Werner von Siemens and Erlangen

I (almost)[1] live in the town of Erlangen in Franconia, in Southern Germany. Erlangen is a university town with an official population of about 110 000. I say official because Erlangen has a fairly large number of inhabitants, mostly student, who are registered as living elsewhere with Erlangen as their second place of residence, who are not included in the official population numbers. I suspect that the population actually lies somewhere between 120 and 130 000. Erlangen is dominated by the university, which currently has 40 000 students, although several departments are in the neighbouring towns of Furth and Nürnberg, and is thus the second largest university in Bavaria, and the company Siemens. Siemens, one of Germany’s largest industrial firms, is a worldwide concern and Erlangen is after Berlin and Munich the third largest Siemens centre in Germany, home to large parts of the company’s research and development. It is the home of Siemens’ medical technology branch, Siemens being a world leader in this field. 13 December is the two hundredth anniversary of the birth of Werner von Siemens the founder of the company.

Werner von Siemens (Portrait by Giacomo Brogi) Source: Wikimedia Commons

Werner von Siemens (Portrait by Giacomo Brogi)
Source: Wikimedia Commons

Werner Siemens (the von came later in his life) was born in Lenthe near Hanover the fourth child of fourteenth children of the farmer Christian Ferdinand Siemens and his wife Eleonore Henriette Deichmann on13 December 1894. The family was not wealthy and Werner was forced to end his education early. In 1835 he joined the artillery corps of Prussian Army in order to get an education in science and engineering; he graduated as a lieutenant in 1838.

Werner Siemens as Second-Lieutenant in the Prussian Artillery, 1842 Source: Wikimedia Commons

Werner Siemens as Second-Lieutenant in the Prussian Artillery, 1842
Source: Wikimedia Commons

He was sentenced to five years in military prison for acting as a second in a duel but was pardoned in 1842 and took up his military service. Whilst still in the army he developed an improved version of Wheatstone’s and Cooke’s electrical telegraph in 1846 and persuaded the Prussian Army to give his system field trials in 1847. Having proved the effectiveness of his system Siemens patented it and in the same year founded together with the fine mechanic Johann Georg Halske the Telegraphen-Bauanstalt von Siemens & Halske. They received a commission to construct Prussia’s first electrical telegraph line from Berlin to Frankfurt, which was completed in 1849, when Werner left the army to become an electrical engineer and entrepreneur. The profession of electrical engineer didn’t exist yet and Werner Siemens is regarded as one of its founders.

Pointer telegraph, 1847 (replica) Source: Siemens

Pointer telegraph, 1847 (replica)
Source: Siemens

Already a successful electrical telegraph construction company the next major step came when Werner discovered the principle of dynamo self-excitation in 1867, which enabled the construction of the worlds first practical electric generators. Werner was not alone in making this discovery. The Hungarian Anyos Jedlik discovered it already in 1856 but didn’t patent it and his discovery remained unknown and unexploited. The Englishman Samuel Alfred Avery patented a self-exciting dynamo in 1866, one year ahead of both Siemens and Charles Wheatstone who also independently made the same discovery.

Structure (with cross section) of the dynamo machine 1866 Source: Siemens

Structure (with cross section) of the dynamo machine 1866
Source: Siemens

Throughout his life Werner Siemens combined the best attributes of a scientists, an engineer, an inventor and an entrepreneur constantly pushing the range of his companies products. He developed the use of gutta-percha as material for cable insolation, Siemens laying the first German transatlantic telegraph cable with their own specially constructed cable laying ship The Faraday in 1874. The world’s first electric railway followed in 1879, the world’s first electric tram in 1881 and the world’s first trolleybus in 1882.

The Faraday, cable laying ship of Siemens Brothers & Co. 1874 Source: Wikimedia Commons

The Faraday, cable laying ship of Siemens Brothers & Co. 1874
Source: Wikimedia Commons

Werner Siemens was a great believer in scientific research and donated 500,000 Marks (a fortune), in land and cash, in 1884 towards the establishment of the Physikalisch-Technische Reichsanstalt a state scientific research institute, which finally came into being in 1887 and lives on today under the name Physikalisch-Technische Bundesanstalt (PTB). From the very beginning Werner Siemens thought in international terms sending his brother Wilhelm off to London in 1852 to represent the company and another brother Carl to St Petersburg in 1853, where Siemens built Russia’s first telegraph network. In 1867 Halske left the company and Carl and Wilhelm became partners making Siemens a family company. In 1888, four years before his death, Werner was ennobled becoming Werner von Siemens.

The research and development department of Siemens moved to Erlangen after the Second World War, as their home in Berlin became an island surrounded by the Russian occupation zone. Erlangen was probably chosen because it was already the home of Siemens’ medical technology section. In order to understand how this came to be in Erlangen we need to go back to the nineteenth century and the live story of Erwin Moritz Reiniger.

Siemens-Administration in the 1950s „Himbeerpalast“ Designed by  Hans Hertlein  Note the Zodiac clock dial Source: Wikimedia Commons

Siemens-Administration in the 1950s „Himbeerpalast“ Designed by Hans Hertlein
Note the Zodiac clock dial
Source: Wikimedia Commons

Reiniger born 5 April 154 in Stuttgart was employed as an experiment demonstrator at the University of Erlangen in 1876. He was also responsible for the repair of technical equipment in the university institutes and clinics. Realising that this work could become highly profitable, Reiniger set up as a self-employed fine mechanic in Schlossplatz 3 next door to the university administration in the Schloss (palace) in 1877, producing fine mechanical, physical, optical and simple electro-medical instruments.

Schloss Erlangen (university Administration) Source: Wikimedia Commons

Schloss Erlangen
(University Administration)
Source: Wikimedia Commons

Schlossplatz 3. Site of Reindeer's original workshop Source: Wikimedia Commons

Schlossplatz 3. Site of Reiniger’s original workshop
Source: Wikimedia Commons

Plaque on Schlossplatz 3

Plaque on Schlossplatz 3

By 1885 Reiniger was employing fifteen workers. In 1886 he went into partnership with the mechanics Max Gebbert and Karl Friedrich Schall forming the Vereinigte physikalisch-mechanische Werkstätten von Reiniger, Gebbert & Schall– Erlangen, New York, Stuttgart (RGS). The workshops in New York and Stuttgart were soon abandoned and the company concentrated on Erlangen. Karl Schall left the company in 1888 and Reiniger was bought out by Gebbert in 1895.

Reiniger Gebiert & Schall Letterhead 1896 Source: Wikimedia Commons

Reiniger Gebiert & Schall Letterhead 1896
Source: Wikimedia Commons

Wilhelm Conrad Röntgen discovered X-rays on 8 November 1895 and published his discovery in three scientific papers between then and January 1896.

Wilhelm Conrad Röntgen Source: Wikimedia Commons

Wilhelm Conrad Röntgen
Source: Wikimedia Commons

Famously he didn’t patent his discovery and RGS were already, as the very first company in the world, producing X-ray tubes and X-ray machines in 1896 and this would become the mainstay of their business. There is a rather sweet letter in the Siemens archive from Röntgen, who was professor in Würzburg, not too far away from Erlangen, asking if he could possibly get a rebate if he purchased his X-ray tubes from RGS.

Reiniger, Gebbert & Schall AG Factory in Erlangen constructed in 1883. Now a protected building. Source: Wikimedia Commons

Reiniger, Gebbert & Schall AG Factory in Erlangen constructed in 1883. Now a protected building.
Source: Wikimedia Commons

Following the First World War, RGS got into financially difficulties due to bad management and in 1925 the company was bought by Siemens & Halske, who transferred their own medical technology production to Erlangen thus establishing the medical technology division of Siemens in Erlangen where it still is today. Originally called the Siemens-Reiniger-Werke AG it has gone through more name changes than I care to remember currently being called ‘Healthineers’ to the amusement of the local population, who on the whole find the name ridiculous.

Siemens Medical Museum in the Reiniger, Gebbert & Schall AG Factory Building

Siemens Medical Museum in the Reiniger, Gebbert & Schall AG Factory Building

What of the future? Last week saw the laying of the foundation stone of the new Siemens Campus in Erlangen a 500 million Euro building project to provide Siemens with a new R&D centre for the twenty-first century.

Siemens Campus Architects Model

Siemens Campus Architects Model



[1] I actually live in a small village on the outskirts of Erlangen but the town boundary is about 150 metres, as the crow flies, from where I am sitting typing this post.


Filed under History of Physics, History of science, History of Technology

I wish a certain (tv) star would think before he tweets

On a couple of occasions I have blogged about the publically displayed history of science ignorance of mega-star science entertainer Neil deGrasse Tyson (NdGT). On Sunday I stumbled over one his tweets, which stridently proclaimed:


If you wished upon that first Star you saw tonight in twilight,

then it will not likely come true. You wished on planet Venus

Venus is always brighter than all other planets or stars as seen from Earth. The second brightest object on the image is Jupiter Source: Wikimedia Commons

Venus is always brighter than all other planets or stars as seen from Earth. The second brightest object on the image is Jupiter
Source: Wikimedia Commons

My first reaction was that this tweet was very mean spirited and to ask myself what NdGT’s intention was in tweeting it. Then as a historian of astronomy I replied to this tweet by pointing out that from antiquity up to the beginning of the eighteenth century all illuminated celestial bodies – stars, comets, planets – were referred to as stars and so one would still be wishing upon a star. Now NdGT has a trillion sycophants followers, so the last thing I expected was a response from the great man himself to my tweet. Imagine my surprise when I got just that:


The 7 “planetes” (Greek for “wanderer”) were distinct from stars:

Sun Moon Mercury Venus Mars Jupiter Saturn.


Slam -Bam! A killer etymological put down or at least I assume that was what NdGT thought he had achieved. Unfortunately he had just ridden himself deeper into the mire. If we actually consult an etymological dictionary on the origins of the term planet we discover the following:

Planet (n): late Old English planete, from Old French planete (Modern French planète), from Late Latin planeta, from Greek planetes, from (asteres) planetai “wandering (stars),” from planasthai “to wander…

Oh dear, planet doesn’t mean wanderer in the original Greek; it means wandering star! The Greeks did indeed differentiate between fixed stars, our stars, wandering stars, the seven planets and hairy stars (I’ve always liked that one) the comets, but, and this is the decisive point, they are all stars, as I stated in the first place. Whether NdGT’s etymological error was out of ignorance or a result of deliberate quote mining I can’t say.

NdGT might have saved himself some embarrassment if he had paused for a moment to consider the etymology of astronomy, the mother discipline of his own profession, astrophysics. Astronomy is also derived from ancient Greek, as was astrology and as I pointed out in another post the two terms were, from their origin up till the late seventeenth century, synonyms. Let’s just check out those etymologies shall we.

Astronomy (n): c. 1200, from Old French astrenomie, from Latin astronomia, from Greek astronomia, literally “star arrangement,” from astron “star”

Astrology (n): late 14c., from Latin astrologia “astronomy, the science of the heavenly bodies,” from Greek astrologia “telling of the stars,” from astron “star”

So astrologia, which is the older of the two terms, means the science of the heavenly bodies, which of course includes the planets. Astronmia naturally includes the planets too, as stars.

What evidence can I bring forth that this was still the case in the Early Modern Period? I have no lesser witness than that well-known Elizabethan playwright and poet Will Shakespeare. In his tragedy Romeo and Juliet he refers to the fact that their doom has been predetermined by their astrological fate. Now an astrological horoscope determines the position of the planets along the elliptic, the apparent path of the sun around the earth, so astrology is very much planetary. So how does the good bard describe the astrological doom of his two young lovers?

From forth the fatal loins of these two foes,

A pair of star-cross’d lovers take their life

Note Romeo and Juliet are star-crossed, although it is the planets that determine their fate. In fact the expression ones fate is written in the stars is still very much used today in the English language.

I do have a last sad note for NdGT concerning his original tweet. Most people probably associate the expression ‘to wish upon a star’ with the pop song When You Wish Upon a Star originally from the Walt Disney film Pinocchio from 1940, which has been covered by many, many artists. However the tradition is much older and in fact goes back at least to the ancient Romans. The tradition says that if you make a wish when you see the first star of the evening then that wish will come true. Now the first star of the evening is ‘the evening star’ also known as the planet Venus and in fact the tradition derives from the Roman worship of Venus their goddess of love, so if you did make a wish upon seeing Venus, as NdGT claimed in his original tweet, then you would be doing exactly the right thing to have your wish come true. You are just offering up a prayer to the divine Venus.

The Birth of Venus, by Sandro Botticelli c. 1485–1486 Source: Wikimedia Commons

The Birth of Venus, by Sandro Botticelli c. 1485–1486
Source: Wikimedia Commons

The saddest aspect of this brief collision on Twitter is just how many of NdGT’s sycophants followers retweeted and/or liked his etymology of the term planet tweet thinking he had brilliantly seen of the bothersome history of astronomy troll. I wouldn’t mind him spouting history of science crap if he was some brain damaged loony with 15 followers on Twitter but unfortunately he is the most well-known and influential English language science communicator in the world and his false utterances mislead and misinform a lot of trusting people.





Filed under History of Astronomy, Myths of Science

History (of Science) Books by Women

Last weekend saw several major newspapers publishing their books of the year list. Unfortunately these displayed, in several aspects, a serious lack of balance. Science and history of science books came up more than somewhat short and in some categories the male dominance was glaring. The latter problem provoked the following tweet by historian and history book author Lucy Worsley:

8 of 9 of the ‘history books of the year’ in today’s Times, and 19 out of 21 of ditto in today’s Telegraph, are by men. I’m not impressed. Lucy Worsley

In reaction to this tweet a hash tag sprang into life, #HistoryBooksbyWomen, under which some just listed the names of female history book authors and others tweeted names and book titles. My discipline the history of science is blessed with many excellent female historians, authors of many first class books. This being the case I thought that I might cruise along my bookshelves and present here a lightly annotated list of some of those books by women that have enriched and informed my career as a historian of science.

I start with my #histsci soul sisterTM, Rebekah ‘Becky’ Higgitt, whose volume in the way the nineteenth century saw Isaac Newton, Recreating Isaac, I reviewed here.

Becky is also co-author of the beautiful Finding Longitude, which I reviewed here. (Her co-author Richard Dunn is a man but we won’t hold it against him).

Staying with Newton we have Sarah Dry telling us what happened to his manuscripts in The Newton Papers and Lesley Murdin Under Newton’s Shadow: Astronomical Practices in the Seventeenth Century.


In the world of navigation, cartography and geodesy we have Christine Garwood Flat Earth: The History of an Infamous Idea, Joyce E. Chaplin Round About the Earth: Circumnavigation from Magellan to Orbit, Silvia Sumira Globes: 400 Years of Exploration Navigation and Power and Rachel Hewitt Map of a Nation: A Biography of the Ordnance Survey.


Representing the Middle Ages we have two biographies Nancy Marie Brown The Abacus and the Cross: The Story of the Pope Who Brought the Light of Science to the Dark Ages and Louise Cochrane Adelard of Bath: The First English Scientist. For fans of automata there is E. R. Truitt’s delightful Medieval Robots: Mechanism, Magic, Nature, and Art.


In the early modern period and the emergence of modern science we have Pamela O. Long Artisan/Practitioners and the Rise of the New Science, Pamela H. Smith The Body of the Artisan, Paula Findlen Possessing Nature: Museums, Collecting, and Scientific Culture in Early Modern Italy, Deborah E. Harkness The Jewel House: Elizabethan London and the Scientific Revolution, Eileen Reeves Galileo’s Glassworks, Lisa Jardine Ingenious Pursuits: Building the Scientific Revolution, her Going Dutch: How England Plundered Holland’s Glory, her On a Grander Scale: The Outstanding Life and Tumultuous Times of Sir Christopher Wren, and her The Curious Life of Robert Hooke: The Man Who Measured London, Ulinka Rublack The Astronomer & the Witch: Johannes Kepler’s Fight for His Mother, Sachiko Kusukawa Picturing the Book of Nature: Image, Text, and Argument in Sixteenth-Century Human Anatomy and Medical Botany and Susan Dackerman ed. Prints and the Pursuit of Knowledge in the Early Modern Period Featuring essays by Susan Dackerman, Lorraine Daston, Katherine Park, Susanne Karr Schmidt and Claudia Swann.


Turning to the eighteenth century we have Patricia Fara A Entertainment for Angels: Electricity in the Enlightenment, Susannah Gibson Animal, Vegetable, Mineral? How eighteenth-century science disrupted the natural order and Jenny Uglow The Lunar Men: The Friends Who Made the Future.


No Renaissance Mathematicus book list would be complete without some esoteric history. We start with Monica Azzolini The Duke and the Stars: Astrology and Politics in Renaissance Milan that I reviewed here, Louise Hill Cuth English almanacs, astrology & popular medicine: 1550–1700, Tamsyn Barton Ancient Astrology, Pamela H. Smith The Business of Alchemy: Science and Culture in the Holy Roman Empire, Frances A. Yates The Rosicrucian Enlightenment and her Giordano Bruno and the Hermetic Tradition as well as Ingrid D. Rowland Giordano Bruno: Philosopher/Heretic. Somewhere between the stools Lorraine Daston & Katherine Park Wonders and the Order of Nature.


Mathematics are represented by Kim Plofker Mathematics in India and Serafina Cuomo Ancient mathematics. Astronomy and cosmology by M. R. Wright Cosmology in Antiquity, Kitty Ferguson Measuring the Universe and Jessica Ratcliff The Transit of Venus Enterprise in Victorian Britain.


We close with a potpourri of titles that don’t quite fit into any of the categories above. We start with two excellent books by Laura J. Snyder, her four-way biography of nineteenth-century Cambridge polymaths The Philosophical Breakfast Club: Four Remarkable Friends Who Transformed Science and Changed the World and her double seventeenth-century art and science biography Eye of the Beholder: Johannes Vermeer, Antoni van Leeuwenhoek, and the Reinvention of Seeing. Two further biographies are Brenda Maddox Rosalind Franklin: The Dark Lady of DNA and Dorothy Stein Ada: A Life and a Legacy. Patricia Fara gives us a general survey of science history in Science A Four Thousand Year History and a look at the role some women played in that history in Pandora’s Breeches: Women, Science & Power in the Enlightenment. Deborah Jaffé also looks at the role of women in science and technology in Ingenious Women: From Tincture of Saffron to Flying Machines. Last but by no means least we have Ingrid D. Rowland’s translation of Vitruvius: Ten Books of Architecture.


This list is of course fairly random and somewhat arbitrary and is in no way comprehensive or exhaustive. All of the books that I have included are in my opinion good and quite a lot of them are excellent. They demonstrate that there is width, depth and variety in the writings produced by women in the history of science taken in its widest sense. Should any misogynistic male of the species turn up in the comments and claim that the above list is only so impressive, and I find it very impressive, because I, in some way, privilege or favour female historians then I must point out that I have many more history of science books by male authors than by female ones on my bookshelves.

If you wish to add your own favourite history of science books authored by women in the comments you are more than welcome.


Filed under Book Reviews, History of science, Ladies of Science

A Herschel comes seldom alone.

On the excellent website Lady Science Anna Reser and Leila McNeill recently posted an article entitled Well, Actually Mythbusting History Doesn’t Work, which I shall not be addressing. However it contained the interesting statement, When the likes of Caroline Herschel and Ada Lovelace are brought up, a common response is a historical version of “what about the men?!” The men in this case being William Herschel and Charles Babbage. Ignoring Lovelace and Babbage I would like to address the case of the siblings Caroline and William Herschel.

Of course Caroline Herschel is a very important figure in the history of astronomy and deserves to be recognised on her own extensive merits but is it possible to discuss her life and work without mentioning her elder brother? The answer to this question is a clear yes and no. If one were to present a brief bullet point outline of her life then yes, as follows.

Caroline Herschel Source: Wikimedia Commons

Caroline Herschel
Source: Wikimedia Commons

Caroline Herschel German/ British Astronomer

  • Born Hanover 16 March 1750
  • Lived in England 1772–1822
  • Died Hanover 9 January 1848
  • Discoverer of eight comets
  • Recipient of a pension from George III 1787
  • Recipient of the Gold Medal of the Royal Astronomical Society 1828
  • One of the first Woman members of the Royal Astronomical Society, elected 1835
  • Awarded Gold Medal for Science by the King of Prussia 1846

However if one goes beyond the highly impressive outline and starts to examine her biography in depth then it is impossible not to mention her brother William who played a decisive role at almost every stage of her live.

Stunted and disfigured by a bout of typhus in her childhood, Caroline was not considered a suitable candidate for marriage. Her illiterate mother did not hold much of education for women so it seemed that Caroline was destined for a life of domestic drudgery. However William her elder brother, having established himself as a professional musician in the city of Bath, fetched her from Hanover to come and live with him as his housekeeper in 1772. In Bath she shared the attic flat with their younger brother Alexander, of whom more later, whilst William lived on the first floor, which was also his music studio where amongst other things he delivered music lessons. The ground floor was occupied by a married couple, who worked as William servants, also paying rent for their accommodation. Caroline took over the running of this household.

William Herschel 1785 portrait by Lemuel Francis Abbott Source: Wikimedia Commons

William Herschel 1785 portrait by Lemuel Francis Abbott
Source: Wikimedia Commons

William took over Caroline’s education teaching her to sing as well as instructing her in arithmetic and English. Soon she began to appear as a soloist in William public recitals and made such a positive impression that am impresario offered her the opportunity of going on tour as a singer, an offer that she declined preferring to stay in Bath with her brother.

When William developed his passion for astronomy Caroline became his assistant, rather grudgingly at first but later with enthusiasm, recording and tabulating her brother telescopic observations. When William began to manufacture his own telescopes Caroline was once again at hand, as assistant. When I visited the Herschel Museum in Bath I learnt that one of Caroline’s tasks was to sieve the horse manure that they used to embed the cast telescope mirrors to grind and polish them. I highly recommend visiting this museum, where you can view the Herschel’s telescope workshop in the cellar. Caroline also took over the task of calculating and compiling the catalogue of William’s observation. It should be very clear that the siblings worked as a team, each playing an important role in their astronomical endeavours.

Later after the discovery of Uranus, when William became the King’s astronomer and they moved to Datchet near Windsor, he encouraged Caroline to become an astronomer in her own right teaching her how to sweep the skies looking for comets and constructing a small reflecting telescope for this purpose. Caroline would go on to have a very successful career as a comet hunter, as already noted above.

I hope that in this very brief sketch that I have made it clear that William played a key role at each juncture in Caroline’s life and that without him she never would have become an astronomer, so any full description of her undoubted achievements must include her bother and his influence. However there is a reverse side to this story, as should be very clear from my brief account, any description of William Herschel’s achievements, as an astronomer, must include an explanation of Caroline’s very central role in those discoveries.

Any account of William’s and Caroline’s dependency on each other in their astronomical careers should also include the role played by their younger brother Alexander. Like William and their father, Alexander was a highly proficient professional musician, who had moved into William’s house in Bath, as Caroline was still living in Hanover. Alexander apparently played a role in the decision to bring Caroline to Bath. As well as being a talented musician Alexander was a highly skilled craftsman and when William decided to start building his own Newtonian telescopes, it was Alexander who provided the necessary metal components including the telescope tubes for the small objective scopes used to view the image in a Newtonian. The Herschel telescope production was very much a family business. The Herschel telescopes enjoyed a very good reputation and manufacturing and selling them became a profitable sideline for the siblings. The two sides of the Herschel’s astronomical activities fertilised each other. The quality of the telescopes underlined the accuracy of the observations and the accuracy of the observations was positive advertising for the telescopes.

Replica of a Herschel Newtonian Reflector. Herschel Museum Bath Source: Wikimedia Commons

Replica of a Herschel Newtonian Reflector. Herschel Museum Bath
Source: Wikimedia Commons

It should be now clear that when considering the Herschel’s astronomical activities we really have to view all three siblings as a unit, as well as viewing them as individuals but our collection of Herschels does not end here. As should be well known William’s son John would go on to be a highly significant and influential polymath in the nineteenth century, amongst other things setting forth the family’s astronomical tradition. John was very close to his aunt Caroline and it was she and not his father who first introduced the young Herschel sprog to the joys and fascinations of astronomical observation.

ohn Frederick William Herschel by Alfred Edward Chalon 1829 Source: Wikimedia Commons

ohn Frederick William Herschel by Alfred Edward Chalon 1829
Source: Wikimedia Commons

Although the Herschels form a relatively closed family unit in their astronomical activities, they also employed a joiner to make the tubes and stands for their reflectors, they also provide a very good example of they fact that observational astronomy, and in fact much scientific activity, is team work and not the product of individuals.




Filed under History of Astronomy, History of science, Ladies of Science

Whilst I was away


As you may have noticed I have, after a comparatively long break, begun blogging again. When I stopped, I wrote a post saying that my inability to finish my review of David Wootton’s The Invention of Science was my reason for doing so and whilst this was true it doesn’t actually explain why the break has become so extended. Because over the years I have built up a collection of intelligent, loyal, benevolent and sympathetic readers I think that they have earned an explanation for my absence.

Two years ago on the fifth anniversary of the Renaissance Mathematicus I wrote a post explaining that I have suffered mental health problems nearly all of my life to a large extent, but not exclusively, caused by a combination of AD(non-H)D and dysgraphia and that writing this blog started as attempt to cure a forty year long writer’s block. One of the side effects of this double whammy of so-called learning difficulties is that I have always had massive problems with any form of bureaucratic bullshit that involves filling in forms. Please don’t make the mistake of saying, “oh nobody likes filling in forms” that is like telling somebody with clinical depression that everybody gets sad from time to time. I really have major psychological problems with all types of official forms. The content is in itself not really a problem; it is actually sitting down and confronting the offending object that is often nigh on impossible. The result is that I have always done such things at or mostly (well) past the final deadline and there have been periods when piles of official letters have accumulated unopened, often for months at a time, and often with disastrous results.

In September the German employment service forced me to take early retirement, I would have been due to retire in May next year so not that early. Due to my more than somewhat erratic work record, not unrelated to my mental health problems, and the fact that I have been officially unfit for work for almost the last twenty years, mental health problems combined with physical infirmities, my earned old age pension might just stretch to buying you a beer if we go to a very cheap bar. All of this meant that I had to apply for a German state social security pension (Grundsicherung im Alter).

Now this application consists of a very long complicated bureaucratic form to which one also has to collect a lot of official documents. Having completed this and sent it off, a couple of weeks later one gets another set of forms and another list of required documents. Having completed this a couple of weeks later you get… You get the picture? Unfortunately for me whilst I was going through the bureaucratic equivalent of Dante’s Inferno I also had to apply for a new British Passport, my old one being due to expire in the middle of October, as well as doing my tax returns for 2015, only one week past the final deadline. To make my life perfect I was also attempting to get a new extraordinary treatment for my back problems granted by my health insurance, whose bureaucratic hurdles equal those of the state social security pension application. The result of this bureaucratic tsunami over the last weeks has seen me scraping along and sometimes crossing the boundary to a major clinical depression, which sucked out all the will and energy I might have had for blogging or anything else for that matter. In the middle of this I actually held a public lecture on Babbage’s & Boole’s contributions to the history of computing, which I prepared literally the night before and held on autopilot. It went surprising well.

The current state of play is that I have a new passport, my tax affairs have been dealt with for another year and my state social security pension has been granted. My application for back treatment has been rejected, which is par for course and was expected and I now have to appeal the decision, more bureaucratic bullshit. I seem to have managed to avoid a full-blown depression and whilst I am feeling fairly battered, things are starting to look decidedly better. One positive aspect of the whole affair is that ten years ago such an episode in my life would almost certainly have had me back in a psychiatric hospital chewing the curtains, so I seem to be making progress, whatever that might be.

Of course for the readers of my blog the million dollar question is, have I finished my review of David Wootton’s The Invention of Science to which the answer in no but I am working on it. I think and I hope that you can expect regular history of science blog posts again here at the Renaissance Mathematicus and I look forward, as ever, to your comments.


Filed under Autobiographical

Never say Never!

In the past I’ve blogged about various terms and phrases that people writing about the history of science should refrain from using or better still ban from their vocabularies completely, such as ‘the greatest’ or ‘the father of’. Today I want to add another to the list­ – ‘you’ve never heard of’. This dubious claim almost always turns up, mostly in titles, in combination with other phrases that should be avoided such as ‘the most important’, ‘the greatest’, ‘the most significant’ or other such empty superlatives, as the writer never actually clears up greatest/most in relation to what. These titles are in end effect just click bait designed to ensnare the unwary reader into reading the proffered article or post, which is almost inevitably about some scientist about whom there have only been a couple of zillion similar articles/post in the not too distant past. The particular article that triggered this post was one written by a Steven Poole in the New York Magazine to advertise his forthcoming book, Rethink: The Surprising History of New Ideas, entitled Grace Hopper: The Most Important Computer Pioneer You’ve Never Heard Of.

Grace Hopper working on the Harvard Mark I Source: Harvard Gazette

Grace Hopper working on the Harvard Mark I
Source: Harvard Gazette

Now I’m prepared to bet big money that Grace Hopper is one of the most well known figures for people interested in the history of computing, programming, information theory etc, etc. If you Google her name you get over half a million hits in about one quarter of a second. Now I realise that this is not very many in comparison to #histsci big hitters like Einstein (104 million in 0.68 sec) or Galileo (44 million in 0.39 sec) but the history of computing is not really one of the glamour subject in the popular history of science. Beyond Alan Turing (somewhat more than 2 million in 0.49 sec) and Johnny von Neumann (nearly 5 million in 0.75 sec) none of the major players in the history of computing since the Second World War are exactly household names. John Mauchly, one half of the team, which designed the first really influential electronic computers, ENIAC & UNIVAC, only manages 220 thousand hits in 0,51 sec. His partner John Presper Eckert a meagre 133 thousand in 0.62 sec. John Backus the developer of FORTRAN, an equivalent role to Hopper’s work on COBOL, manages a halfway respectable 430 thousand in 0.49 sec.

Enough of the boring Google results, Grace Hopper has a major Wikipedia article that includes a long and very impressive list of the honours she has received[1], can be found in quite a few Youtube videos including an appearance on Letterman, has articles about her life and work in numerous major newspapers and magazines and biographies on almost every major history of science and history of technology biography site. She is also the subject of several book length biographies. If anybody who takes an interest in the history of computers and computing has not heard of Grace Hopper they have been living at the bottom of a murky pond with their head stuck under a weed covered boulder for the last ten years. Grace Hopper is computer royalty and a much honoured and celebrated figure in computing circles. However as things stand, that the man behind the computerised cash-desk in you local neighbourhood supermarket has probably never heard of Grace Hopper, unless he’s an unemployed computer science graduate, is not the criterion under which one should be writing history of technology articles.

Interestingly, as I said above, the titles that use this device, ‘you’ve never heard of’, are almost always written by people trying to jump on the band wagon of a supposedly neglected figure in #histSTM when the band wagon is coming round the block for at least the tenth time, a fact that makes more than a mockery of the title.

All of this of course raises the question, at least in my mind, as to just how well known figures in #histSTM should be, who should they be known to and what do we mean by well known? I often have the feeling that historians in general and historians of science in particular live in a sort of scholarly echo chamber. We think that just because some historical figure is significant to our own work or line of research that everybody else should be aware of and acknowledge that significance. We express this view within the community of our fellow historians and receive lots of echoes back supporting that view. Of course they should! Oh I totally agree with you, they deserve to be much better known. Etc, etc… Of course there are also those who give faint support whilst loudly disclaiming that their latest discovery in their field deserve to be even better known than your chosen candidate. However in general we all agree, in a heady torrent of unanimity, that the history of our whole discipline and its practitioners should be much, much better known, but should it? Dare I express the heretical thought that we exaggerate the importance of our endeavours for the general public, the masses, or whatever cliché you prefer for describing the vast majority of humanity who are not historians (of science).

This is a problem that is by no means unique to #histSTM and its subject matter but one that exists in all branches of history, even in the often over emphasised political history that still builds the core of school historical teaching. To take just one simple example, I am relatively certain that if I went out onto the high street of Erlangen, a town with an extremely high average level of education – it largely consists of a big university and the research and development centre of Siemens – and were to ask the people who or what is Fürst Metternich then the vast majority would not answer, an important 19th-century European diplomat who was largely responsible for shaping the map of modern Europe at the Congress of Vienna in 1815 but would instead say, oh it’s a popular brand of German sparkling wine. History, of whatever sort, is not very important to the majority of non-historians even in an age where historical novels are extremely popular.

I both hold and also attend semi-popular public history lectures, and not just of science, and the audiences are mostly fairly small, one hundred attendees would be a lot, and to a large extent consist of retirees, who have the time and the desire to indulge in a little light education to while away the last years of their lives. Rather like the rock and pop concerts by the dinosaurs of the sixties music boom very few young people find their way to such lectures being more concerned with living in the here and now.

The next problem is who really should be better known? #histSTM is littered with literally thousands of practitioners, who have contributed to its evolution over the last four thousand years. How many of those should an average educated person know about and which ones. The Greeks of course, says one classicist very firmly. Stop being so Eurocentric says another historian breaking a lance for the Chinese, whilst his colleague along the corridor wants you to turn your attention to India. Islamic science does not get the attention it deserves shouts the Middle Eastern historian whilst, the feminist, quite correctly, bemoans the lack of attention paid to women in #histSTM. The historian of chemistry points out that the history of physics gets far too much attention paid to it at the expense of the other scientific disciplines. A not unjustified claim. Meanwhile the historians of all the other multitude of scientific disciplines are lining up to get their fair share of limelight, whatever that might be.

I became a passionate fan of the histories of mathematics and science as a teenager and have devoted nearly fifty years of study to that passion. I have studied both widely and deeply and am blessed with an elephantine memory, a prerequisite I think for any historian, but I still constantly stumble across new scholars, who I don’t know and who on closer examination appear to me to deserve to be much better known. Five years ago I had never heard the name Stephen Hales, but after stumbling across him whilst following my interest in the history of gasses in the seventeenth and eighteenth centuries I began to delve deeper into his activities and discovered a man who made substantial contributions to a number of areas in chemistry and the life sciences and certainly, in my opinion deserves to be better known and so I wrote a blog post about him. Quite a few of my biographical blog post arise in this way.

Dr Stephen Hales FRS (1677-1761) Source

Dr Stephen Hales FRS (1677-1761)

How much #histSTM should people, that is non-historians of science, be expected to know and which bits of it? When should it be taught? In primary/grade schools? In high schools? Only at college level? And what should be taught? This post is more an attempt to clarify some question that have been rattling around in my head, in what passes for a brain, for quite sometime and I personally don’t really have any structured answers to my own questions. However I do sincerely believe that all people working within the field of #histSTM should seriously address these question, putting aside all personal prejudices in favour of their own research, and try to reach an honest answer.

Before I close I can’t help taking a pot shot at one statement in Poole’s article about another famous computer pioneer, Johnny von Neumann. Poole writes:

In 1944, Grace Hopper, a 37-year-old math Ph.D., joined the Navy as a lieutenant and was assigned to that lab. Her group also included the soon-to-be famous mathematician John von Neumann

In 1944 von Neumann was not soon-to-be famous but was already one of the most renowned mathematician in the world, which is why he was working on the Manhattan Project and came to Harvard in 1944 to run programs on the Mark I concerned with his work in Los Alamos. Grace Hoppers group did not include John von Neumann, she was an unknown associate professor from Vassar and von Neumann was a mathematical VIP.

John von Neumann and the Harvard Mark I Source

John von Neumann and the Harvard Mark I


[1] Whilst I have been writing this blog post it has been announced that Grace Hopper has been posthumously award the Presidential Medal of Freedom


Filed under Uncategorized

Another public service announcement

Marius Book Launch

In September 2014 a conference was held in Nürnberg, as the climax of a year dedicated to celebrating the life and work of the Franconian astronomer, astrologer and mathematician Simon Marius, whose magnum opus Mundus Iovialis was published four hundred years earlier in 1614.

The papers held at that conference together with some other contributions from people who could not attend in person have now been collected together in the book Simon Marius und Seine Forschung, eds. Hans Gaab and Pierre Leich (= Acta Historica Astronomiae, Band 57) which will be official launched in the Thalia bookshop in Nürnberg on this coming Thursday, 13 October at 18:30 MET.

This volume contains papers by a wide range of scholars and could/should be of interest to anybody studying the histories of astronomy, astrology and/or mathematics in the Early Modern Period. It can be purchased online, after Thursday, directly from the publishers, Leipziger Universitätsverlag


For those who would like to know more about the book including a table of contents (Inhaltsverzeichnis) they can inform themselves on the Marius Portal here.

For those who cannot read German, an English edition of the book is in planning for next year, for which further contributions on the life and work of Simon Marius would also be welcome. If anybody has any questions regarding this volume I would be happy to answer them.


P.S. For those waiting for blogging to resume here at the Renaissance Mathematicus I can report that there is light at the end of the tunnel!





1 Comment

Filed under History of Astrology, History of Astronomy, History of Mathematics, Renaissance Science