Category Archives: History of science

In which I recommend some bedtime reading

Some time back the Pop Science Guy invited me to write a ‘10 Great History of Science Books’ list for his blog, to which I readily agreed. However being a professional procrastinator when it comes to writing anything I put it to one side and never got round to it. About a week ago PSG reminded me of my acceptance of his offer and this time I decided not to procrastinate any longer and finally write that list. On the day that I originally said yes I spontaneously wrote a list of the books I might include in my list, aiming mostly for books for the general reader rather than specialist academic texts and came up with thirteen titles and thought what the fuck “why are we so obsessed with lists of ten this and that?” and decided to stick to thirteen, a good baker’s dozen. As you will see I actually talk about more than thirteen books but then again why the hell not. Want to know what I recommend? Then go here and read your fill!

 

 

6 Comments

Filed under Autobiographical, History of science

The specialist in causing pain.

I suppose I ought to rebrand Galileo Galilei as ‘The Gift that keeps on Giving”! The comment is of course directed at all the idiots who think they need to present their image of Galileo to the world, rather than at the 16th- and 17th-century Tuscan artist-engineer himself. As long as there is a GG Super Star I will never be short of material for this blog, although it might become a little bit monotone with time. The most recent offender is Michael Vagg on The Conversation in an article entitled Four things we should teach every kid about Galileo. Before looking at Mr Vagg’s contribution to the Galileo debate I want to waste a few words on The Conversation, which describes itself as follows:

The Conversation is a collaboration between editors and academics to provide informed news analysis and commentary that’s free to read and republish.

Its banner head also has the subtitle “Academic rigour, journalistic flair”. Apparently, at least judging by Mr Vagg’s article, this proud boast doesn’t apply when it comes to the history of science.

Mr Vagg, Clinical Senior Lecturer at Deakin University School of Medicine & Pain Specialist at Barwon Health, apparently recently attended a conference in Florence and took time out to visit the Museo Galileo, a laudable way to spend his free time. He tells us he bought three books from the gift shop one of which was Galileo: Antichrist, which he describes, a serious scholarly attempt to look behind the obvious motives for his trial and punishment by the Church to some of the contemporary nuances, going on to say that he highly recommend[s] it, if you’re a Galileo freak and historical conspiracy theory enthusiast like me. Unfortunately Mr Vagg is mistaken in his assessment of this book. Of all the more recent publication about Galileo, provoked by the four hundred and fiftieth anniversary of his birth, Galileo: Antichrist is one of the worst. A popular biography written by Michael White it turns back the clock by about two hundred years and presents a vision of Galileo’s life and work that would be comfortably at home at the beginning of the nineteenth century, full of myths and distortion and not to be recommended to anybody who serious wants to know the historical truth about Galileo Galilei. Mr Vagg seems to have largely based his “four truths” on Whites totally distorted view of Galileo and his achievements.

His first “truth is entitled “He got rid of Aristotle from science” and I reproduce the whole of his section to this theme, which is to put it mildly horrendous. His first paragraph reads as follows:

Before Galileo, science (known then as natural philosophy) was based almost entirely on the writings of Aristotle. St. Thomas Aquinas enshrined a huge amount of Aristotle’s teachings about the natural world as Church-approved dogma without any empirical basis. Until the Renaissance, virtually nobody in Europe or anywhere else apart from Arabic geniuses like Ibn Sina and Ibn Rushd advanced science by paying attention to the real world. They just looked up what Aristotle had to say and left it at that, even if what they observed was at odds with what they read.

One of my favourite historians of medieval science, David C Lindberg, died a couple of weeks ago and he would be spinning in his grave if he knew of this travesty of his disciple, which reads like something from the beginning of the nineteenth century or even from the Renaissance. It was Renaissance scholars who were initially responsible for this wholly false picture of medieval science. They created the myth that the golden age of antiquity created a cornucopia of knowledge that got lost with the collapse of the Roman Empire and that they were responsible for the rebirth (renaissance) of this knowledge, freeing Europe from the dark ignorance of the intervening period, which they termed the Middle Ages. This myth was perpetuated right up into the nineteenth century, when the French physicist and historian of science, Pierre Duhem, became the first person to challenge it. Throughout the twentieth century a series of brilliant historians of science, including such people as Marshall Clagett, Alistair Crombie, John Murdoch, Edward Grant, the afore mentioned David Lindberg and others, completely dismantled this myth showing that European medieval scholars made significant contribution to the evolution of science; contribution on which people such as Galileo built their own contributions.

To give one example that is very relevant to Galileo and his theories of motion called revolutionary by Vagg. Even Aristotle was aware of the fact that his laws of motion were anything but satisfactory and the first person to subject them to serious scrutiny was John Philoponus in the sixth century CE, who developed the impetus theory, which was developed further by Arabic scholars in the twelfth and thirteenth centuries and by Buridan in Europe in the fourteenth century. Galileo well aware of this work adopted the impetus theory early in his own work on kinetics before moving on to an incorrect form of the theory of inertia. (Galileo still considered natural motion to be circular, not linear, an Aristotelian concept!) In the fourteenth century the so-called Oxford Calculatores of Merton College developed the mathematical mean speed theory, which is to all intents and purposes Galileo’s law of fall. One of the so-called Paris physicists Nicolas Oresme produced a geometrical proof of this theory, in the form of a graph, which is identical to the proof given by Galileo for his law of fall in his Discorsi more than three hundred and fifty years later. It was also the invention of spectacles in the late thirteenth century that would eventually lead to the invention of the telescope, the instrument that would make Galileo famous. Far from being scientifically sterile the Middle Ages was the very fertile seed bed in which Galileo’s own scientific ideas grew to maturity.

In his second paragraph in this section Vagg dished up the following:

Galileo did more than anyone else to rid natural philosophy of its reliance on the authority of Aristotle, replacing it with an empirical and mathematical method. Deciding scientific knowledge by scholarly argument rather than doing experiments seems bizarre to us now. Galileo showed again and again that mathematical models could yield results that were reproducible by anyone else and disproved Aristotle’s observations. Eventually, the successes of the new way of doing natural philosophy were too overwhelming to ignore. The Aristotelians slunk off to find other occupations. Galileo showed irrefutably that you couldn’t do science by magisterial authority alone. Your results had to stand up to scrutiny in the real world.

As I explained in an earlier post, that earned me my reputation as a Galileo deflator, Johannes Kepler, Thomas Harriot, Christoph Scheiner, William Gilbert, Christoph Clavius, Francoise Vieta, Isaac Beeckman and Simon Stevin, all roughly contemporaries of Galileo, all did at least as much, and some of them more than, Galileo in establishing the ‘new’ experimental mathematics based science in the early seventeenth century and the myth of Galileo as the great Aristotle slaying champion is one that needs to be firmly stamped on. Also modern history of science has shown that many aspects of Aristotle’s philosophy continued to exercise a strong influence on the development of science well into the seventeenth century long passed the death of Galileo.

Vagg’s second point is actually a very good one and would have been praise worthy if he hadn’t gone on to spoil it in the detail. His title is, “He was not the prototype of a misunderstood lone genius”. This is very correct and in fact the misunderstood lone genius is not only a myth but also a chimera, there has never been one. This is in fact an important point that should indeed be taught to every school kid as part of their science courses, however Vagg goes on to spoil it by presenting a totally mythical picture of Galileo.

Galileo was very much not a lone genius. He relied on Guidobaldo del Monte and Christopher Clavius to get both of his jobs as professor of mathematics and early in his career he relied on the transcript of the lectures from the Collegio Romano to deliver his own lectures. As a young researcher he spend long periods brainstorming with del Monte and Paolo Sarpi over a wide range of topics. Sometimes it is not possible to tell if the ideas he made public really were his own or ones borrowed from one or other of those intellectual partners. For his telescope and instrument making he employed and relied heavily on a technician, who usually doesn’t get the credit he deserves. For his excursions into applied science and technology in the arsenal in Venice he relied heavily on the guidance of master ship builders. Later in life following his overnight fame he relied on his fellow members of the Accademia dei Licei as sounding boards for his ideas and those lynx-eyed friends also prepared his works for publication and published them. Even after his fall, under house arrest, Galileo had students and his son helping with his scientific work. Galileo was for most of his life part of a network of like-minded friends and assistants, however this is not the story that Vagg presents.

When he published the Starry Messenger to announce his discovery of the moons of Jupiter with his new telescope, he not only sent out copies of his books to his colleagues, but also sent them better telescopes than the ones they had!

I suggest Vagg should read Mario Biagioli’s Galileo Courtier and Galileo’s Instruments of Credit. Galileo did not send copies of the Sidereus Nuncius or telescopes to his colleagues; he sent them to civil and religious potentates who could help him in his ambitions to climb the social greasy pole. Despite requests for a telescope Kepler had to wait till a passing aristocrat graciously let him borrow one for a couple of hours to see the new astronomical discoveries. Galileo ignored Kepler’s friendly collegial overtures until he, Kepler, became the only person to support without confirmation those discoveries, publishing Kepler’s letter without his knowledge or permission. Later he ridiculed Kepler’s groundbreaking book on the optics of the telescope as unreadable. He ignored Kepler’s work on heliocentricity when writing the Dialogo, despite the fact that it was the best available on the subject, whilst ridiculing Tycho’s work. When he and Scheiner both discovered the sunspots he accused Scheiner, unjustifiably, of plagiarism and then published some of Scheiner’s results in the Dialogo as his own. In the dispute over the nature of comets with Grassi he viciously attacked Grassi exposing him to public ridicule with malicious polemic, although scientifically Grassi was right and he, Galileo, was wrong. As he and Marius both independently discovered the moons of Jupiter he accused Marius of plagiarism, a charge that stuck ruining Marius’ reputation until it was restored at the beginning of the twentieth century.

This is the man who Vagg claims was “a practising believer in developing a scientific consensus”. Galileo did not believe in scientific consensus, he was a man with a monstrous ego who was right and anybody who disagreed with him got mauled viciously for his troubles. Vagg writes rather pathetically:

He was revered in his lifetime by every natural philosopher of note, although some of ones he personally insulted were somewhat grudging in their admiration.

He was justifiably intensely disliked and despised by quite a few natural philosophers of note. Vagg does however point out that Galileo was not perfect:

He could, of course, also be spectacularly wrong. Nobody remembers his views on comets and the causes of tides, which were two of the biggest contemporary scientific controversies he weighed into. It should also be pointed out that these were the two most prominent examples where Galileo was being particularly stubborn in holding out against the prevailing tide of opinion.

A lot of historians of science remember his views on comets and the causes of tides very well indeed.

The title of Vagg’s next section is also correct, “He was genuinely interdisciplinary” but then again so were all his contemporaries, our concept of the single disciple specialist or expert didn’t exist in the Renaissance. However in his description of Galileo’s multifarious activities Vagg makes several serious blunders. He tells us:

While his astronomical work may seem like it had no practical applications, it led him to develop a way of measuring longitude at sea that was not surpassed until more than 150 years later.

Galileo did conceive a method of using the eclipses of the moons of Jupiter by the planet, as they orbited it, as a clock with which to determine longitude. However, he never succeeded in determining the orbits accurately enough for this purpose, a task first completed by Cassini many decades later. Also more importantly, although this method could be and was used successfully on land, for cartographical purposes, it could never be used at sea, a ship being far too unstable to make the necessary highly accurate astronomical telescopic observations. It is of historical interest that the chronometer method and the lunar distance method of determining longitude, which were the methods that would eventually solve the problem, were both proposed long before Galileo was even born. Next up we get informed that:

He translated his knowledge of the abstract mathematical minutiae of optics into building much better telescopes than anyone else had. He extended this theory to conceive and design the microscope as well.

With the exception of Yaakov Zik, almost all historians of the telescope think that Galileo had very little knowledge of geometrical optics and in fact used his skills as an instrument maker to develop his telescopes by simple trial and error. Although no single inventor of the microscope is known to us, as I’ve already written in an earlier post, Galileo was almost certainly one of the inventors of the microscope an instrument that he, according to his own testimony, discovered by accident when he put one of his telescopes to his eye the wrong way round. He then improved on this accidental discovery, again not by using the theory of geometrical optics, but by trial and error.

The military compass described by Vagg was in fact invented by del Monte and only manufactured and sold along with instruction courses in its use by Galileo as an additional source of income. Vagg closes out this section with a final error:

In the final year of his life, having gone totally blind, Galileo conceived and dictated the design for a clock escapement which was very similar to the one used by Huygens to construct the first pendulum clock a couple of decades later.

The pendulum clock escapement conceived by Galileo but never really realised was substantially different to the one developed by Huygens decades later.

Vagg’s fourth point worthy of the attention of school kids is, “He stood up for the philosophy of science”. Whilst this statement does contain more than a grain of truth Vagg again succeeds in on presenting a largely false historical picture to illustrate it.

Despite using maths that is now taught in high school and equipment that would embarrass a 21st century toy shop owner, Galileo utterly changed the way his contemporaries saw themselves in the universe. Educated citizens of his time had a sophisticated explanation of the world and the heavens, but it was based on dogma and supposition to a degree that is very hard to comprehend today. By making arguments that were based on reasoning, mathematics and experimental verification, he was consistently and obviously successful with many of his predictions. This opened his contemporaries’ eyes to the extraordinary possibilities on offer with knowledge gained by the scientific method.

This paragraph contains a complete misrepresentation of the general state of science at the time of Galileo. Those things that Vagg praises Galileo for had been gaining ground strongly throughout European science for more than a century before Galileo made any contributions to the topic at all. Since the High Middle Ages people had been making contributions to science based on reasoning, mathematics and experimental verification. Galileo made an important contribution to this trend but he didn’t start it. It should also not be forgotten that Galileo used this methodology when it suited him but also resorted to polemic and brow beating when it suited him better. His dispute with Grassi on the nature of comets is a good example of this behaviour.

Observing that Venus had phases like the moon, and having plotted the orbits of the Galilean satellites meticulously, he could join the dots conceptually, and followed the chain of reasoning to the end. The results were not what he was originally looking to discover, but he just couldn’t turn his back on his data. Earth was demoted from the fixed centre of the medieval universe to just another planet orbiting the sun. He strenuously sought ways to avoid provoking the Church (he was a devout believer right to the end) but he could not stop progressing and disseminating his research, despite those who told him it was safer to pull his head in.

Maybe I’m misreading this but it appears to me that Vagg is implying that Galileo initiated the heliocentric model of the cosmos, has he never heard of Copernicus or Kepler? Also, as I’ve written in detail in other posts, the telescopic discoveries made by Galileo, Scheiner, Marius, Harriot and others, whilst refuting a pure Ptolemaic geocentric model, were a long way from confirming a heliocentric model and were also conform with various Tychonic and semi-Tychonic models. These facts alone constitute an important lesson in how science evolves.

“He strenuously sought ways to avoid provoking the Church” is another mythical statement from Vagg. One of Galileo’s major problems was that his mega ego prevented him from seeing when he was provoking those that he attacked, mocked, contradicted. Convinced of his own innate superiority he just blundered from one provocation to the next. A seemingly trivial point, but actually not so trivial, is the claim “he was a devout believer right to the end” this, or something similar is a standard part, of the Galileo mythology trotted out by almost everyone who has put pen to paper or fingers to keyboard to write about the man. However, David Wootton in his biography, Galileo: Watcher of the Skies, a genuinely ‘serious scholarly’ book, argues very convincingly that far from being the devout Catholic of popular science literature, Galileo was in fact a very lax Catholic. This of course rather spoils the common plaint, ‘he was a true believer and still they punished him’ of the ‘Galileo was a martyr for science’ fan club.

He insisted that dependable, reproducible scientific results should trump religious dogma or non-empirical philosophical ideas any day of the week. He paid a price for his abrasiveness, but he should not be remembered just for the events that blighted his later years. His persecution and house arrest by the Vatican were not inevitable, but threw into sharp focus the clash of his era between a recognisably modern science-based worldview and the medieval superstition of authoritarian belief systems. Somebody had to be the first to point out the Emperor’s new clothes.

The last couple of lines of the previous paragraph and this one refer, of course, to the publication of Galileo’s Dialogo and his subsequent trial by the Inquisition of Rome. Unfortunately Galileo’s masterpiece didn’t rely on ‘dependable, reproducible scientific results’ because they didn’t exist for the heliocentric theory, instead he used polemic and sleight of hand to confuse, bamboozle and confound his opponents hoping that nobody would notice how thin his scientific arguments actually were. The whole book was of course structured around the fourth and final section, Galileo’s theory of the tides, (which Vagg so casually swept aside above) that he, in a strange fit of blind arrogance, believed to be the missing empirical proof that the earth moved, the lack of such proof being the strongest scientific argument against the heliocentric hypothesis. Originally Galileo wanted to give the whole book the title Theory of the Tides but the Church censor wouldn’t permit it, so he chose the title that has gone down in history instead. Galileo thought that this theory was his all-winning trump, whereas it was in reality a busted flush, as any half thinking person could have told him. Galileo did not write the book in opposition to the Church but with the Pope’s explicit permission. However Urban, not unreasonably, commissioned him to write a book presenting the various cosmological/astronomical models of the cosmos factually and without favour or prejudice. If Galileo had written a book presenting the arguments for and against geocentricity, heliocentricity and helio-geocentricty (he completely ignored the latter, although at the time he wrote it was the model that best fit the known scientific facts) fairly and honestly, we probably wouldn’t waste so much time discussing the conflict between him and the Church because there wouldn’t have been one. Instead he wrote a book, which was an undisguised polemic in favour of heliocentricity hoping nobody would notice the lack of real empirical evidence and finished it off by gratuitously insulting the Pope. Wow really clever GG! The clash between worldviews that Vagg so pathetically evokes at the end of this paragraph exists only in his fantasy and not in the historical reality. The clash between Galileo and Urban was on a very personal level and in no way reflects a general clash between the then theological worldview and, to quote Vagg, a recognisably modern science-based worldview. This supposed clash is a myth created in the nineteenth century that has long been demolished by historians of science but people like Vagg prefer to keep peddling the myths rather than taking the trouble to learn the truth. Possible the worst piece of claptrap in Vagg’s ahistorical article is his closing sentence.

I am however eternally grateful for the effect his life’s work had on the philosophy of science. Development of the Enlightenment values that underpin our society would not have been possible without the seismic burst of rationalism that Galileo unleashed from his villa in Northern Italy 500 years ago.

Wow Mr Vagg, you have set a new high water mark in ahistorical mythical hagiography. At least it will provide employment for lots of historians rewriting all those history books that missed out on GG’s vital role in the Enlightenment. Mr Vagg, pain specialist, your pathetic attempts to write history of science, a subject you very obviously know nothing about, has certainly caused this historian of science a great deal of pain indeed.

 

28 Comments

Filed under History of Astronomy, History of science, Myths of Science, Renaissance Science

Preach truth – serve up myths.

Over Christmas I poked a bit of fun at Neil deGrasse Tyson for tweeting that Newton would transform the world by the age of 30, pointing out he was going on forty-five when he published his world transforming work the Principia. The following day NdGT posted a short piece on Face Book praising his own tweet and its success. Here he justified his by the age of thirty claim but in doing so rode himself deeper into the mire of sloppy #histsci. You might ask why this matters, to which the answer is very simple. NdGT is immensely popular especially amongst those with little idea of science and less of the history of science and who hang on his every utterance. Numerous historians of science labour very hard to dismantle the myths of science and to replace them with a reasonable picture of how science evolved throughout its long and convoluted history. NdGT disdains those efforts and perpetuates the myths leading his hordes of admirers up the garden path of delusion. Let us take a brief look at his latest propagation of #histmyth.

NdGT’s post starts off with the news that his Newton birthday tweet is the most RTed tweet he has every posted citing numbers that lesser mortals would not even dare to dream about. This of course just emphasises the danger of NdGT as disseminator of false history of science, his reach is wide and his influence is strong. Apparently some Christians had objected to NdGT celebrating Newton’s birthday on Christ’s birthday and NdGT denies that his tweet was intended to be anti-Christian but then goes on to quote the tweet that he sent out in answer to those accusations:

“Imagine a world in which we are all enlightened by objective truths rather than offended by them.”

Now on the whole I agree with the sentiment expressed in this tweet, although I do have vague vision of Orwellian dystopia when people from the scientism/gnu atheist camp start preaching about ‘objective truth’. Doesn’t Pravda mean truth? However I digress.

I find it increasing strange that NdGT’s craving for objective truth doesn’t stretch to the history of science where he seems to much prefer juicy myths to any form of objectivity. And so also in this case. In his post he expands on the tweet I had previously poked fun at. He writes:

Everybody knows that Christians celebrate the birth of Jesus on December 25th.  I think fewer people know that Isaac Newton shares the same birthday.  Christmas day in England – 1642.  And perhaps even fewer people know that before he turned 30, Newton had discovered the laws of motion, the universal law of gravitation, and invented integral and differential calculus.  All of which served as the mechanistic foundation for the industrial revolution of the 18th and 19th centuries that would forever transform the world.

What we are being served up here is a slightly milder version of the ‘annus mirabilis’ myth. This very widespread myth claims that Newton did all of the things NdGT lists above in one miraculous year, 1666, whilst abiding his time at home in Woolsthorpe, because the University of Cambridge had been closed down due to an outbreak of the plague. NdGT allows Newton a little more time, he turned 30 in 1672, but the principle is the same, look oh yee of little brain and tremble in awe at the mighty immaculate God of science Sir Isaac Newton! What NdGT the purported lover of objective truth chooses to ignore, or perhaps he really is ignorant of the facts, is that a generation of some of the best historians of science who have ever lived, Richard S. Westfall, D. T. Whiteside, Frank Manuel, I. Bernard Cohen, Betty Jo Teeter Dobbs and others, have very carefully researched and studied the vast convolute of Newton’s papers and have clearly shown that the whole story is a myth. To be a little bit fair to NdGT the myth was first put in the world by Newton himself in order to shoot down all his opponents in the numerous plagiarism disputes that he conducted. If he had done it all that early then he definitely had priority and the others were all dastardly scoundrels out to steal his glory. We now know that this was all a fabrication on Newton’s part.

Newton was awarded his BA in 1665 and in the following years he was no different to any highly gifted postgraduate trying to find his feet in the world of academic research. He spread his interests wide reading and absorbing as much of the modern science of the time as he could and making copious notes on what he read as well as setting up ambitious research programmes on a wide range of topics that were to occupy his time for the next thirty years. In the eighteen months before being sent down from Cambridge because of the plague he concentrated his efforts on the new analytical mathematics that had developed over the previous century. Whilst reading widely and bringing himself up to date on material that was not taught at Cambridge he simultaneously extended and developed what he was reading laying the foundations for his version of the calculus. It was no means a completed edifice as NdGT, and unfortunately many others, would have us believe but it was still a very notable mathematical achievement. Over the decades he would return from time to time to his mathematical researches building on and extending that initial foundation. He also didn’t ‘invent’ integral and differential calculus but brought together, codified and extended the work of many others, in particular, Descartes, Fermat, Pascal, Barrow and Wallace, who in turn looked back upon two thousand years of history on the topic.

In the period beginning in 1666 he left off with mathematical endeavours and turned his attention to mechanics mostly addressing the work of Descartes. He made some progress and even wondered, maybe inspired by observing a falling apple in his garden in Woolsthorpe, if the force which causes things to fall the Earth is the same as the force which prevents the Moon from shooting off at a tangent to its orbit. He did some back of an envelope calculations, which showed that they weren’t, due to faulty data and he dropped the matter. He didn’t discover the laws of motion and as he derived the law of gravity from Huygens’ law of centripetal force that was first published in 1673 he certainly didn’t do it before he was thirty. In fact most of the work that went into Newton’s magnum opus the Principia was done in an amazing burst of concentrated effort in the years between 1684 and 1687 when Newton was already over forty.

What Newton did do between 1666 and 1672 was to conduct an extensive experimental programme into physical optics, in particular what he termed the phenomenon of colour. This programme resulted in the construction of the first reflecting telescope and in 1672 Newton’s legendary first paper A Letter of Mr. Isaac Newton, Professor of the Mathematicks in the University of Cambridge; Containing His New Theory about Light and Colors published in the Philosophical Transactions of the Royal Society. Apparently optics doesn’t interest NdGT. Around 1666 Newton also embarked on perhaps his most intensive and longest research programme to discover the secrets of alchemy, whilst starting his life long obsession with the Bible and religion. The last two don’t exactly fit NdGT’s vision of enlightened objective truth.

Newton is without doubt an exceptional figure in the history of science, who has few equals, but like anybody else Newton’s achievements were based on long years of extensive and intensive work and study and are not the result of some sort of scientific miracle in his young years. Telling the truth about Newton’s life and work rather than propagating the myths, as NdGT does, gives students who are potential scientists a much better impression of what it means to be a scientist and is thus in my opinion to be preferred.

As a brief addendum NdGT points out that Newton’s birthday is not actually 25 December (neither is Christ’s by the way) because he was born before the calendar reform was introduced into Britain so we should, if we are logical, be celebrating his birthday on 4 January. NdGT includes the following remark in his explanation, “But the Gregorian Calendar (an awesomely accurate reckoning of Earth’s annual time), introduced in 1584 by Pope Gregory, was not yet adopted in Great Britain.” There is a certain irony in his praise, “an awesomely accurate reckoning of Earth’s annual time”, as this calendar was developed and introduced for purely religious reasons, again not exactly enlightened or objective.

 

 

 

14 Comments

Filed under History of Astronomy, History of Mathematics, History of Physics, History of science, Myths of Science, Renaissance Science

Just saying…

Neil deGrasse Tyson seems to have a real talent for very sloppy history of science. He pontificates on history of science topics without taking the trouble to check his facts. On Christmas day to acknowledge the birthday of Isaac Newton he tweeted the following:

On this day long ago, a child was born who, by age 30, would transform the world. Happy Birthday Isaac Newton b. Dec 25, 1642

Now, you would think that an astrophysicist would be able to cope with simple arithmetic but it seems to be beyond NdGT’s mental grasp. Newton, as he points out, was born in 1642. The contribution to science that he made that “would transform the world” can only refer to his Philosophiæ Naturalis Principia Mathematica and, as any historian of science could have told NdGT, this was published in 1687. Applying the subtraction algorithm, which most of us learnt in primary school, 1687 – 1642 = 45 and not thirty. Even being generous, as this is a fifty per cent error in the stated age at which Newton “would transform the world” we cannot really award NdGT anything but an F for this incredibly sloppy piece of work. Do try to do better next time Neil!

11 Comments

Filed under History of Astronomy, History of science, Newton

Someone is Wrong on the Internet.

Many of the readers of this blog will probably recognise the title of this post, as the punch line to one of the best ever xkcd cartoons. Regular readers will also know that the Renaissance Mathematicus cannot resist stamping on people who post inanely inaccurate or downright wrong history of science claims, comments etc. on the Internet. This last pre-Christmas post brings two examples of such foolishness that crossed our path in recent times.

The first concerns a problem that turns up time and again, not only on the Internet but also in many books. It is the inability of lots of people to comprehend that there cannot be a year nil, year zero or whatever they choose to call it. (Have patience dear reader the reason will be explained soon). Even worse are the reasons that such people, in their ignorance, dream up to explain the absence of the, in their opinion, missing numberless year. I stumbled across a particularly juicy example on the BBC’s History Extra website last Thursday, in a post entitled, 10 of the most surprising numbers in history. Actually the whole post really deserves a good kicking but for now I will content myself with the authors surprising number, AD 0…  the date that never was. The entry is very short so I’ve included the whole of it below:

The AD years of the Christian calendar are counted from the year of Jesus Christ’s birth, and, as the number zero was then unknown to the west, Dionysius began his new Christian era as AD 1, not AD 0. [my emphasis]

While it is now the consensus that Jesus was probably born between 7 and 3 BC, Dionysius’s new calendar is now the most widely used in the world, while AD 0 is one of the most interesting numbers never to have seen the light of day.

The first time I read this sparking pearl of historical wisdom I experienced one of those extremely painful ‘head-desk’ moments; recovering from my shock and managing at least a semblance of a laugh at this stunning piece of inanity I decided to give it the Histsci Hulk treatment.

Before I explain why there cannot be a year zero, let us look briefly at why Dionysius Exiguus, or Dennis the Short, started his count of the years with AD 1. Dennis, he of little stature, was not trying to create the calendar we use today in everyday lives but was making his contribution to the history of computos, the art of calculating the date of Easter. Due to the fact that the date of Easter is based on the Jewish Pesach (that’s Passover) feast, which in turn is based on a lunar calendar and also the fact that the lunar month and the solar year are incommensurable (you cannot measure the one with the other), these calculations are anything but easy. In fact they caused the Catholic Church much heartbreak and despair over the centuries from its beginnings right down to the Gregorian calendar reform in 1582. In the early centuries of Christianity the various solution usually involved producing a table of the dates of the occurrence of Easter over a predetermined cycle of years that then theoretically repeats from the beginning without too much inaccuracy. Dennis the vertically challenged produced just such a table.

In the time of our little Dennis there wasn’t a calendar with a continuous count of years. It was common practice to number the years according to the reign of the current monarch, emperor, despot or whatever. So for example the year that we know as 47 BCE would have been the third year of the reign of Gaius Julius Caesar. For formal purposes this dating system actually survived for a very long time. I recently came across a reference to a court case at the English Kings Bench Court in the eighteenth century as taking place on 12 July ‘4Geo.III’, that is the fourth year of the reign of George III. In Dennis the Small’s time the old Easter table, he hoped to replace, was dated according to the years of the reign of the Emperor Diocletian (245-311, reigned 284-305). Diocletian had distinguished himself by being particularly nasty to the Christians so our dwarf like hero decided to base his cycle on the 525 532 years “since the incarnation of our Lord Jesus Christ”; quite how he arrived at 525 532 years is not really known. AD short (being short, Dennis liked short things) for Anno Domini Nostri Iesu Christi (“In the Year of Our Lord Jesus Christ”). It was only later, starting with the Venerable Bede’s History of the Church (Historia Ecclesiastica) that Dennis’ innovation began to be used for general dating or calendrical purposes. The idea of BC years or dates only came into use in Early Modern period.

We now turn to the apparently thorny problem as to why there cannot be a year zero in a calendrical dating system. People’s wish or desire to find the missing year zero is based on a confusion in their minds between cardinal and ordinal numbers. (In what follows the terms cardinal and ordinal are used in their common linguistic sense and not the more formal sense of mathematical set theory). Cardinal numbers, one, two, three … and so on are used to count the number of objects in a collection. If, for example, your collection is the cookie jar there can be zero or nil cookies if the jar is, sadly, empty. Ordinal numbers list the positions of objects in an ordered collection, first, second, third … and so on. It requires only a modicum of thought to realise that there cannot be a zeroeth object, if it doesn’t exist it doesn’t have a position in the collection.

This distinction between cardinal and ordinal numbers becomes confused when we talk about historical years. We refer to the year five hundred CE when in fact we should be saying the five hundredth year CE, as it is an ordinal and not a cardinal. Remember our little friend Dennis’ AD, Anno Domini Nostri Iesu Christi (“In the Year of Our Lord Jesus Christ”)! We are enumerating the members of an ordered set not counting the number of objects in a collection. Because this is the case there cannot be a zeroeth year. End of discussion!

That this error, and particularly the harebrained explanation for the supposedly missing year zero, should occur on any history website is bad enough but that it occurs on a BBC website, an organisation that used to be world renowned for its informational reliability is unforgivable. I say used to be because I don’t think it’s true any longer. I would be interested in who is responsible for the history content of the BBC’s web presence as it varies between sloppy as here and totally crap as witnessed here and discussed here and here.

My second example is just as bad in terms of its source coming as it does from the Windows to the Universe website Brought to you by the National Earth Science Teachers Association. You would think that such an educational body would take the trouble to make sure that the historical information that they provide and disseminate is accurate and correct. If you thought that, you would be wrong, as is amply demonstrated by their post on Hellenistic astronomer, Ptolemy.

Ptolemy was a Greek astronomer who lived between 85-165 A.D. He put together his own ideas with those of Aristotle and Hipparchus and formed the geocentric theory. This theory states that the Earth was at the center of the universe and all other heavenly bodies circled it, a model which held for 1400 years until the time of Copernicus.

Ptolemy is also famous for his work in geography. He was the first person to use longitude and latitude lines to identify places on the face of the Earth.

We don’t actually know when Ptolemaeus (Ptolemy) lived, the usual way used to present his life is ‘fl. 150 CE’, where fl. means flourished. If you give dates for birth and death they should given as circa or c. To write them as above, 85–165 A.D. implies we know his exact dates of birth and death, we don’t! This is a trivial, but for historians, important point.

More important is the factual error in the second sentence: He … formed the geocentric theory. The geocentric theory had existed in Greek astronomy and cosmology for at least seven hundred years before Ptolemaeus wrote his Syntaxis Mathematiké (the Almagest). Ptolemaeus produced the most sophisticated mathematical model of the geocentric theory in antiquity but he didn’t form it. Those seven hundred years are not inconsequential (go back seven hundred years from now and you’ll be in 1314!) but represent seven hundred years of developments in cosmology and mathematical astronomy.

The last sentence contains an even worse error for teachers of the earth sciences. Ptolemaeus did indeed write a very important and highly influential geography book, his Geographike Hyphegesis. However he was not “the first person to use longitude and latitude lines”. We cannot be one hundred per cent who did in fact first use longitude and latitude lines but this innovation in cartography is usually attributed to a much earlier Alexandrian geographer, Eratosthenes, who lived about three hundred and fifty years before Ptolemaeus.

This is an example of truly terrible history of science brought to you by an organisation that says this about itself, “The National Earth Science Teachers Association is a nonprofit 501(c)(3) educational organization, founded in 1985, whose mission is to facilitate and advance excellence in Earth and Space Science education” [my emphasis]. I don’t know about you but my definition of excellence is somewhat other.

 

18 Comments

Filed under History of Astronomy, History of Cartography, History of science, Myths of Science

A very similar luminous lustre appears when one observes a burning candle from a great distance through a translucent piece of horn.

On 15 December 1612 (os) Simon Marius, Court Mathematicus in Ansbach, became the first astronomer to record a telescopic observation of the Andromeda Nebula. The importance of this observation was that whereas other known nebulae such as the Orion Nebula, had resolved into individual stars when viewed with a telescope, the Andromeda Nebula as recorded by Marius appears as “…a weak and faint lustre at the centre with a diameter of about one quarter of a degree. A very similar luminous lustre appears when one observes a burning candle from a great distance through a translucent piece of horn” (Simon Marius, Mudus Iovialis, 1614 my translation).

In the history of astronomy the Andromeda Nebula would go on to play a central role in the deep space observations of Charles Messier (M31) and William Herschel in the eighteenth century. In the early twentieth century its nature and status then became the bone of contention in the legendary dispute between Shapley and Curtis.

2014 being the four hundredth anniversary of the publication of Marius’ major astronomical work the Mundus Iovialis we have been celebrating his live and work in Middle Franconia. First high point of the various activities were the launching of the Marius Portal, an Internet website giving researchers free access to all primary and secondary works by and about Simon Marius with navigation in almost thirty different languages.

On 20 September a one-day conference was held with contributions covering the various aspects of Marius’ life and academic work (mathematics, astrology and astronomy) in Nürnberg. The proceedings of this conference are due to appear in book, form hopefully in 2015.

This coming Wednesday, 17 December 2014, will see the founding of the Simon Marius Gesellschaft (Simon Marius Society) in Nürnberg to further research and promote his life and work. Anybody who is interested is herewith cordially invited to apply for full or corresponding membership. There are no membership fees!

6 Comments

Filed under History of Astronomy, History of science, Local Heroes, Renaissance Science

Retelling a story – this time with all the facts

Before 1995 probably only a handful of people interested in the history of navigation had ever heard of the English clockmaker John Harrison and the role he played in the history of attempts to find a reliable method of determining longitude at sea. This situation changed radically when Dava Sobel published her book Longitude: The True Story of a Lone Genius Who Solved the Greatest Scientific Problem of His Time[1] in that year. This volume caught the public imagination and very rapidly became one of the most successful popular history of science and technology books of all time. It was followed just three years later by a lavishly illustrated expanded edition. Just one year after that followed the equally lavish television documentary film based on the book. By the year 2000 at the latest John Harrison had become a household name and a British scientific hero on a level with Newton and Darwin.

P.L. Tassaert's half-tone print of Thomas King's original 1767 portrait of John Harrison, located at the Science and Society Picture Library,

P.L. Tassaert’s half-tone print of Thomas King’s original 1767 portrait of John Harrison, located at the Science and Society Picture Library,

All of this would have been well and good if Sobel had actually adhered to the first three words of her subtitle, The True Story…, but unfortunately she sacrificed historical accuracy to the expediency of telling a good story, basically reducing a complex historical narrative to the fairy tale of a poor honest hero, John Harrison, overcoming adversity to finally triumph against the evil machination of his dishonest scheming opponent the Astronomer Royal, Nevil Maskelyne. Sobel’s lurid narrative proved, as already stated, commercially very successful but left its readers with a highly distorted view of what actually took place in the long eighteenth century in the endeavours to find a method of determining longitude and the role that the various people involved played in those endeavours. In particular Nevil Maskelyne was left in the popular public imagination looking rather like the devil’s evil cousin.

 

Rev. Dr Nevil Maskelyne Source Wikimedia

Rev. Dr Nevil Maskelyne
Source Wikimedia

About five years ago a major historical research project, under the auspices of the Arts & Humanities Research Council, was set up by Cambridge University and the National Maritime Museum in Greenwich on the history of the British Board of Longitude, the official body set up to oversee and direct the search for a method to determine longitude at sea in the eighteenth century. Led by Simon Schaffer for the University of Cambridge and Richard Dunn and Rebekah Higgitt for the National Maritime Museum this project featured a cast of excellent doctoral and post doctoral researchers some of whose findings can be found on the excellent Longitude Project Blog. To date this research project has produced a remarkable list of achievements. Alongside a volume of papers on the much maligned Nevil Maskelyne, which has just appeared and which I am looking forward very much to reading,

4114.1.450.450.FFFFFF.0

the whole of the Board of Longitude archive has been digitized and made available online to researchers. Currently on at the Museum in Greenwich is a major exhibition Ships, Clocks and Stars: The Quest for Longitude, which you can still visit if you hurry, it closes on the 4th of January 2015. If you are uncertain whether or not it’s worth visiting, it has just been awarded the British Society for the History of Science Great Exhibitions Award for 2014! If like myself you are unable for some reason to make the journey to Greenwich do not despair you can bring the exhibition into your own living room by acquiring the accompanying book Finding Longitude: How Ships, clocks and stars helped solve the longitude problem[2] by Richard Dunn and Rebekah Higgitt, a review of which is the actually subject of this post.

Finding Longitude001

My review is actually very simple this book is magnificent. If you have any interest in the histories of navigation, sea voyages, astronomy, clocks, John Harrison, Nevil Maskelyne, Tobias Mayer, and a whole ship’s cargo of other related and interrelated topics then buy this book! I guarantee you that you won’t regret it for one second. It combines thorough research, first class scholarship, excellent writing, unbelievably lavish illustrations, fascinating narratives and historical accuracy in one superb and, for what it is, surprisingly low priced large format volume. Unlike Sobel’s, from a historians standpoint, ill-starred volume, this work really does tell the true story of the solution of the longitude problem with all its complex twists and turns giving all the participants their dues. Although written for the general reader this book should also find a home on the bookshelves of any working historian of navigation, astronomy, horology, sea voyages or just the science and technology of the long eighteenth century.

This book will take you on a voyage through the choppy waters of eighteenth century science, politics and technology and deliver you up on the shores of the nineteenth century much more knowledgeable then you were when you boarded ship and entertain and delight you along the way. It will also make for a first class Christmas present.

[1] Dava Sobel, Longitude: The True Story of a Lone Genius Who Solved the Greatest Scientific Problem of His Time, Fourth Estate, London, 1995

[2] Richard Dunn & Rebekah Higgitt, Longitude: How Ships, clocks and stars helped solve the longitude problem, Collins and Royal Museums Greenwich, London 2014

12 Comments

Filed under Book Reviews, History of Cartography, History of Navigation, History of science