1750, with the first full publication being by the Swizz Government at the end of the nineteenth century. The quality of the drawings and the descriptions of the plants would have set new standards in botany if Gessner had published it during his lifetime. A student of Gessner’s, who also went on to study under Fuchs was Jean Bauhin (1541–1613).

Jean Bauhin Source: Wikimedia Commons

As a young man he became an assistant to Gessner and worked with him collecting material for his Historia plantarum. Later he decided to compile his own Historia plantarum universalis. Like his teacher he died before he could complete and publish his work. It was first published in full in three volumes in 1650/1.

Historia plantarum universalis, 1650 Source: Wikimedia Commons

Jeans younger brother Garpard (1560–1624) also set out to produce a complete catalogue of all known plants, but like Jean he never lived to see it published.

Gaspard Bauhin Source: Wikimedia Commons

In fact, unlike Jean’s Historia plantarum universalis, it was not even published posthumously. He did, however, publish sections of it during his life: Phytopinax (1596), Prodromos theatre botanici (1620,) and Pinax theatre botanici (1623). The Pinax contains a complete and methodological concordance of the names of plants, sorting out the confusing tangle of different names awarded by different authors to the same plant.

Caspar Bauhin (1623), Pinax Theatri Botanici, page 291. On this page, a number of Tithymalus species (now Euphorbia) is listed, described and provided with synonyms and references. Bauhin already used binomial names but did not consistently give all species throughout the work binomials. Source: Wikimedia Commons

This was a major step in the development of scientific botany. The work of all three Swiss authors transcends the bounds of the herbal into the science of botany.

The only notable French botanical author of the sixteenth century was Jean Ruel (1474–1537), who produced a Latin translation of Dioscorides in 1516, which served as the basis for Mattioli’s Commentarrii. He also wrote a general botanical treatise on Aristotelian lines, De Natura stirpium, published in 1536.

De natura stirpium Basel 1537. Title page Source: wikimedia Commons

One should, however, remember that the students of Guillaume Rondelet in Montpellier form a veritable who’s who of botanical authors in the sixteenth century. 

Turning finally to England the earliest herbal author was William Turner (c. 1509–1568), who during his wanderings through Europe had studied botany at the University of Bologna under Luca Ghini (1490–1556), who, as we saw in the previous episode, had a massive influence on the early development of medical botany in the early sixteenth century. Turner also knew and corresponded with Conrad Gessner and Leonhart Fuchs. Turner’s first work was his Latin, Libellus de re herbari novus (1538). In 1548, he produced his The names of herbes in Greke, Latin, Englishe, Duche, and Frenche with the common names that Herberies and Apotecaries use. His magnum opus was his A new herball, wherin are conteyned the names of herbes… published in three volumes, the first in London 1551, the first and second on Cologne in 1562, and the third together with the first and second in 1568.

llustration of Mandrake plant from William Turner’s Herbal,

It was illustrated with the pictures from Fuchs’ De Historia Stirpium Commentarii Insignes. Henry Lyte (1529?–1607),

Henry Lyte Source: Wikimedia Commons

an antiquary, published an English translation of Dodoens CruydeboeckA nievve Herball, or Historie of Plantes,…, from the French of Clusius in 1578. This included new material provided by Dodoens himself. Once again the illustration were taken largely from Fuchs. 

A page on gillofers (gillyflowers, that is, carnations and pinks), from A niewe Herball by Henry Lyte, 1578. Source: Wikimedia Commons

John Gerrard produced the most successful English herbal, his The Herball or Generall Historie of Plantes(1597), which was however, a plagiarism.

John Gerard Frontispiece of 1636 edition of Herball Source: Wikimedia Commons

A Dr Priest had been commissioned by the publisher John North to translate Dodoen’s Stirpium historiae pemptades sex into English, but he died before completing it. Gerrard took the work, completed it, and rearranged the plants according to the scheme of de l’Obel from that of Dodoens, and then published it as his own work. 

Gerrard Herball 1579 Virginia Potato

As I hope is clear from the above herbals were an important genre of books in the sixteenth century, which over time gradually evolved from books of a medical nature into the earliest works in the science of botany. 

[1] Agnes Arber, HerbalsTheir Origin and EvolutionA Chapter in the History of Botany 1470–1670, CUP; 1912, republished Hafner Publishing Company, Darien Conn., 1970, p. 70

[2] This is wonderfully described in Hannah Murphy, A New Order of Medicine: The Rise of Physicians in Reformation Nuremberg, University of Pittsburgh Press, Pittsburgh, 2019, which I reviewed here


Filed under Book History, Early Scientific Publishing, History of botany, Mediaeval Science, Natural history, Renaissance Science

Scotland’s premier topographer

For those of us, who grew up in the UK with real maps printed on paper, rather than the online digital version offered up by Google Maps, the Ordnance Survey has been delivering up ever more accurate and detailed maps of the entire British Isles since their original Principal Triangulation of Great Britain carried out between 1791 and 1853.

Principal Triangulation of Great Britain Source: Wikimedia Commons

Supplied with this cartographical richness it is easy to forget that England and Scotland once had separate mapping histories, before James VI & I[1] became monarch of both countries in 1603, and later the Act of Union in 1707, joined them together as one nation. 

Rather bizarrely, the Ptolemaic world map rediscovered in Europe in the fifteenth century but originating in the second century CE gives an at least recognisable version of England but with Scotland turned through ninety degrees, pointing to the east rather than the north. 

1482 version of the Ptolemaic map of the British Isles Source: National Library of Wales via Wikimedia Commons

The same image can be found on a world map from the eleventh century in the manuscript collection of Sir Robert Cotton (1570/1–1631). 

Detail of the 11th-century map of the world showing Britain and Ireland: Cotton MS Tiberius B V/1, f. 56v Source: British Library Medieval Manuscripts blog

The most developed of the maps of Britain drawn by the monk Matthew Paris (c. 1200–1259), also in the Cotton manuscript collection, has Scotland north of England but very strangely divided into two parts north of the Antonine Wall joined by a bridge at Stirling.

Detail of a map of Britain by Matthew Paris showing Scotland: Cotton MS Claudius D VI/1, f. 12v Source: British Library Medieval Manuscripts blog

Whereas on Matthew Paris’ map, the northern part of Scotland is only attached by the bridge at Stirling, on the Hereford Mappa mundi from c. 1300, Britain looks like a shapeless slug squashed down into the northwest corner of the map with Scotland, a separate island, floating to the north. 

Britain on the Hereford Mappa Mundi (Scotland separated left). Source

On the medieval Gough Map, the date of which is uncertain, with estimates varying between 1300 and 1430, Scotland, whilst hardly recognisable, had at least achieved its true north pointing orientation, although the map itself has east at the top. 

Gough Map Source: Wikimedia Commons

The version of Britain on the Ptolemaic, the eleventh century Cotton, and the Hereford world maps show almost no details. Matthew Paris’ map is part of a pilgrimage itinerary and shows the towns on route and very prominently the rivers but otherwise very little detail. The Gough map, like the Paris map emphasises towns rivers and route. Also compared to the Ptolemaic map, its depictions of the coastlines of England and Wales are much improved. However, its depiction of the independent kingdom of Scotland is extremely poor.

All the maps presented so far show Scotland in a much wider geographical context, part of the world or part of Britain. The oldest known existing single map of Scotland was created by John Hardyng (1378–1465) an English soldier turned chronicler, who set out to prove that the English kings had a right to rule over Scotland. As part of the fist version of his Chronicle of the history of Britain, which he presented to King Henry VI of England, in a failed attempt to instigate an invasion of Scotland, he included a strangely rectangular map of Scotland with west at the top and north to the right. 

John Hardyng’s map of Scotland: Lansdowne MS 204, ff. 226v–227r Source: British Library Medieval Manuscripts blog

As can be seen, this map contains much more detail of the Scottish towns, displaying castles and walls, as well as in two cases churches instead. 

Detail of John Hardyng’s map of Scotland, showing Glasgow, Edinburgh, Dunfermline and St Andrews: Lansdowne MS 204, f. 226v Source: British Library Medieval Manuscripts blog

The next map of Scotland was produced by the English antiquarian, cartographer, and early scholar of Anglo-Saxon and literature, Laurence Nowell (1530–c. 1570) in the mid 1560s. Around the same time he produced a pocket-sized map of Britain entitled A general description of England and Ireland with the costes adioyning for his patron Sir William Cecil, 1st Baron Burghley (1520–1598) Elizabeth I chief adviser.

William Cecil, 1st Baron Burghley portrait attributed to Marcus Gheeraerts the Younger Source: National Portrait Gallery via Wikimedia Commons

His map of Scotland, with west at the top, is much more detailed than any previous maps and bears all the visual hallmarks of comparatively modern mapmaking.  

Map of Scotland by Laurence Nowell: Cotton MS Domitian A XVIII, ff. 98v–99r Source: British Library Medieval Manuscripts blog

With Nowell we have entered the Early Modern Period and the birth of modern mapmaking in the hands of Gemma Frisius (1508–1555), who published the first account of triangulation in 1533, Abraham Ortelius (1527–1598) creator of the first modern atlas[2] in 1570, and Gerard Mercator (1512–1594) the greatest globe and mapmaker of the century. As I have already detailed in an earlier post, England lagged behind the continental developments, as in all of the mathematical disciplines. 

Burghley motivated and arranged sponsorship for other English mapmakers, which led to the publication of the first English atlas, created by Christopher Saxton (c. 1540–c. 1610), in 1579, following a survey, which took place from 1574 to 1578. Scotland was at this time still an independent country, so Saxton’s atlas only covers the counties of England and Wales.

Saxton England and Wales proof map Source: British Library

Various projects were undertaken to improve the quality of Saxton’s atlas of which, the most successful was by the John Speed (1551/2–1629), who published his The Theatre of the Empire of Great Britaine, which was dated 1611, in 1612. By now James had been sitting on the throne on both countries for nine years, however, Speed’s Theatre only contains a general map of Scotland and not detailed maps of the Scottish counties. 

John Speed’s map of Scotland

Why was this? The annotations to the facsimile edition of Speed’s Theatre give two reasons for this. Firstly, the book was originally conceived in 1590, when the two kingdoms were still independent of each other, and it was production delays that led to the later publication date, when modification to include the Scottish counties would have led to further delays. However, in our context, the mapping of Scotland, it is the second reason that is more interesting:

Secondly, Speed knew of the Scotsman Timothy Pont’s work in surveying Scotland. The have extended the Theatre to include maps for Scotland similar to those for England, Wales and Ireland would have been to duplicate Pont’s efforts, even if cartographical aspects were differently emphasised by the two men.[3]

We have now reached the title topographer of this blog post, Timothy Pont (c. 1560–c. 1614), who was he and why is there no Pont’s Atlas of Scotland?

Timothy Pont was the first person to make an almost complete topographical survey of Scotland. Unfortunately, as with many people from the Early Modern Period, we only have a sketchy outline of his life and no known portrait, in fact we know far more about his father, Robert Pont (1529–1606), a minister, judge, and reformer, an influential legal, political, and religious man, who rose to be Moderator of the General Assembly of the Church of Scotland, in 1575. Timothy was his eldest child by his first wife Catherine daughter of Masterton of Grange, with whom he had two sons and two daughters[4]. By his second wife Sarah Denholme he had one daughter and by his third wife Margaret Smith he had three sons.

In 1574 Timothy received an annual grant of church funds from his father, he matriculated at the University of St Andrews in 1508 and graduated M.A. in 1583. It was possibly at St Andrews that he learnt the art of cartography, but it is not known for certain. It is not known when he carried out his survey of Scotland. Only his map of Clydesdale contains a date, (Sept. et Octob: 1596 Descripta) and it appears he ended his travels around this time and that he began them after graduating from St Andrews.

Pont’s Map of Lanark from 1596 Source

Somewhat earlier in 1592, he had received a commission to undertake a mineral reconnaissance of Orkney and Shetland, so his activities were obviously known. In 1593 his father again supported him financially, assigning him an annuity from Edinburg Town Council.

His wanderings and topographical activities apparently terminated, in 1600 Timothy was appointed minister of the parish of Dunnet in Caithness. He is recorded as having visited Edinburg in 1605. In 1609, he applied unsuccessfully for a grant of land in the north of Ireland. There is evidence that he was still Parson of Dunnet in 1610 but in 1614 another held the post, and in 1615, Isabel Pont is recorded as his widow both facts indicating that he had died sometime between 1611 and 1614. Unfortunately, as is often the case with mapmakers in the Early Modern Period, we have no real information as to how Pont carried out his surveys or which methods he used. 

We now turn to Pont’s activities as a topographer and mapmaker. Pont never finished his original project of producing an atlas of Scotland. Only one of Pont’s maps, Lothian and Linlithgow,

Pont’s map, Lothian and Linlithgow,

was engraved during his lifetime, by Jodocus Hondius the elder in Amsterdam,

Lothian and Linlithgow engraved by Jodocus Hondius the elder in Amsterdam
Same map in Joan Blaeu’s Atlas of Scotland Source: Wikimedia commons

sometime between 1603 and 1612. However, the map, dedicated to James VI &I, was first published in the Hondius-Mercator Atlas in 1630. In a letter from 1629, Charles I wrote in a letter that his father had intended to financially support Pont’s project and granted the antiquarian Sir James Balfour of Denmilne (1600-1657), the Lord Lyon King-of-Arms, who had acquired the maps from Pont’s heirs, money to plan the publication of the maps. 

Sir James Balfour artist unknown Source: (c) National Galleries of Scotland; Supplied by The Public Catalogue Foundation via Wikimedia Commons

At this point Sir John Scot, Lord Scotstarvit (1585-1670) entered the story. Already a correspondent of Willem (1571–1638) and Joan Blaeu (1596–1679), of the Amsterdam cartographical publishing House of Blaeu, he informed them of Balfour’s acquisition of Pont’s topographical survey of Scotland, Willem Blaeu having already asked Scot about maps of Scotland in 1626. Through Scot’s offices Pont’s maps made their way to Amsterdam. What then followed is briefly described by Joan Blaeu in his Atlas Novus in 1654.

Scot collected them and other maps and sent them over to me but much torn and defaced. I brought them into order and sometimes divided a single map. into several parts. After this Robert and James Gordon gave this work the finishing touches. and added thereto, besides the corrections in Timothy Pont’s maps, a few maps of their own.

Robert Gordon of Straloch (1580–1661) and his son James Gordon of Rothiemay (c. 1615–1686) were Scottish mapmakers, who obviously played a central role in preparing Pont’s maps for publication.

Source: National Portrait Gallery

Robert was called upon to undertake this work by Charles I in a letter from 1641; Charles entreated him “to reveis the saidis cairtiss”. Acts of parliament exempted him from military service, whilst he undertook this task and the General Assembly of the Church of Scotland published a request to the clergy, to afford him assistance. 

The exact nature of the role undertaken by Robert and James Gordon in the revision of the maps is disputed amongst historians and I won’t go into that discussion here. However, following his father’s death in 1661, James preserved all of Pont’s surviving maps, along with his and his father’s own cartographical work and passed them on to the Geographer Royal to Charles II, Sir Robert Sibbald (1641–1722), in the 1680s. Sibbald’s own papers along with the Pont maps were placed in the Advocates Library following his death in 1772. The Advocates Library became the National Library of Scotland, where Pont’s maps still reside[5].

Robert Sibbald artist unknown Source: Wikimedia Commons

As already indicated above Pont’s maps formed the nucleus of Joan Blaeu’s Atlas of Scotland, the fifth volume of his Theatrum Orbis Terrarum sive Atlas Novus published in Amsterdam in Latin, French, and German in 1654.

Joan Blaeu Atlas of Scotland German title page
Caithness Blaeu’s Atlas of Scotland The parish of Dunnet where Pont was minister is in the bottom corner od the rectangular bay Source: Wikimedia Commons
Pont’s map of the area around Dunnet

This was the first atlas of Scotland, and it wasn’t really improved on in any way until the military survey of Scotland carried out by William Roy (1726–1790) between 1747 and 1755. Roy would go on to be appointed surveyor-general and his work and lobbying led to the establishment of the Ordnance Survey, whose Principal Triangulation of Great Britain, mentioned at the beginning of this post, began in 1791, one year after his death. 

My attention was first drawn to Pont’s orthographical survey of Scotland by advertising for a new permanent exhibition “Treasures of the National Library of Scotland”, which prominently features Pont’s maps, so I went looking for the story of this elusive mapmaker. 

[1] For any readers confused by James VI & I, he was James VI of Scotland and James I of England

[2] This and other uses of the term atlas here are anachronistic as Mercator first used the term in the title of his Atlas, sive cosmographicae meditationes de fabrica mundi published in 1585

[3] The Counties of BRITAIN: A Tudor Atlas by John Speed, Introduction by Nigel Nicolson, County Commentaries by Alasdair Hawkyard, Published in association with The British Library, Pavilion, London 1998, p. 265

[4] I can’t resit noting that Timothy’s youngest sister, Helen, married an Adam Blackadder!

[5] The National Library of Scotland has an extensive website devoted to Pont and his maps from which much of the information for this blog post was culled


Filed under Early Scientific Publishing, History of Cartography, Renaissance Science

Renaissance science – XXXIV

The major problem with the big names, big ideas, big books version of the history of science is that it very often overlooks many highly influential figures in the development of a science discipline. A classic example of this is the physician and botanist Luca Ghini (1490–1556). Ghini published almost nothing in his entire career but his influence on the development of the science of botany out of materia medica in the sixteenth century was immense. As we have already seen he began lecturing on simples at Bologna in 1527 and was appointed professor for simples in the academic year 1533-34. When Cosimo reopened the University of Pisa in 1543, he wooed Ghini away from Bologna to hold the chair of simples. The list of important students who received their introduction to botany in his lectures is truly impressive. It was also Ghini, who was the first to introduce the field trip to study herbs in the nature into the university curriculum. He followed this by becoming the head in Pisa of one of the first university botanical gardens. If this was all that he initiated, he would be a major figure in the history of botany but there is more. 

Luca Ghini Source: Orto botanico di Pisa – Museum via Wikimedia Commons

The major problem with excursion in nature, field trips, and even botanical gardens is that plants have growth cycles. You cannot observe a plant in bloom all the year round but only for a short period. This of course applies to all the phases of its growth. How do you demonstrate to students the flowering phase of a particular simple in the middle of winter? It seems that once again Ghini was the first to solve this problem with the creation of a herbarium, that is a collection of dried and pressed plants. It appears that before Ghini came up with the idea sometime between 1520 and 1530 nobody had ever built up a collection of dried and pressed plants or at least no earlier ones are known. 

Within the historical context it is important to note that in the sixteenth century the term herbarium didn’t refer to a collection of dried and pressed plants, as it does today, but to what we now call a herbal; a book with descriptions of herbs, a topic that I will deal with in a future post in this series. In the Renaissance such collections were known as a Hortus hiemalis or Winter garden, others called them living herbals that is Herbarius vivus or Hortus siccusa dry garden. The earliest known use of the term herbarium in the modern sense is by the French botanist Pitton de Tournefort (1656–1708) in his Eléments de botanique, ou Méthode pour reconnaître les Plantes published in 1694.

Joseph Pitton de Tournefort Portrait by Ambroise Tardieu Source: Wikimedia Commons
Source: Wikimedia Commons

Although various historical herbaria still exist, Ghini’s doesn’t. Around 1551, when he sent dried plants gummed upon paper to Pietro Andrea Gregorio Mattioli (1501–c. 1577) his collection was known to contain around three hundred different plants. However, it must have been in existence well before that date as the oldest extant herbarium is that of his pupil Gherado Cibo (1512–1600), which he began at the latest in 1532. Cibo was an avid botanist, known for his plant illustrations, who like Ghini never published anything, although he kept extensive diaries and notebooks of his botanical studies. 

Gherado Cibo Full page painting of lichens and ferns growing on a rock face with a pastoral scene in the background; the date ‘febraro 1584’ is written beneath. Source: British Library

Of interest is that fact that initially there were no publications about herbaria and knowledge of their existence and how to create them seems to have been spread by word of mouth and correspondence by Ghini and his students.

The earliest known printed reference to a herbarium is by the Portuguese, Jewish physician Amatus Lusitanus (1511–1568) in one of his works on Dioscorides in 1553, where he mentions the dried plant collection of the English botanist John Falconer (fl. 1547), who is known to have travelled in Italy and probably learnt how to make a herbarium either from Ghini directly or one of his students. 

In the late 1540s, Guillaume Rondelet (1507–1566) travelled with his patron Cardinal François de Touron (1489–1562) around Europe and in Italy got to personally meet and talk with Ghini in Pisa. When he returned to Montpellier in 1551, he took with him the knowledge of how to make a herbarium, which he passed on to his students, including Felix Platter (1536–1614), who graduated in Montpellier in 1557.

Felix Platter portrait by Hans Bock Source: Wikimedia Commons

Platter took that knowledge with him to Basel after graduation. So, spread the knowledge slowly through Europe. Part of Platter’s own herbarium is one of the sixteenth century ones that still exist or at least part of it, totalling 813 specimens. 

Plants and Images from Felix Platter’s Herbarium

Information on how to make a herbarium was first published by Adriaan van de Spiegel (1578–1625), who studied medicine in Padua under Girolamo Fabrizio da Acquapendente (c. 1535–1619), in his Isagoge in rem herbariam in (Padua, 1606).

To quote Agnes Arber:

In his Isagoge–a general treatise on botany–he explans the method of pressing between two sheets of good paper, under gradually increasing weights, and notes that the plans must be examined and turned over daily. When they are dry, they are to be laid upon inferior paper (charta ignobilior), and, with brushes of graded sizes, painted with a special gum, for which he gives the recipe. The plants are then to be transferred to sheets of white paper; linen is to be laid over them, and rubbed steadily until they adhere to the paper. Finally the sheets are to be placed between paper, or in a book and subjected to pressure until the gum dries.[1]

Ulisse Aldrovandi (1522–1605) was one of the most influential naturalists of the sixteenth century.

Ulisse Aldrovandi portrait by Agostino Carracci Source: Wikimedia Commons

In 1533 he obtained a degree in medicine and philosophy and in 1554 he began to teach philosophy in the following year, appointed professor of philosophy in 1561. Already an enthusiast for botany, zoology, and geology he was appointed the first professor of natural philosophy at Bologna in 1561 (lectura philosophiae naturalis ordinaria de fossilibus, plantis et animalibus). Never a student of Ghini, he might better be described as a disciple. Inspired by Ghini’s garden in Pisa he was responsible for the botanical garden in Bologna in 1568. Also inspired by Ghini, he created an extensive herbarium which eventually numbered about 4760 specimens on 4117 sheets in sixteen volumes, which are preserved in the University of Bologna.

Ulisse Aldrovandi Herbarium Source: University of Bologna

Like the botanical garden the herbarium or winter garden survived and developed upto the present. There are large scale herbaria in universities, museums and botanical gardens throughout the world often numbering millions of specimens. The largest in the Muséum national d’histoire naturelle in Paris has more than nine million. 

[1] Agnes Arber, HerbalsTheir Origin and EvolutionA Chapter in the History of Botany 1470–1670, CUP; 1912, republished Hafner Publishing Company, Darien Conn., 1970, p. 142


Filed under History of botany, Natural history, Renaissance Science

Illuminating the Middle Ages

It is probably true that no period in European history had been so misconceived, misconstrued, misrepresented, as the Middle Ages. Alone the fact that a period of history that is often considered to have lasted a thousand years from 500 to 1500 CE is perceived as somehow being a single, monolithic entity is at best a joke and at worst total nonsense; one that we owe to the Renaissance Humanists, who regarding themselves as the inheritors of the glory that was the Rome of Cicero and Quintilianus labelled the time span in between antique Rome and their own age, the middle period. A period of ignorance, illiteracy, and barbaric Latin in their opinion. Although we should know better, we continue to live with the Humanists coup de grace that effectively consigned a thousand years of history to the rubbish bin, not worthy of serious consideration. 

Although I assigned dates to it above, alone trying to fix a beginning and/or an end to this period is the subject of hot debates amongst historians. Maybe, the simple answer is that it didn’t really begin or end and there is much more continuity to European history than the labels Antiquity, Middle Ages, Renaissance or Early Modern Period would at first glance imply. 

Unfortunately, whatever historians might think, do, or say, there is a very popular perception of the Middle Ages that gets regurgitated at regular intervals in novels, films, and television entertainment programmes. This is a dark, duster and barbaric period ruled over by the totalitarian, science rejecting, witch and heretic burning Church. A period of brutal wars carried out by tyrannical rulers. A period in which women are either damsels in distress, aged, wizened spinsters, whores, or witches. Peasants are filthy, downtrodden, superstitious, subhumans, who live in hovels and are subjected to the brutal whims of the tyrannical rulers and the Church. The term most often associated with this parody of the Middle Ages, and it really is pure parody, is the Dark Ages, which despite the best efforts of historians in recent decades to replace it with the Early Middle Ages is still widely used.

Two recent books on the Middle Ages have in their titles turned the tables rechristening the Middle Ages with synonyms for illumination. The first was Seb Falk’s excellent presentation of the real history of medieval science, The Light Ages, which I reviewed here. The second is Matthew Gabriele & David M Perry’s The Bright AgesA New History of Medieval Europe[1], which I shall briefly review here.  

Whereas Falk concentrates on the history of medieval science Gabriele & Perry’s book deals with the general political and religious history of Europe from the early fifth century to the early fourteenth century. What Gabriele & Perry can’t deliver in the roughly two hundred and fifty pages of their volume is a detailed historical narrative of the entire European history of the nine hundred years that their book covers; they would probably require two and a half thousand pages for that. What they deliver is an episodic narrative of the period, which sketches very informatively the main developments, illustrating the ups and downs, twists and turns of European history that took place over this almost millennium. 

Whilst the narrative style of the two authors is light and breezy making their book a comparatively easy read and they also succeed in effectively demolishing a lot of myths about the medieval period, the book left me wanting more than they delivered. However, before I explain my reservations a couple of positive aspects of the book.

The first in in terms of the contents. Whereas, it is common in discussions of the Middle Ages to talk, as I did above, of the Church, meaning the Catholic Church, as if there was only one version of Christianity throughout the period, the authors show how different dominant political groups adhered to different interpretations of Christianity, during the Early Medieval Period and that a monolithic Catholic Church was a quite late development.

The second very positive aspect is the clear demonstration that there was more continuity between the decline of the Roman Empire and its political structures and the Early Modern Period than the ‘fall’ of popular perception.

For me the third big plus point is in the bibliography or rather the extensive further reading recommendations. The book is a trade book, not an academic one, aimed at a fairly wide audience and as such has not foot or end notes and no conventional bibliography. However, at the end there is a twenty-page Further Reading section, which chapter for chapter give annotated recommendation for deeper exploration of the topic dealt with in that chapter.

Now my personal reservations. Firstly, maybe it’s my problem, but a lot of the time I found that the authors were assuming too much previous knowledge for the level of text that they are trying to present in their book. For my taste it is neither an introductory text nor an advanced one, but an uneasy hybrid stuck somewhere in between. 

My second reservation is, in my opinion, more important. The book is very heavily tilted towards the two themes of religion and politics in the medieval period, which of course are very much intertwined for most of the period under discussion and this makes the book very narrow in its presentation of the period. There is next to nothing on agriculture, technology, trade, science, or finance, all areas which underwent important developments during the Middle Ages and helped to shape the future. Seb Falk has naturally covered the science and John Farrell the technology in his The Clock and the CamshaftAnd Other Medieval Inventions We Still Can’t Live Without, which I reviewed here. However, I feel that they should at least have been addressed in Garbriele & Perry’s volume.

As it stands The Bright Ages is good on the areas it covers and is definitely worth a read but in my opinion it could and should have been so much more.

[1] Matthew Gabriele & David M Perry, The Bright AgesA New History of Medieval Europe, Harper, New York, 2021.


Filed under Book Reviews, Uncategorized

Rants, Rage, Rudeness, and Respect

A man that I’ve never come across before, Brett Hall, has taken me to task in, what he terms, a newsletter on YouTube for being rude to Neil deGrasse Tyson. Before somebody drew my attention to his comments, I had absolutely no idea who or what Brett Hall was. It appears he is an Australian, who, it seems, studied about seventeen degrees, I might be exaggerating somewhat, I lost count somewhere down the line in his litany of all the wonderful things he had studied. Anyway, if I understand him correctly, he now regards himself as a science communicator and has a podcast where he explicates and propagates the philosophies of Karl Popper and David Deutsch. He also has a blog and apparently, has recently added a newsletter, in the first edition of which he chose to criticise me. 

I am well acquainted with the works of Karl Raimund Popper, he being one of my first two introductions to the philosophies of mathematics and science, the other was Stephen Körner. I read my first philosophy of science books by both of them in the same week many, many moons ago. I read a large amount of Popper’s oeuvre and a decade later studied him at university. Popper led me to Imre Lakatos, the biggest influence on my personal intellectual development. 

I must admit, because I gave up trying to keep up with all the developments in modern physics quite some time ago, that until about two weeks ago I had never heard of David Deutsch. So that you don’t have to go look, he’s a big name in quantum physics and especially in the theory of quantum computing. Purely by chance, the German news magazine, Der Spiegel, had a long interview with him a couple of weeks ago about his views on epistemology and what he sees as the correct approach to the future and development of scientific thinking. Mr Hall will probably come down on me like a ton of bricks for saying this but, for me, it came across as fairly vacuous, a lot of waffle and pie in the sky. But I’m probably just too stupid to understand the great maestro!  

But back to Mr Hall and good old Neil deGrasse Tyson. Mr Hall bemoaned what he saw as increasing rudeness in debate in the Internet age, a common and widely spread trope, and cited my latest diatribe against NdGT, as an example, misquoting the title of my piece, claiming that I had said that Tyson “knows nothing”, whereas I in fact wrote “knows nothing about nothing”, a wordplay on Tyson’s topic the history of zero. There is a substantial difference between the two statements. He then went on to quote correctly that I accused Tyson of “spouting crap.” Strangely, Mr Hall calls me a science historian, whereas the correct term is historian of science. There is a whole debate within the discipline, as to why it’s the latter and not the former. Even more bizarrely, he states that he is not going to name me and then provides a link to the post on my blog that of course contains my name! I have no problems in being named, I’m old enough and ugly enough to defend myself against all comers.

Mr Hall goes on to explain that he also does not always agree with the theories of NdGT, but that there is no reason not to treat him with respect when stating your disagreement. I have no objection to this statement; however, it misses the point entirely. NdGT is not stating a theory in astrophysics, which is, or rather was, his academic discipline. If he had, I almost certainly would not have commented in any way whatsoever, as I’m not an astrophysicist and so not qualified to pass judgement. No, NdGT was doing something entirely different. On a commercial podcast, for which, given his popularity, he is almost certainly extremely well paid, he was mouthing off extemporaneously about the history of mathematics, a topic about which he very obviously knows very little. He was, as I put it, and there really is no polite way to express, spouting crap, with all the assurance and authority that his prominent public persona gives him. He was literally lying to his listeners, who, I assume, mostly not knowing better believe the pearls of wisdom that drip from his lips. That is serious abuse of his status and of his listeners and deserves no respect whatsoever. 

I would also point out that he is a serial offender and regularly delivers totally ignorant speeches about the history of science and/or mathematics. For example, he regularly repeats, with emphasis, that Newton invented calculus in a couple of weeks, on a dare, which, not to put to finer point on it, is total codswallop. Newton developed his contribution to the evolution of calculus over several years having first read, studied, and digested the work of Descartes, Fermat, Wallace, and Barrow. One can point these things out to NdGT but he simply ignores them and carries on blithely spreading the same tired out falsehoods. He has long ago wilfully squandered any right to be treated with respect, when talking about the history of science and/or mathematics.

Returning to Brett Hall’s basic thesis that academics have jettisoned common decency, politeness, and good manners in the computer age as a result of social media, he expounds on this for the whole of his newsletter, claiming that this behaviour from academics put young people off from entering academia to study the sciences. Like NdGT, Mr Hall appears to have very little knowledge of the history of science. Academics/scholars/scientists, or whatever you want to call them, have been slagging each other off, both publicly and privately, since the first Egyptians put brush to papyrus and the first Babylonians wedge to clay.

Just to take the era in which I claim the most expertise, the emergence of modern astronomy in the Early Modern Period. The two Imperial Mathematici, Tycho Brahe and Nicolaus Reimers Baer laid into each other in a way that makes the HISTSCI_HULK look like a cuddly kitten. A half generation later the next generation, Kepler and Longomontanus, attacked each other with slightly less expletives, but just as much virulence. Galileo laid into anybody and everybody, that he perceived as his enemies and there were many, with invective that would cause a drunken sailor to blush. Moving to the other end of the seventeenth century. Isaac Newton, Lucasian Professor, treated John Flamsteed, Astronomer Royal, like a doormat. In turn, Flamsteed refused to even utter the name of Edmond Halley the Savilian Professor of geometry. Newton and Robert Hooke, demonstrator of experiments at the Royal Society, abused each like a couple of fishwives. Hooke had blazing public rows with virtually every notable scientist in Europe. You get the picture?

In case Mr Hall should argue that modern academics weren’t like that before the advent of the Internet, I could entertain him for hours with anecdotes about the invectives that leading academic archaeologist launched at each other in the early 1970s. One stated that an excavation report by another was about as useful of a mid-Victorian museum guide. The offended party then opened legal proceedings for libel but withdrew them when the offender expressed joy at the prospect of being able to prove his statement under oath in a court of law. I could go on but…

Let us return to myself and my alter ego the HISTSCI_HULK, why do I launch my notorious rants? 

One of my favourite musicians, Robert Fripp, says that one shouldn’t become a professional musician unless one can’t do anything else. This statement is, to say the least, ambiguous. It could mean you lack the ability to do something else, or the compulsion to create music is so great that nothing else comes into question. I have always assumed he intended the second meaning, and this is exactly why I’m a historian of science. The fascination with numbers, number systems, and their origins started very early, at most about five years old, and has simply grown ever since. I can’t explain rationally why I’m fascinated, intrigued, even obsessed by the history of science, I simply am. I have a compulsion to investigate, discover and learn about the history of science so great that nothing else comes into question. 

On a personal level I have always been taught, more by example than anything else, that if one is going to do something then learn to do it properly and then do so. I am from nature a pedant, and I don’t regard pedantry as bad, and a perfectionist. Over the years I have had the good fortune to meet and learn from several excellent teachers, who have helped me to channel that pedantry and perfectionism into my studies and not to accept anything but the best possible.

The history of science is very much a niche discipline within the academic hierarchy and has to battle constantly to justify its existence. There have been and are many excellent historians of science, many of whose books line the walls of my humble abode and nourish my unquenchable thirst for a depth of understanding in the history of science. As I have documented elsewhere, I have a multiple addictive personality and my greatest addiction is without doubt the history of science.

The commercial world of books and television is not interested in the complex and difficult web that is the real history of science, but pop history of science sells well, so they commission not historians of science but scientists to produce pop books and television programmes about the history of science. I mean, after all they are scientists so they must know about the history of their discipline. The results are all to often a disaster. There are exceptions, my friend Matthew Cobb is a professional scientist, who also writes excellent history of science books, several of which adorn my bookshelves. However, the majority of popular history of science books and television programmes are badly researched, shallow perpetuators of myths and inaccuracies–in the Middle Ages the Church opposed science and people believed the world was flat, Newton had an Annus mirabilis and created calculus, and modern optics, physics and astronomy all in one year during the plague, Galileo was persecuted by the Church because he proved that the Earth goes around the Sun, which contradicted the Bible, Ada Lovelace created computer science, and, and, and… A classic example was the original Cosmos television programme from Carl Sagan in which his presentation of the history of astronomy and cosmology was a total and utter cluster fuck, which influenced his tens of million viewers in a very bad way. Whenever I say this on the Internet, I get screamed at by Sagan groupies.

Because I love and live for the discipline, the abuse that it suffers at the hands of these popularises hurts my soul and sets me in a rage causing the HISTSCI_HULK to emerge and go on a rampage. One of the reasons that I do this is because established historians of science are very reluctant to subject these perversions of their discipline to public review. Somehow, they seem to think it is beneath them to engage and point out that the product in question is so much bovine manure. Nobody pays me to be a historian of science, I have no position, no status, and no academic reputation to lose, so I weigh in with all guns blazing and say what I really think. I have a message for Mr Hall and anybody else, who feels offended by my approach, nobody says you have to read it! 


Filed under Autobiographical, Myths of Science

Renaissance science – XXXIII

As I stated at the start of the last episode both Niccolò Leoniceno (1428–1524) and Pandolfo Collenuccio (1444–1504), in their dispute over the quality, or lack of it, of Pliny’s Historia Naturalis, saw the need to go beyond comparing the description of plants in Pliny with those in the works of Theophrastus and Dioscorides and actually go out into nature and look at real plants. This empirical turn was the start of something new within the intellectual culture of medieval Europe and would eventually lead to the establishment of botany as an independent scientific discipline.

As Collenuccio wrote in his Pliniana defensio in 1493,

[The researcher] ought to ask questions of rustics and mountaineers, closely examine the plants themselves, note the distinction between one plant and another; and if need be he should even incur danger in testing the properties of them and ascertaining their remedial value.

and this is exactly what they began to do. Although they all contained information on plants from other parts of the world, India for example, the works of Pliny, Theophrastus, and Dioscorides were all predominantly based on the flora of the Mediterranean, so it was comparatively easy for those professors of medicine in the Northern Italian universities to actually undertake empirical surveys of the local plant life and compare it with the information contained in the works of the botanical authorities from antiquity. 

Since antiquity, apothecaries and herbalists had been going out into nature to search for and harvest herbs for their work. However, the scholars from the university were now going out for the first time and with a different aim. On their excursions, they were looking for herbs to describe, to study them and bring specimens back to both study in depth and to show to students in their materia medica courses. Leoniceno and his students Euricus Cordus (1486–1535) and Antonio Musa Brasavola (1500–1555) led the way in this new activity for scholars, with Cordus and Brasavola publishing guides to collecting. The former his Botanologicon (1535) and the latter Examen omnium simplicium medicamentorum, quorum in officinis usus est (1537).

Source: Wikimedia Commons

The next development was not just to bring back specimens to display to students during their courses but to take the students out with them on the botanising excursions, and so the field trip was born. The first professor of simples at both Bologna and Pisa, Luca Ghini (1490–1556) initiated the field trip.

Luca Ghini Source: Wikimedia Commons

As with the spread of the materia medica lectures at the North Italian universities, the field trip quickly spread to universities throughout Europe by 1540. Guillaume Rondelet (1507–1666) in Montpellier was particularly renowned for his field trips, influencing a whole generation of future influential physicians. 

Guillaume Rondelet Source: Wikimedia Commons

The next development in the empirical study of simples was instead of taking the students into the countryside to search for and study the herbs in their natural habitat, to bring the living specimens to the universities in the form of the botanical garden. 

Herbal gardens for growing medicinal herbs were not a new invention in the Renaissance they had existed in one form or another since antiquity. There is some evidence that Aristotle and/or Theophrastus established a physic garden in the Lyceum at Athens but to what extent it was similar to the highly organised Renaissance botanical gardens is disputed. Pliny relates that the Roman botanist and pharmacologist, Antonius Castor (1stcentury CE) cultivated a large botanical garden. Gardens in general declined with the Roman Empire but during the Carolingian Renaissance gardens became an important feature of European monasteries. As well as gardens for fruit and vegetables, which the monks grew from their own nourishment, these featured section for the cultivation of medical herbs known as the herbularis or hortus medicus and more general as physic gardens. 

The typical cloister garden was a square or rectangular plot divided into quadrants by paths. The centre, where the paths intersected was often occupied by a well, which provided water for the monastery as well as for the garden itself. 

The cloister garden at the Cathedral of St. Martin in Utrecht, the Netherlands, dates from 1254. Today it remains a traditional cloister garden.

As medieval aristocrats began to create pleasure gardens on their estates in the High and Late Middle Ages these were mostly modelled on the monastery gardens.

Gardens and palace of Versailles in 1746, by the Abbot Delagrive Source: Wikimedia Commons

By the early sixteenth century private gardens were quite common.

Peter Brueghel the Younger Spring 1633

As it was often impossible to create gardens in the densely built inner towns and cities, the gardens were often outside of the city walls. In 1334, Matthaeus Silvaticus (c. 1280–c. 1342), the author of notable pharmacopoeia, Pandectarum Medicinae, established a botanical garden in Salerno in Southern Italy, home of the Schola Medica Salernitana. In 1447, Pope Nicholas V (1397–1455), who had facilitated the acquisition of the botanical works of Theophrastus and their translation into Latin, set aside part of the Vatican grounds for a garden of medicinal plants that were used to promote the teaching of botany.

On 29 June of 1545, the Republic of Venice authorised the foundation of a botanical garden at the University of Padua so that “scholars and other gentlemen can come to the gardens at all hours in the summer, retiring in the shade with their books to discuss plants learnedly, and investigating their nature peripatetically while walking”

The Botanical Garden of Padova (or Garden of the Simples) in a 16th-century print; in the background, the Basilica of Sant’Antonio. Source: Wikimedia Commons

We can see in this quote that like the libraries, which were being established around the same time, that the gardens were conceived as places were scholars could exchange and discuss their academic views.

A month later, in July, The Grand Duke of Tuscany, Cosimo I, concluded negotiations for a garden at the University of Pisa, founding another at the convent of San Marco in Florence in December. The university botanical garden was under the leadership of Luca Ghini (1490–1556) the professor for medical simples.

Botanical school Pisa Source: Wikimedia Commons

As with other development in the establishment of materia medica at the universities Florence followed suit in 1545, Pavia in 1558, and Bologna in 1568. In Spain, the royal physician pharmacologist, and botanist, Andrés Laguna (1499–1559), used the Italian example to persuade Philip II to fund a royal physic garden at Aranjuez, as he wrote in his translation of Dioscorides’ De materia medica in 1555.

All the princes and universities of Italy take pride in having excellent gardens, adorned with all kinds of plants found throughout the world, and so it is most proper that Your Majesty provide and order that we have at least one in Spain, sustained with royal stipends.   

His appeal was successful. The concept of a university botanical garden spread throughout Europe, Valencia in 1567, Kassel 1568, Leiden 1587, Leipzig 1580, Basel 1589, and Montpellier 1593. In the seventeenth century the concept spread into Northern Europe and Britain.

The botanical gardens were created with plants from all over the world, this meant the necessity to acquire plants and seeds from other areas by some means or another. We shall address this aspect of the development of botany in a future episode. A final aspect of the development of the botanical gardens was that they were not simply collection of living plants to be studied by students, so that they could learn to recognise the ingredients of the medicines they would be prescribing but they became centres of botanical and medical research. Rooms containing distilleries and other apparatus that could be used as laboratories were built around the gardens to enable scientific research to be carried out on the plants grown there. Along with the anatomical theatres and libraries the botanical gardens became part of an increasing research apparatus on the Renaissance universities.


Filed under History of botany, Renaissance Science