Category Archives: History of science

Aristocrats and paupers, farmers and tradesmen – Where do the scientists come from?

A few days ago on Twitter I stumbled across the following exchange, a certain Alex Wild (@Myrmecos) tweeted:

What does it say about modern science that most of the #scienceamoviequote tweets are about grants, publishing, tenure, and careers?

To which Claus Wilke (@ClausWilke) responded:

200 years ago no scientist worried about grants, tenure, careers.

All were wealthy lords with free time on their hands.

Or monks.

To which Gomijacogeo (@gomijacogeo) added:

Or had patrons…

Yours truly, as ever, eager to play Whac-A-Mole with any myth in the history of science, as soon as it pops its head above the parapet, it not being the first time that I’ve seen the same or similar expressed, reciprocated:

Sorry, but that is simple not true.

Referring to Claus Wilke’s comment rather than Gomijacogeo’s, which does have a certain amount of historical validity.

This brief exchange led me to think about the origins of the various figures from the history of science that I write about on a fairly regular basis and what follows is a totally informal survey of the backgrounds of those scholars. Mr Wilke’s remark only extends back to 1815 but my survey goes back to the fifteenth century on the principle that the further back one goes the more likely it is that a scholar needs to be independently wealthy or a monk.

Johannes Müller, aka Regiomontanus, was most probably the son of miller, miller by name miller by trade, who was obviously wealthy enough to send his son to university, where he became a lecturer on having completed his studies. Later he enjoyed the support of a series of patrons over a period of about fifteen years until his death. As is all too often the case, we no nothing about the background of Regiomontanus’ teacher Georg von Peuerbach before he became a lecturer at the University of Vienna. We do however know that he enjoyed the patronage of various kings and emperors in his role as an astrologer.

Moving into the sixteenth century we little about the backgrounds of the three Nürnberger mathematicians, Johannes Werner, Georg Hartmann and Johannes Schöner but all three were university graduates and all three held secure but relatively lowly and poorly paid jobs in the church, which however gave them the freedom to pursue their diverse mathematical activities. Georg Rheticus who knew all three of the Nürnberger came from a wealthy bourgeois background, although his father a town physician was executed for theft and fraud when he was a child. His mother was, however, independently wealthy and Achilles Grasser, another town physician, took over guiding his education until he became a university lecturer. Rheticus of course brought Copernicus’ magnum opus, De revolutionibus, to the world and it is to the good Nicolaus that we now turn. His father was a rich businessman, who also passed away whilst Copernicus was still a child. In his case his career was directed and supported by his uncle, Lucas Watzenrode, who was Prince Bishop of Ermland and thus a very powerful patron who also secured a church sinecure for his nephew, who thus needed never to work in his whole life, although he did take on important administrative posts in the Bishopric of Frauenburg.

Up until now with had quite a lot of wealthy and important patrons but not one wealthy lord, as a scholar in his own right. This changes with Tycho Brahe who was a genuine, bone fide, wealthy aristocrat, whose scientific career was footed on a very generous appanage from the Danish Crown, although as I have pointed out in an earlier post his appanage would almost certainly have been much larger had he decided to become a courtier instead of an astronomer.

The opposite end of the scale can be found in Tycho’s most famous assistant Johannes Kepler. His parents were poor, mostly working as innkeepers, although his father was a mercenary who regularly disappeared of to war and at some point never came back. Kepler, very obviously a gifted child, only got an education because of the very generous scholarship scheme that existed at the time in Baden-Württemberg to educate the large number of Protestant priest and school teachers needed following the conversion from Catholicism. Kepler then worked as a schoolteacher and district mathematician, a lowly paid job, in Austria before moving to Prague and becoming Tycho’s assistant and shortly afterwards his successor as Imperial Mathematicus. This was in theory a well-paid position but, as was all too often the case with royal and aristocratic patrons, actually getting paid was a major problem. Kepler would later enjoy the patronage of the Catholic General Albrecht Wenzel Eusebius von Waldstein, better known as Wallenstein, although I’m not sure that enjoy is the right word for their relationship.

With Kepler’s great rival in the heliocentricity stakes, Galileo Galilei, we have another aristocrat albeit a minor impoverished one, with an emphasis on impoverished. This is probably the reason that his father wanted him to study medicine, a profession that would guarantee a good income. Unfortunately he chose instead to become a mathematician a profession that was notoriously badly paid in the early seventeenth century. Galileo became a university professor for mathematics and despite subsidiary income from his thriving instrument workshop and providing boarding for students, a common practice amongst Renaissance professors, he was always infamously hard up. This was partially because he enjoyed la dolce vita and lived beyond his means and partially because of the financial demands of his brother and sisters for whom he took over responsibility after the death of his father. This is probably the main reason that Galileo used his scientific discoveries as capital to acquire the patronage of the Medici and became a courtier, leaving academia behind him.

Simon Marius, astronomical colleague, of both Kepler and Galileo, although his relations with both of them were fraught, was the son of a barrel maker and relied on the patronage of the local lord of the manor to obtain his education. The same lord then employed him as court astrologer thus ensuring that he could devote his live to his scientific activities.

Christoph Clavius, about whose background we know absolutely nothing, was like all the other Jesuit mathematicians and astronomers, who I’ve written about over the years, a monk. Although it should be remembered that the Jesuits were/are essentially a teaching order so the scientific Jesuits can almost be considered as proto-professional scientist (excusing here the anachronistic use of the term scientist and it further uses in this post).

Mathematician and physicist, Marin Mersenne, was a genuine monk who conducted his voluminous scientific correspondence from his humble monk’s cell. His colleague, contemporary and fellow Jesuit academy graduate, René Descartes was the son of a wealthy lawyer and politician, who after graduating from university as a lawyer became a mercenary. After he retired from soldiering he lived from his inherited wealth although he also had patrons at different stages of his life. Pierre Gassendi, a priest who lived and worked as a university professor, came from a similar bourgeois background. Holland’s most famous Cartesian, Christiaan Huygens was the son of a wealthy Dutch aristocrat, who however on his appointment to the French Académie des sciences became a, highly paid, professional scientist.

Crossing the channel to the British Isles we meet another aristocrat in the form of Robert Boyle, who was wealthy enough to live the life of an independent scholar. Boyle’s closest colleague and one time assistant, Robert Hooke, was the exact opposite. Born the son of an Anglican curate he was left almost penniless when his father died. Hooke had to strive for everything he got in life and his inherent feelings of social inferiority might go a long way to explaining his less than pleasant character. Hooke strove well, dying a wealthy man, money earned by his own honest labour. No patronage here.

Hooke’s nemesis Isaac Newton was the son of a yeoman farmer, albeit a wealthy one. Later in life when he inherited them, the Newton acres generated an annual income of six hundred pounds per annum, not bad compared to the one hundred pounds per annum paid to the Astronomer Royal, for example. Newton’s mother, however, put him through university as a sizar, a student who earns his tuition fees by working as a servant to other students. After graduating MA for which he had received a fellowship, Newton became Lucasian Professor and later, famously, warden of the mint thus earning his own living without patronage. Newton’s sidekick Edmond Halley was the son of a wealthy soapboiler, a not especially romantic profession but obviously a profitable one, as Halley inherited a substantial fortune after his father was murdered. Halley would go on to hold various positions including Savilian Professor and most notably Astronomer Royal.

At the moment I’m (supposed to be) preparing a lecture on the eighteenth-century pneumatic chemists, so let us now turn our attention to them. Stephen Hales was the son of a Baronet, a purchasable title, who went on to become an Anglican clergyman. Although this survey does not include many of them, clergymen made considerable contributions to the sciences, as amateurs, throughout the eighteenth and nineteenth centuries. Joseph Black was the son of a wine trader who after a very successful studentship went on to become professor of medicine and chemistry and thus a professional scientist. Black’s student Daniel Rutherford was the son of a professor of medicine and went on himself to become a professor of botany. William Brownrigg the son of landed gentry became a medical practitioner. Henry Cavendish was a scion of one of the oldest and most powerful aristocratic families in Britain, who was thus, like Robert Boyle, able to lead the life of a gentleman scientist, making him the third scientist to fulfil the cliché expressed in the tweet that prompted this post. The most famous of the pneumatic chemists, Joseph Priestley, was the son of a cloth finisher, supported by wealthy relatives he studied to become a dissenting preacher and teacher both of which professions he practiced for many years before relatively late in life moving to Birmingham, where he effectively became house chemist to the Lunar Society. For a number of years he had been private tutor to the children of Lord Shelburne, who might thus be considered a patron.

The astronomer William Herschel was the son of a military musician who followed his father into the Hanoverian army as an oboist. After a military defeat he fled to Britain (as a deserter!) where he successfully established himself as an organist, composer, conductor and music teacher, astronomer was his hobby. Following the discovery of Uranus he was appointed The King’s Astronomer, enjoying the patronage of George III and able to devote himself full time to the study of the stars.

Closing out in the nineteenth century with three rather random scientists, all of who achieved notoriety and fame, Joseph Fraunhofer, Humphry Davy and Michael Faraday all started life in poor families but went on, largely through their own efforts to become professional scientists who help shape modern science.

The above is, of course, all anecdotal and as is well known the plural of anecdote is not data. However I think that it demonstrates that at least since the fifteenth century, in Europe, men who went on to become important contributors to the evolution of science could and did come from a wide variety of backgrounds and managed to conduct their investigation through an equally wide variety of channels. They were by no means all “wealthy lords with time on their hands or monks”.

On the subject of patronage, which helped many of those I have sketched to follow their chosen paths in the sciences. I personally don’t see a great deal of difference between a wealthy ruler in the Renaissance supporting the work of an outstanding researcher and some modern international business conglomeration paying for a new research facility at some modern elite university. Both are institutions with substantial resources, which see the utility of supporting scientific research for whatever reasons they might have.




Filed under History of science, Myths of Science

Der Erdapfel

Erdapfel is the word for potato in my local Franconia dialect, in fact in most of Southern Germany and Austria. In High Germany a potato is ein Kartoffel. Don’t worry this is not a post about root vegetables or variations in German regional dialects. Der Erdapfel is also the name given to the so-called Behaim Globe, the oldest known surviving terrestrial globe, Nürnberg’s most famous historical artefact. The name, which literally translates as Earth Apple, is thought to be derived from the medieval term Reichsapfel (Empire Apple), which was the name of the Globus Cruciger, or orb, as in orb and sceptre, the symbols of power of the Holy Roman Emperor; the orb symbolising the earth. The Behaim globe, which was conceived but not constructed by Martin Behaim, is together with Behaim, the subject of many historical myths.


Martin Behaim was born in Nürnberg in 1459 and lived with his parent on the market place next door to the businessman Bernhard Walther (1430–1504) who was the partner to Regiomontanus in his printing and astronomical activities during the last five years of his life living in Nürnberg. Martin’s father was one of the rich traders, who dominated Nürnberg culture. In 1576 he was sent away to Flanders to apprentice as a cloth trader. In 1484 he journeyed to Portugal, which is where to mythological part of his life begins. According to the traditional version of his life story he took part in two sea voyages down the west coast of Africa with Diogo Cão. He was knighted by the Portuguese king and appointed to the Portuguese Board of Navigation. All of this took place because he was supposedly a student of Regiomontanus, whose ephemerides, the first ever printed ones and highly accurate, were well known and respected on the Iberian Peninsula. All of this information comes from Behaim himself and some of it can be read in the texts on the Behaim Globe.


Artist's impression of Martin Behaim with his globe. Artist unknown

Artist’s impression of Martin Behaim with his globe. Artist unknown

Between 1490 and 1493 Behaim returned to Nürnberg to sort out his mother’s testament and it was during this period that he persuaded to city council to commission him to produce a globe and a large-scale wall map of the world. It is not certain if the wall map was ever produced and if it was it has not survived but the globe certainly was and it is now, as already said, the oldest known surviving terrestrial globe. It is not however, as is often falsely claimed the oldest or first terrestrial globe. The earliest recorded terrestrial globe was constructed by Crates of Mallus in the second century BCE. Also Ptolemaeus in his Geographia, in his discussion of different methods of cartographical projection, acknowledges that a globe in the only way to accurately represent to earth. The Behaim Globe is not even the earliest European medieval globe as the Pope in known to have commissioned earlier terrestrial globes, which have not survived. Given their method of construction and the materials out of which they are made the survival rate of globes is relatively low.

The globe remained the property of the city council of Nürnberg until the middle of the sixteenth century when it was returned to the Behaim family who basically threw it into the corner of an attic and forgot about it. In the nineteenth century it was rediscovered and studied by various historians of cartography and a copy was made for a museum in Paris. Unfortunately it was also ‘restored’ several times through processes that did far more damage than good. In the early twentieth century it was lent to the Germanische Nationalmuseum in Nürnberg. In the 1930s the Behaim family considered selling the globe, most probably in America, and to prevent this Adolf Hitler bought the globe with his own private money and presented it to the German nations. It still resides in the Germanische Nationalmuseum.

I said that the globe is veiled in myths and we will start to sort them out. Firstly Behaim only conceived the globe he didn’t construct it as many people believe. The globe was made by pasting strips of linen onto a fired clay ball. The ball produced by Hans Glockengiesser (a family name that translates as bell founder) and the globe constructed by Ruprecht Kolberger. After the paste had set the globe was cut free from the clay form by a single cut around its equator and the two halves we then pasted together on a wooded frame. The actually map was painted onto the linen ball by the painter and woodblock cutter Georg Glockendon and the lettering was carried out by Petrus Gegenhart. Behaim only seems to have directed and coordinated these activities.


Another popular myth is that because of Behaim’s activities in Portugal the cartography of the globe is cutting edge up to the minute modern; nothing could be further from the truth. The basis of the cartography is Ptolemaeus with obvious additions from other ancient Greek sources as well as The Travels of Sir John Mandeville and The Travels of Marco Polo. Much of the cartographical work is inaccurate even by the standards of the time, including surprisingly the west coast of Africa that Behaim supposedly had explored himself, which brings us to Behaim’s personal claims.


His claim to have sailed with Diogo Cão is almost certainly a lie. At the time of Cão’s first voyage along the African coast Behaim is known to have been in Antwerp. On his second voyage Cão erected pillars at all of his landing places naming all of the important members of the crew, who were on the voyage, Martin Behaim is not amongst them. They is no confirmatory evidence that Behaim was actually a member of Portuguese Board of Navigation and if he was his membership almost certainly owed nothing to Regiomontanus, as there is absolutely no evidence that he ever studied under him. The historian of navigation, David Waters, suggests that if Behaim was actually a member of this august body then it was because the Portuguese hoped to persuade the rich Nürnberger traders to invest money in their expeditionary endeavours, Behaim thus functioning as a sort of informal ambassador for the Republic of Nürnberg.

The picture that emerges is that Martin Behaim was con artist probably deceiving both the Portuguese court and the Nürnberg city council. The Behaim Globe is an interesting artefact but its historical or scientific significance is minimal. If you are in Nürnberg, I can recommend going to the Germanische Nationalmuseum to see it but when you are there also take a look at the Schöner 1520 terrestrial manuscript globe in the neighbouring room. It’s cartographically much more interesting and Schöner, as opposed to Behaim, plays a very important role in the history of globe making.


Johannes Söner's 1520 terrestrial Globe. Germanische Nationalmuseum

Johannes Söner’s 1520 terrestrial Globe.
Germanische Nationalmuseum




Filed under History of Cartography, History of science, Myths of Science, Renaissance Science, Uncategorized

Made in Nürnberg

In the period from roughly 1550 and 1650 Nürnberg was the leading centre in Europe, and thus probably the world, for the manufacture of scientific instruments. It is historically interesting to look at how this town in the middle of Europe came to acquire this status and also to take a brief look at some of the more famous of the Nürnberger instrument makers from this ‘golden’ period.

Like many European towns and cities, Nürnberg, as an entity, began to emerge at the beginning of the High Middle Ages, probably around the year 1000 CE. Like many such settlements it was initially not much more than a fortified hill top at a crossroads. The first record of the name is 1050 CE as nuorenberc, which later evolved into Nuremberg, the name by which it is still known in English. This name is the subject of a rare German bad pun; the Germans don’t really go in for puns. According to folk etymology the name was originally ‘Nur einem Berg’, which translates as ‘just a hill’. The geographical position of Nürnberg played an important role in its development. If you take an outline map of Europe and draw a straight line from Kiel, in Northern Germany, to Northern Italy and a second one from Paris to Prague, the point where they cross is Nürnberg. This led to Nürnberg becoming a major European trading hub in the medieval period; importing wares from the Northern Italian trading cities and then distributing them throughout Europe.

Germany didn’t exist as a country in the Middle Ages but was a loose conglomerate of large and small states interconnected through a network of feudal obligations and vaguely held together in the so-called Holy Roman Empire, which as somebody once quipped was neither holy nor Roman nor an empire. Within this patchwork of large and small Germanic states Nürnberg was one of the so-called Free Imperial Cities, small independent city-states, which only owed feudal allegiance to the Holy Roman Emperor. From 1105 CE Nürnberg was ruled by a hereditary Burggraf, a title that translates as Lord of the castle. From 1192 till 1427 the Burggrafen of Nürnberg came from the Hohenzollern family, who would go on to play a significant role in German history. In 1427 the rich traders of Nürnberg, of whom more shortly, bought the Burggraf rights from the Hohenzollern and from then on until 1806, when Nürnberg became part of Bavaria, the city was ruled by the town council. Although dominated by the rich trader families the town council was surprisingly democratic with three groups of councillors being appointed/elected from the three tiers of citizenry at regular intervals. During the Renaissance Nürnberg, like one of its major trading partners Venice, called itself a republic.

The Holy Roman Emperor granted the city of Nürnberg special tax privileges, which combined with its favourable geographical position and the large Europe wide demand for the spices that came into Europe through the Northern Italian trading cities meant that the Nürnberg traders became very, very wealthy. This led to them looking for new opportunities to invest their surplus profits. The High Middle Ages saw a steeply rising demand for metals (gold, silver, copper, lead, iron) and with it an expansion of the metal ore mining industry. The major ore deposits, and thus the mines, were situated in the eastern part of Middle Europe, Eastern Germany, Hungary, Rumania, Austria etc. Realising that it was an expanding business with a future the Nürnberg traders began investing in the metal ore mines and soon controlled a large part of this industry. At first content just to sell the ore they soon realised that they could make more profit if they smelted the ore themselves and so built their own smelters and began selling refined metal. It did not take long before the artisans of Nürnberg began to work the metal themselves producing finished metal objects for sale. By the fifteenth century Nürnberg had become one of the major metal working centres of Europe producing quite literally everything that could be made from metal from pins and needles to suits of armour. A sign of this development is that the first mechanical wire drawing machine was developed in Nürnberg. The Nürnberg guilds were incredibly well organised with single families responsible for the production of one object or group of objects. When Karl V (Holly Roman Emperor 1519–1556) ordered 5000 suits of armour from Nürnberg, one group of families was responsible for the leg plates, another for the breast plates and so on. Highly organised piecework.

Nürnberg as depicted in the Nuremberg Chronicles 1493

Nürnberg as depicted in the Nuremberg Chronicles 1493

Of course many scientific instruments are made of metal, mostly brass, and so Nürnberg in its all inclusiveness became a major centre for the manufacture of all types of scientific instruments. In fact it became the leading European centre for this work and thus, most probably, the leading world centre in the fifteenth and sixteenth centuries. We have two important historical attestations of Nürnberg’s supremacy in this area. The philosopher Nicholas of Cusa (Cusanus) (1401–1464) was very interested in astronomy and he purchased a celestial globe and other astronomical instruments from Nürnberg and this can still be viewed in the Cusanus Museum in his birthplace Kues. In 1470 when Johannes Regiomontanus set out to reform and modernise astronomy he moved from Budapest to Nürnberg because, as he tells us in a letter, Nürnberg had a good communications network through which he could communicate with other astronomers and because the best astronomical instruments were manufactured in Nürnberg. The communications network was an essential element of any Renaissance trading city and Nürnberg’s was second only to that of Venice.

By 1500 Nürnberg was the second biggest German city with a population of around 40 000, half of which lived inside the city walls and the other half in the surrounding villages, which belonged to the city. It was one of the richest cities in the whole of Europe and enjoyed a high level of culture, investing both in representative architecture and the arts, with many of the leading German Renaissance artists fulfilling commissions for the rich Nürnberg traders, known locally as the Patrizier; most famously Albrecht Dürer. Interesting in our context, Dürer’s maths book contained the first printed instructions in German of how to design and construct sundials. The first half of the sixteenth century was the golden age of scientific instrument production in Nürnberg with many of the leading instrument makers selling their wares throughout Europe, where they can still be found in museums in many different countries. In what follows I shall give brief sketches of a couple of the more well known of these craftsmen.

Nürnberg was famous for it’s portable sundials with family dynasties producing high quality products over three, four or even five generations. At the beginning of the sixteenth century the most significant sundial maker was Erhard Etzlaub (ca. 1460–1532) who like many other Nürnberger instrument makers was as much as a scholar as an artisan. As a cartographer he produced the first map of the Nürnberg region. He followed this with the so-called Rome pilgrimage map displaying the routes to Rome for the Holy Year of 1500, which famously Copernicus also attended. This map plays an important role in the history of modern cartography because it’s the first map with a scale, enabling the pilgrim to plan his daily journeys.

Etzlaub's Rome Pilgrim Map Source: Wikimedia Commons

Etzlaub’s Rome Pilgrim Map
Source: Wikimedia Commons

Etzlaub also constructed a map on the cover of one of his compasses in 1511 that is drawn in a projection that comes close to the Mercator projection. Etzlaub was a member of the so-called Pirckheimer Circle. A group of like minded proponents of the mathematical sciences centred around Willbald Pirckheimer, soldier, politician humanist scholar and translator from Greek into Latin of Ptolemaeus’ Geographia; a translation that became a standard work.

Willibald Pirckheimer, porträtiert von Albrecht Dürer (1503) Source: Wikimedia Commons

Willibald Pirckheimer, porträtiert von Albrecht Dürer (1503)
Source: Wikimedia Commons

This group of mathematical scholars demonstrated their interest in the mathematical sciences and in the construction of complex instruments in the highly complex sundial that they painted on the side of the Lorenzkirche in 1502, which also displays the time according to the Great Nürnberger Clock:

Lorenzkirche Sundial Source: Astronomie in Nürnberg

Lorenzkirche Sundial
Source: Astronomie in Nürnberg

And the clock on the Frauenkirche constructed in 1506:

Frauenkirche Clock

Frauenkirche Clock

The gold and blue ball above the clock dial displays the phases of the moon and is still accurate today.

Another member of the Pirckheimer Circle was Johannes Schöner(1477–1547), addressee of Rheticus’ Naratio Prima, the first published account of Copernicus’ heliocentrism.

Johannes Schöner Source: Wikimedia Commons

Johannes Schöner
Source: Wikimedia Commons

Schöner was the first producer of serial production printed globes both terrestrial and celestial. He also wrote, printed and published pamphlets on the design and manufacture of various scientific instruments. Schöner was Europe’s leading globe maker whose globes set standards for globe making, which influenced the manufacture of globes down to the nineteenth century.

Schöner Celestial Globe 1535 Source: Science Museum London

Schöner Celestial Globe 1535
Source: Science Museum London

Also a member of the Pirckheimer Circle and a close friend of Schöner’s was Georg Hartman (1489–1564).

Georg Hartmann Source: Astronomie in Nürnberg

Georg Hartmann
Source: Astronomie in Nürnberg

Hartmann like Schöner was a globe maker although none of his globes have survived. He was also one of the leading sundial makers of his generation and his complex and beautiful dials can still be found in many museums.

Hartmann Bowl Sundial Source: Wikimedia Commons

Hartmann Bowl Sundial
Source: Wikimedia Commons

In the early sixteenth century Nürnberg was the main European centre for the production of astrolabes and here Hartmann played a leading role. As far as can be ascertained Hartmann was the first person to produce astrolabes in series.

Hartmann Astrolabe Yale Source: Wikimedia Commons

Hartmann Astrolabe Yale
Source: Wikimedia Commons

Previously all astrolabes were produced as single pieces, Hartmann, however, produced series of identical astrolabes, probably employing other craftsmen to produce the individual parts according to a pre-described plan and them assembling them in his workshop. As a young man Hartmann had spent several years living in Italy where he was friends with Copernicus’ brother Andreas. As a scholar Hartmann was the first to investigate magnetic inclination or dip. However his studies were never published and so the credit for this discovery went to the English mariner Robert Norman.

Handmade metal instruments were, of course, very expensive and could in reality only be purchased by the wealthy, who often bought them as ornaments of status symbols rather than to be used. To make scientific instruments available to those with less money both Schöner and Hartmann produced paper instruments. These consisted of the scales and tables, normally found engraved on the metal instruments, printed accurately on paper, which the user could then paste onto a wooden background and so construct a cheap but functioning instrument.

Paper and Wood Astrolabe Hartmann Source: MHS Oxford

Paper and Wood Astrolabe Hartmann
Source: MHS Oxford

A later instrument maker was Christian Heiden (1526–1576) who like Schöner was professor for mathematics on the Egidiengymnasium in Nürnberg, Germany’s first gymnasium (similar to a grammar school). He made a wide range of instruments but was especially well known for his elaborate and elegant sundials, as much works of art as scientific instruments these were much prized amongst the rich and powerful and could be found on many a German court.

Column Sundial by Christian Heyden Source: Museumslandschaft Hessen-Kassel

Column Sundial by Christian Heyden
Source: Museumslandschaft Hessen-Kassel

This is of course only a very, very small sample of the Nürnberger instrument makers, the history pages of the Astronomie in Nürnberg website, created and maintained by Dr Hans Gaab, lists 44 globe makers, 38 astronomical instrument makers and more than 100 sundial makers between the fifteenth and nineteenth centuries; with the greatest concentration in the sixteenth century. Nürnberg was known throughout Europe for the quality and the accuracy of its scientific instruments and examples of the Nürnberger handwork can be found in museums in many countries, even outside of Europe.


Filed under History of Astronomy, History of science, History of Technology, Renaissance Science

Unsung? I hardly think so

Recently, New Scientist had an article about Emmy Noether because 2015 is the one hundredth anniversary of Noether’s Theorem. I’m not going to link to it because it’s behind a pay wall. A couple of days later they had an open access follow up article entitled, Unsung heroines: Six women denied scientific glory. This is the latest is a fairly long line of such articles in the Internet, as part of the widespread campaign to increase the profile of women in the history of science. Now in general I approve of these attempts and from time to time make a contribution myself here at the Renaissance Mathematicus, however I think the whole concept is based on a misconception and also the quality of the potted biographies that these post contain are often highly inaccurate or even downright false. I will deal with the particular biography that inspired the title of this post later but first I want to address a more general issue.

Such posts as the New Scientist one are based on the premise that the women they feature have slipped through the net of public awareness because they are women, although this might be a contributory factor, I think the main reason is a very different one that not only affects female scientists but the vast majority of scientists in general. I call this the Einstein-Curie syndrome. The popular history of science is presented as a very short list of exulted geniuses who, usually single-handedly, change the course of (scientific) history. If you ask an averagely intelligent, averagely educated person, who is not a scientist or historian of science, to name a scientist chances are near to certain they will say either Galileo, Newton, Einstein or Stephen Hawking or maybe Darwin and I seriously think even Darwin is a maybe. Alternatively they might name one of the high profile television science presenters, depending on age, Carl Sagan, David Attenborough, Neil deGrasse Tyson or Brian Cox. Almost nobody else gets a look in. If you were to specify that they should name a female scientist almost all will respond Marie Curie. In fact the last result has led various women writers to protest that we have much too much Marie Curie as role model for women in STEM. It is not that women in the history of science get ignored, it’s that almost all scientist in the history of science get ignored in favour of the litany of great names.

If we take a brief closer look at this phenomenon with respect to the revolution in physics in the first half of the twentieth century then good old Albert cast a vast shadow over all his contemporaries. He is not just the most well know scientist, he is one of the iconic figures of the twentieth century. Most non-scientists will probably not know where to place the name Max Planck, although here in Germany they might have heard of it because the official German State research institutes are named after him. Schrödinger might fare a little better because of his cat but beyond awareness of the term ‘Schrödinger’s cat’ you would probably draw a blank. The same is true of Heisenberg and his ‘uncertainty principle’, of which the questioned Mr or Mrs Normal will almost certainly have a false conception. Throw in Louis de Broglie, who after all was a Nobel laureate, and you will just provoke a blank stare. People are not ignorant of women in the history of science; people are ignorant of the history of science.

I now want to turn to that which provoked this post and its title, the article in question starts with a potted biography of the great Austrian physicist Lise Meitner, to call Lise Meitner unsung is a straight up abuse of language, which I will come back to later. I first want to deal with some serious inaccuracies in the article and in particular the all too oft repeated Nobel Prize story and why the version that usually gets peddled is highly misleading.

Lise Meitner in 1906 Source: Wikimedia Commons

Lise Meitner in 1906
Source: Wikimedia Commons

The potted biography starts reasonably OK:

As with Noether, Meitner’s career was blighted by discrimination, and not just because of her sex. Meitner studied physics at the University of Vienna, then in the Austro-Hungarian Empire, before moving to Berlin, Germany, to further her education. She attended a series of lectures by Max Planck – the first woman to be allowed to do so – and became his assistant.

It neglects to mention that Meitner got a PhD in physics in Vienna in 1906 as only the second woman to do so. She went to Berlin in 1907, after one year post-doc in Vienna. In Berlin she was only allowed to study as a guest as women were first allowed into the Prussian universities in 1909. She served as Planck’s assistant from 1912 till 1915. In the next paragraph the biography goes for pathos rather than fact: She later began to work with chemist Otto Hahn, but was refused access to his laboratory and was forced to work in a broom cupboard. When Hahn’s research group moved to a different institute, Meitner was offered an unpaid job as his “guest”. The situation for young academics at German universities in the late nineteenth century or early twentieth century was not very rosy no matter what their sex. On the whole you either had rich parents, a rich sponsor or you were the proverbial destitute student. Meitner had wealthy parent, who were prepared to pay for her efforts to become a physicist. Both Meitner and Hahn worked as unpaid guest in the former carpentry shop (not a broom cupboard) of the Chemistry Institute of the Berlin University. In 1912 they got their own research section at the Kaiser Wilhelm Institute for Chemistry although initially Meitner remained an unpaid guest.

Lise Meitner and Otto Hahn in their laboratory. Source: Wikimedia Commons

Lise Meitner and Otto Hahn in their laboratory.
Source: Wikimedia Commons

In 1913 she became a paid member of staff. From 1914 to 1916 she served as a nurse in the First World War. In 1916 she and Hahn returned to the Kaiser Wilhelm Institute and resumed their research work. In 1918 Meitner was appointed head of her own department at the Kaiser Wilhelm Institute. As you can see a slightly different story to the one offered in New Scientist and it doesn’t end here. In 1922 Meitner habilitated on the University of Berlin thus qualifying to be appointed professor and in 1926 she was appointed the first ever female professor of physics at a German university. When the Nazis came to power in 1933 Meitner, a Jew, lost her position at the university but retained her position at the Kaiser Wilhelm Institute until 1938 when she was finally forced to flee the country, greatly assisted by Hahn. She made her way to Sweden where she obtained a position at the Nobel Institute. Meitner was an established physicist who had held important academic teaching and research posts in the thirty years before she fled Germany. She and Hahn had made many important discoveries and had produced a significant list of publications. She was a leading nuclear physicist with an international reputation, not quite the picture that the New Scientist biographer imparts. After she had left Germany she and Hahn continued to work together by post. We have now reached that ominous Nobel Prize story:

In 1938, because of her Jewish heritage, Meitner was forced to leave Nazi Germany. She eventually fled to Sweden, with Hahn’s help. Hahn remained in Germany, but he and Meitner continued to correspond and in 1939 they discovered a process they called nuclear fission. In possibly the most egregious example of a scientist being overlooked for an award, it was Hahn who received the 1944 Nobel prize for the discovery. She was mentioned three times in the presentation speech, however, and Hahn named her nine times in his Nobel lecture.

A clear-cut case of prejudice against women in science, or? Actually if you look at the full facts it isn’t anyway near as clear-cut as it seems, in fact the whole situation was completely different. In 1938 Otto Hahn and Fritz Strassmann carried out a series of experiments in Berlin that led to nuclear fission, at that time completely unknown, Hahn realised that fission must have occurred but could not clearly explain the results of his experiment.

Nuclear Fission Experimental Apparatus 1938: Reconstruction Deutsches Museum München Source: Wikimedia Commons

Nuclear Fission Experimental Apparatus 1938: Reconstruction Deutsches Museum München
Source: Wikimedia Commons

Hahn corresponded with Meitner who together with her nephew Otto Frisch worked out the theory that explained nuclear fission. Hahn published the results of his experiments in a joint paper with Strassmann in 1938. Meitner and Frisch published the theory of nuclear fission in 1939. In 1944 Otto Hahn alone was awarded the Nobel Prize in chemistry for his experiment, which demonstrated the existence of nuclear fission. Meitner had no part in these experiments and so should not have been included in the prize as awarded. Strassmann, however, contributed both to the experiments and the subsequent publication so it is more than justified to ask why he was not included in the award of the prize. It is not unusual in the history of the Nobel Prize for the prize to be jointly awarded to the theory behind a discovery and the discovery itself, so it would also be justified to ask why the Nobel committee did not chose to do so on this occasion. However if they had done so then not only Meitner but also Frisch should have been considered for the prize. If on this assumption we add together all of those who had a right to the prize we come to a total of four, Hahn & Strassmann, and Meitner & Frisch, which of course breaks the Nobel Prize rule of maximal three laureates pro prize. Who gets left out? It would of course also be legitimate to ask why Meitner and Frisch were not awarded the Nobel Prize for physics for the theory of nuclear fission; they had certainly earned it. This is a question that neither I nor anybody else can answer and the Nobel Prize committee does not comment on those who do not receive an award, no matter how justified such an award might be. Whatever, although Meitner can be considered to have been done an injustice in not being awarded a Nobel, she didn’t have a claim on the prize awarded to Hahn in 1944 as is so often claimed by her feminist supporters. We now come to the title of this post.

The New Scientist article claims that Lise Meitner is an unsung heroine who was denied scientific glory. This statement is pure and absolute rubbish. Lise Meitner received five honorary doctorates, was elected to twelve major academic societies, she was elected Woman of the Year in America in 1946.

Lise Meitner 1946 Source: Wikimedia Commons

Lise Meitner 1946
Source: Wikimedia Commons

She received the Max Planck medal of the German Physical Society, the Otto Hahn Prize of the German Chemical Society, the peace class of the Pour le mérite (the highest German State award for scientists), the Enrico Fermi Award of the United States Atomic Energy Commission, awarded personally by President Lyndon B. Johnson and there is a statue of her in the garden of the Humboldt University in Berlin. On top of this she received numerous awards and honours in her native Austria. Somehow that doesn’t quite fit the description unsung. Just to make the point even more obvious an institute at the University of Berlin, a crater on the moon, and another crater on venus, as well as an asteroid all bear the name Meitner in her honour.

Can it be that people put too much emphasis on Nobel prizes, for which Meitner was nominated numerous times but never won? The disproportionality of this way of thinking is shown by Meitner last and greatest honour. Element 109 is named Meitnerium in her honour. There are 118 know elements of which 91 are considered to occur naturally and the other twenty-seven are products of the laboratory. Only ten thirteen of the elements are named after people so this honour is in every way greater than a mere Nobel Prize. Strangely the New Scientist article mentions this honour in a very off hand way in its final sentence, as if it was of little significance. Otto Hahn does not have an element named after him.

Added 5 May 2015:

Over on his blog John Ptak has a post about a wonderful American comic book that mentions Lise Meitner and her role in the history of the atomic bomb. With John’s permission I have added the the comic panel in question below.

Source: Ptak Science Books

Source: Ptak Science Books

If you don’t already visit Mr Ptak’s delightful Internet book emporium you should, it’s a cornucopia of scientific and technological delight.


Filed under History of Physics, History of science, Ladies of Science, Myths of Science

The continuing saga of io9’s history of science inanities.

I made a sort of deal with myself to, if possible, avoid io9 and above all the inane utterances of Esther Inglis-Arkell. Unfortunately I fell for a bit of history of science click bait on Twitter and stumbled into her attempt to retell the story of the degenerating relations between Isaac Newton and John Flamsteed, the Astronomer Royal. I say attempt but that is actual a misuse of the word because it somehow implies making an effort, something that Ms Inglis-Arkell is not willed to do. Her post resembles something half read, half understood and then half forgotten spewed out onto the page in a semblance of English sentences. It in no way approaches being something that one could honestly label history of science story telling even if one were to stretch this concept to its outer most limits.

I have blogged on the relations between Newton and Flamsteed on a number of occasion but let us look at Ms Inglis-Arkell miserable attempt at telling the story and in so doing bring the correct story out into the open. Our storyteller opens her tale thus:

Isaac Newton reached the level of genius in two different disciplines: physics and making people miserable. This is a tale of his accomplishments in the latter discipline. The object of his scorn, this time, is a poor astronomer named John Flamsteed, who made the mistake of not being agreeable enough.

I tend to dislike the term genius but if one is going to apply it to Newton’s various activities then one should acknowledge that as an academic he also reached the level of genius as a mathematician, as a theoretical astronomer and as an instrument maker and not just as a physicist. Credit where credit is due. On the subject of his making people miserable, John Flamsteed was anything but a saint and as I pointed out in an earlier post, Grumpy old astronomers behaving badly or don’t just blame Isaac!, in the dispute in question both of them gave as good as he got.

We now get to the factual part of the story where our storyteller displays her grasp of the facts or rather her lack of one:

Flamsteed and Newton started their acquaintance on good terms. They spent the 1680s happily corresponding about two lights in the sky, seen in 1680, which were either two comets or one comet that made two trips by Earth. This got Flamsteed interested in cataloguing [sic] the heavens. If enough information was compiled about the lay of the night sky, astronomers would be able to understand all kinds of things about the shape of the universe and how its various pieces worked. By the mid-1690s, Flamsteed was the Astronomer Royal and was making a star catalogue which he would publish when it was completed.

Remember that bit about half read and half forgotten? John Flamsteed had been installed by Charles II as Astronomer Royal for the newly commissioned Royal Observatory at Greenwich on 22 June 1675 “forthwith to apply himself with the most exact care and diligence to the rectifying the tables of the motions of the heavens, and the places of the fixed stars, so as to find out the so-much desired longitude of places, for the perfecting the art of navigation.” Not by the mid-1690s as Ms Inglis-Arkell would have us believe. I love the bit about how, astronomers would be able to understand all kinds of things about the shape of the universe and how its various pieces worked”, Which basically just says that she doesn’t have a clue what she’s talking about so she’ll just waffle for a bit and hope nobody notices. The Observatory itself wasn’t finished till 1685 but by the beginning of the 1680 Flamsteed was already busily fulfilling his obligations as official state astronomical observer.

The early 1680s saw a series of spectacular comets observable from Europe, and Flamsteed along with all the other European astronomers devoted himself to observing their trajectories and it was a conjecture based on his observations that led to his correspondence with Newton. He observed two comets in 1680, one in November and the second in mid December. Flamsteed became convinced that they were one and the same comet, which had orbited the sun. He communicated his thoughts by letter to Isaac Newton (1642–1727) in Cambridge, the two hadn’t fallen out with each other yet, and Newton initially rejected Flamsteed’s findings. However on consideration he came to the conclusion that Flamsteed was probably right and drawing also on the observations of Edmund Halley began to calculate possible orbits for the comet. He and Halley began to pay particular attention to observing comets, in particular the comet of 1682. By the time Newton published his Principia, his study of cometary orbits took up one third of the third volume, the volume that actually deals with the cosmos and the laws of motion and the law of gravity. By showing that not only the planets and their satellite systems obeyed the law of gravity but that also comets did so, Newton was able to demonstrate that his laws were truly universal. Note that Flamsteed two-in-one comet was orbiting the sun and not “one comet that made two trips by Earth”; this will come up again in the next paragraph:

Newton, meanwhile, believed that returning comets might be drawn to the Earth by some mysterious force. They might circle the Earth, in fact, the way the Moon circled the Earth. Perhaps, the force that drew the Moon and the comets might be the same. Newton wanted to study his “Moon’s Theory,” and to do so he needed the information in Flamsteed’s catalogue, incomplete though it was. Newton had risen to the rank President of the Royal Society of London for Improving Natural Knowledge; the titles might leave one in doubt as to who had the power, but Newton’s fame and connections far outstripped Flamsteed’s. When Isaac Newton wanted information from the catalogue, he wanted it immediately, whether it was published or not.

The opening sentences of this paragraph are a confession of complete incompetence for somebody, who, if I remember correctly, has a degree in physics. We are of course talking about the force of gravity, so why not call it that? Anyone who has studied physics at school knows that according to the law of gravity any two bodies “attract each other” something that Newton had spelled out very clearly in his Principia, which was published in 1687 before the dispute that Inglis-Arkell is attempting to describe took place. So the comets are not being “drawn to the Earth by some mysterious force”. In fact they are not being drawn to the Earth at all and there are certainly not circling it. Flamsteed’s careful observations and astute deduction had correctly led Newton to the conclusion that the force of gravity causes some comets to orbit the sun. As we shall see shortly when Newton and Flamsteed got in each others hair about Newton’s need for fresh observational date on the moon he was still Lucasian Professor of Mathematics in Cambridge and still ten years away from becoming President of the Royal Society. However before I go into detail let us look at Inglis-Arkell’s account of the affair.

You can get a lot done when you’re friends with the Queen, but it still took a lot of time for Isaac Newton to get what he wanted from John Flamsteed. First Flamsteed sent assistants’ work instead of his own. Newton was exasperated with the mistakes they had made. Newton wrote nasty letters. Flamsteed wrote nasty diary entries. Newton turned to the royal Prince George, asking him to order Flamsteed to write a book that would include all his current data. Flamsteed just couldn’t get it together to produce the book, much as he must have wished to comply with his Prince’s order.

Newton inspected the Royal Observatory. Flamsteed guarded the equipment so jealously that the two physically fought over it. Flamsteed ended that day with a very smug diary entry declaring that the “instruments… were my own.”

Now the Astronomer Royal was not only disobeying Isaac Newton but the actual Royals, and so it’s impressive that Flamsteed managed to keep his prestigious appointment. He didn’t lose his position or his data for over a decade. It wasn’t until 1712 that Newton was able to influence Queen Anne and Prince George enough to force Flamsteed to publish his data in a small volume. Still, Flamsteed was bitter at the defeat.

Our intrepid wanna-be historian of science has conflated and confused three separate struggles between the two protagonists into one, getting her facts wrong along the way and even making thinks up, not a very good advertisement for a website that wishes to inform its readers or maybe this is one of their sci-fi contributions.

Let us take a look at what really happened. In an incredible tour de force Newton wrote and published his Principia in the three years between 1684 and 1687 and as I noted above Flamsteed’s recognition that some comets orbit the sun went on to play a central role in this ground-breaking work. In his magnum opus Newton was able to demonstrate that the whole of the then known cosmos lay under the rule of the law of gravity. It determined the elliptical orbits of the planets around the sun as well as the orbits of the then known satellites of Jupiter and Saturn. It converted the comets from irregular prophets of doom into celestial objects with regular but extremely long orbits. Everything seemed to fit neatly into place in a clockwork cosmos. Well almost everything! The earth’s closest neighbour appeared not to want to obey the dictates of gravity. Although Newton managed to get a fairly good approximation of a gravity-determined orbit for the moon it wasn’t anywhere near as good as he would have liked.

The problem lies on the size of the moon. Having an unusually large mass for a satellite the moon is involved in a gravitational system with both the earth and the sun, the classical three-body problem. As a result its orbit is not a smooth ellipse but being pulled hither and thither by both the earth and the sun its orbit contains many substantial irregularities making it very difficult to calculate. There is in fact no general analytical solution to the three-body problem, as was finally proved in the nineteenth century by Henri Poincaré. The physicist or astronomer is forced to calculate each irregularity step by step, the situation that Newton found himself in whilst writing the Principia.

In 1693 Newton was contemplating a second edition of the Principia and decided to tackle the moon’s orbit anew. This required new observational data and the person who was in procession of that data was Flamsteed. Newton never the most diplomatic of men at the best of times was even more grumpy than usual in the early 1690s. He was recovering from what appears to have been some sort of major mental breakdown, he was tackling one of the few mathematical problem that would always defeat him (the moon’s orbit, which was finally solved by Laplace in his Exposition du système du monde at the end of the eighteenth century), and he was frustrated by his situation in Cambridge and was looking for a suitable position in recognition of his, in the meantime, considerable status in London. The latter would be solved by Charles Montagu appointing him Warden of the Mint in 1696. His approach to Flamsteed to obtain the data that he required was high handed to say the least. Flamsteed, also an irritable man, who was overworked, underpaid and underfinanced in his efforts to map the entire heavens, was less than pleased by Newton’s imperious demands but delivered the requested data none the less. Newton failed to solve his problem and blaming Flamsteed and his data demanded more. Flamsteed feeling put upon grumbled but delivered; and so the pair of grumpy old men continued, each developing an intense dislike of the other. In the end Newton’s demands became so impossible that Flamsteed started sending Newton raw observational data letting him calculate the lunar positions for himself. It is difficult to say where this vicious circle would have led if Newton had not lost interest in the problem and shelved it, and the plans for a second edition of Principia, in 1695. By now the two men were totally at loggerheads but would have nothing more to do with each other for the next nine years.

In 1704 Newton, by now Master of the Mint and resident in London, was elected President of the Royal Society. On 12 April 1704 Newton took a boat down the river from the Tower of London, home of the Mint, to Greenwich, home of the Royal Observatory, to visit Flamsteed. Surprisingly amicable Newton suggested to Flamsteed that he should speak to Prince George of Denmark, Queen Anne’s consort, on Flamsteed’s behalf about obtaining funds to have Flamsteed’s life work published. Flamsteed was agreeable to having his work published especially as his critics, most notably Edmond Halley and David Gregory, were pointing out that he had nothing to show for almost thirty years of endeavour. However he would have preferred to deal with the matter himself rather than have Newton as his broker. Newton spoke to Prince George and obtained the promise of the necessary funds. Meanwhile Flamsteed drew up a publication plan for his work. He wanted three volumes with his star catalogue the high point of his work in the third and final volume. Newton had other plans. He set up an editorial board at the Royal Society consisting of himself, David Gregory, Christopher Wren, Francis Robartes and John Arbuthnot to oversee the publication. Flamsteed, the author and also a member of the Royal Society, was not included. Newton ignored Flamsteed’s wishes and declared that the star catalogue would be printed in volume one. Newton commissioned a printer to print sample sheets, however Flamsteed found them to be of poor quality and wished to find a new printer. Newton ignored him and gave the printer the commission to print the work ordering Flamsteed to supply the introductory material for the first volume.

One major problem was that the star catalogue was at this time not complete. Flamsteed kept stalling declining to supply with Newton with the catalogue until he could complete it. He needed to calculate the stellar positions from the raw observational data. Newton promised him the money to pay the computers and actually obtained the money from Prince George. Flamsteed employed the computers to do the work and paid them out of his own pocket requesting restitution from Newton. Newton refused to pay up. So the whole sorry affair dragged on until Prince George died in 1708 with which the project ground to an end. If Flamsteed had grown to dislike Newton in the 1690s he truly hated him now.

Things remained quiet for two years then at the end of 1710 John Arbuthnot, who was physician to Queen Anne, suddenly announced that Anne had issued a warrant that appointed the president and others as the council of the Royal Society saw fit to be ‘constant Visitors’ of the Royal Society. As used here visitor means supervisor and it effectively meant that Newton was now Flamsteed’s boss. With their newly won authority Newton and his cronies did everything in their power to make life uncomfortable for Flamsteed over the next few years. On 26 October 1711 Newton summoned Flamsteed to a meeting in Crane Court, the home of the Royal Society, to inform him of the state of the observatory instruments. Here we meet a classic of institutional funding. The Crown had paid to have the Royal Observatory built and having appointed Flamsteed to run it the Crown paid his wages, on a very miserly level, however no money was ever supplied for instruments and so Flamsteed had bought his instruments with his own money. When Newton demanded account of the state of the instruments Flamsteed could prove that they were all his own private property and thus no concern of Newton’s. Newton was far from pleased by this defeat. He now ordered the Royal Ordnance to service, repair and upgrade the instruments and thus to win official control over them. Unfortunately the Ordnance, which, like the Mint, occupied the Tower of London didn’t like Newton so taking sides with Flamsteed informed Newton that there were no funds available for this work. A minor victory for Flamsteed but he had already suffered a major defeat. Before discussing this I should point out that contrary to Ms Inglis-Arkell’s claims, at no time did the elderly combatants resort to any form of physical contact.

On 14 March 1711 Arbuthnot had informed Flamsteed that the Queen had commanded the complete publication of his work; the brief reprieve brought about by the death of Prince George was over. Although the star catalogue, which was all that Newton was interested in publishing, was now finished Flamsteed at first prevaricated again. Arbuthnot wrote to Flamsteed requesting him to deliver up the catalogue, Flamsteed declined with further excuses. Newton exploded and shot off a letter ripping a strip of Flamsteed for defying a Royal command and the fight was now effectively over. Flamsteed met with Arbuthnot and handed over the manuscript requesting conditions concerning the printing and editing to which Arbuthnot acquiesced and promptly ignored. Flamsteed went ballistic, as he discovered that printing was going ahead without his knowledge and even worse his manuscript was being edited by Edmond Halley! Flamsteed by now hated Newton but he reserved his greatest loathing for Halley. It has been much speculated why Flamsteed had such an extreme aversion to Halley but it went so far that he refused to use his name and only referred to him as Reimers after Nicolaus Reimers Bär, whom Flamsteed believed had plagiarised his hero Tycho and was thus the most despicable person in the history of astronomy. Flamsteed had lost all down the line and in 1712 his star catalogue appeared in a large folio volume (not the small volume claimed by Inglis-Arkell). Deeply bitter Flamsteed now swore to publish his life’s work in three volumes, as he had originally planned in 1704, at his own expense and began with the preparation. It should be noted that far from ‘Newton being able to influence Queen Anne and Prince George enough to force Flamsteed to publish his data’, Prince George had by now been dead for four years!

However Newton might have won a victory but he hadn’t yet won the war and the tide began finally to turn in Flamsteed’s favour. In 1714 Queen Anne died and was succeeded on the throne by George I, Elector of Hanover. The succession also brought with it a change of government. Now Inglius-Arkell claims that George didn’t like Newton but this is not true. He greatly respected Newton who had long been regarded as the greatest natural philosopher in Europe; he even forced his librarian, Gottfried Wilhelm von Leibniz, who would have loved to have moved to London to escape his Hanoverian backwater (no offense intended to Hannover or the Hanoverians), to stay at home so as not to offend Newton, who was at war with Leibniz when he wasn’t battling Flamsteed. However the succession and the change of government did mean a loss of influence for Newton. In early 1715 Charles Montagu, Lord Halifax, one of the most powerful politicians in England during the previous twenty years and Newton’s political patron, died. Charles Paulet, 2nd Duke of Boulton, the Lord Chamberlin, was a friend of Flamsteed’s and on 30 November 1715 he signed a warrant ordering Newton to return the three hundred remaining copies of the printed star catalogue to Flamsteed. He “made a Sacrifice of them to Heavenly Truth”; i.e. he burnt them.

Flamsteed continued with his project to publish his life’s work at his own expense but died in 1719 before he could finish the project. His widow with the willing help of his two assistants Joseph Crosthwait and Abraham Sharp finished the job and his three-volume Historia coelestis britannica was finally published in 1725, followed by his charts of the constellations the Atlas coelestis, edited by his widow and James Hodgson in 1727. Together they form a fitting monument to one of history’s greatest observational astronomers. Flamsteed had written a long preface for the Historia describing, from his standpoint, in great detail his twenty year long war with Newton but this did not make it into the final printed edition, probably because Newton, by now a living legend, was still very much alive. It only resurfaced a hundred years later. Flamsteed got his revenge, from beyond the grave, on Halley, who followed him as Astronomer Royal. As already explained above, Flamsteed’s observational instruments were his own personal property so when he died his widow stripped the observatory bare leaving Halley an empty building in which to pursue his new office.

The whole, more than twenty year long, farce is one of the more unsavoury episodes in the history of science and certainly not how one would expect two senior officers of state to behave. It is clear that Newton caries most of the blame although Flamsteed was not exactly a model of virtue deliberately fanning the flames through renitent and provocative behaviour. In particular his behaviour towards Halley, who was more than qualified and very capable of editing the star catalogue, was extremely childish and inexcusable.

You might think that I am being very unfair to Ms Inglis-Arkell having turned her very brief account into an overlong post but that is actually the point and her central failure, ignoring all of the factual errors in her version of the story. What I have laid out here are only the bare bones of the whole story, if I were to go into real detail this post would be ten times longer than it already is. Ms Inglis-Arkell attempt to reduce a highly complex series of episodes out of the history of science to a couple of hundred words in a throwaway post could only end in a level of distortion that makes the whole exercise a complete waste of time, effort (not that she seems to expended much of that) and cyberspace.







Filed under Early Scientific Publishing, History of Astronomy, History of science, Newton

Discovery is a process not an act.

This morning somebody on Twitter tweeted that William Herschel discovered the planet Uranus on this day in 1781. A typical tweet amongst history of science fans on Twitter, who like to acknowledge and celebrate births, deaths, inventions and discoveries in what amounts to a rolling history of science calendar. On this occasion my history of science soul sisterTM, Rebekah “Becky” Higgitt, who’s quite knowledgeable about eighteenth-century astronomy, tweeted, quite correctly, that Herschel initially thought he had discovered a comet and it was Nevil Maskelyne, who first suggested that he had in fact observed a new planet and not a comet. She then asked if we should not then say that it was Nevil Maskelyne who discovered Uranus and not Herschel? Becky could be considered a bit biased having fairly recently devoted several years of her life to the study of the life and work of Maskelyne and also having edited a, highly recommended, book on the man. Herschel fans might thus feel justified in dismissing her comment and maintain their position than it was the Hanoverian musician turned amateur astronomer who discovered the first new planet to be observed since antiquity. Rather than trying to stoke the fires of a discovery priority dispute, of which there are all too many in the history of science, I think this an opportunity to look critically at what the term discovery actually means in the history of science.

For some reason we love to hang a specific date, even better the exact time, when a discovery of science was made in the history of science. In fact I have about a running metre of books within arms reach of this computer full of such information. William Herschel discovered Uranus on 13 March 1781, Galileo Galilei discovered the moons of Jupiter on 7 January 1610, Simon Marius did the same just one day later, Johannes Kepler discovered his third law of planetary motion on 8 March 1618 and so on and so forth. However this accurate pinning of scientific or technological discoveries onto the ribbon of time creates a very false impression of what discovery is and this was exactly the point that Becky was trying to make on Twitter, which in turn led to me writing this post. Discovery is not a single act by a single person for which it is possible to give a stopwatch accurate moment of discovery but is rather a process spread over a period of time, which can in fact take several years and which almost always involves quite a large number of people.

To illustrate what this means let us take a closer look at Galileo’s epoch making discovery of the four largest (actually it was only three on the first day) moons of Jupiter. On 7 January 1610 whilst observing the planet Jupiter Galileo noted three stars that roughly formed a line with the middle axis or equator of the planet. When he observed again on the following evening they were still there. You might ask so what? Stars belong to the sphere of fixed stars, which are so called because they ‘always’ remain in the same place, whereas planets are called planets (the Greek for wanderer) because they move around with reference to the fixed stars. This being the case Galileo’s three new stars that he had recorded should have changed their position relative to Jupiter, or more accurately Jupiter should have changed its position relative to the three stars. Galileo was astute enough to realise that he was on to something and continued to observe and record the now four new stars and Jupiter over the following nights. The new stars did change their positions relative to Jupiter but not in the way he would have expected if they were fixed stars plus they always stayed in the vicinity of the planet. With time and enough observations Galileo realised that the four new objects were in fact orbiting Jupiter. He had discovered Jupiter’s four largest moons, or had he?

Science requires that new discoveries can be repeated by other independent practitioners/observers and discoveries are only confirmed and thus accepted when this has taken place. Now as stated above Simon Marius in Ansbach had also first observed the moons of Jupiter just one day later on 8 January 1610 and like Galileo had continued to observe them and had also reached the conclusion that they were orbiting the planet. This would have been the necessary confirmation that Galileo required but Marius only published his observations four years later, in 1614, leading Galileo, who by this time had long been acknowledged as the discoverer to denounce Marius as a plagiarist. Back in 1610 when Galileo fist published his observations on 14 March, in his Sidereus Nuncius, people were, not surprisingly, rather sceptical about his claims.

As I have recorded on several occasions on this blog it was the Jesuit mathematician astronomers under Christoph Clavius at the Collegio Romano who provide the necessary independent confirmation of his observations but this was not a simple process. At first the Jesuits did not have a telescope powerful enough to resolve the moons of Jupiter and their initial attempts to construct one failed. However Grienberger and Lembo persevered with assistance from Galileo, from afar by post, and in the end they were able to confirm all of Galileo’s observations. Another aspect of this discovery was to prove that they were actually moons orbiting Jupiter the four new objects needed to be observed consistently and accurately in order to determine their orbits so that one could predict their positions at any given time. Both Galileo and Marius undertook this task, Marius’ results were more accurate than those of his Tuscan rival, but it was first Cassini several decades later who, with much superior telescopes at his disposal, was able to produce tables of the orbits accurate enough to truly satisfy the requirements of the astronomical community.

It would now seem that we are finished with our tale of the discovery of the four moons of Jupiter but there is another extremely important factor that needs to be addressed. New discoveries often involve new methods and/or new scientific instruments, without which the discovery would not have been possible. This was very much the case with the discovery of the moons of Jupiter, which was only made possible by the very recently invented, September 1608, telescope. Any such new methodology or instrumentation must be clearly and convincingly shown to provide objective verifiable facts based on solid scientific theory. No such demonstration of objective scientific reliability existed at this point in time for the telescope. In fact all those in 1610, who doubted the telescopes ability to deliver objective verifiable scientific facts, and who tend to get ridiculed by the cheerleaders of scientism today, were perfectly correct to do so. Galileo, who when it came to optics was a tinkerer rather than a theorist, was not in the position to deliver the very necessary scientific theory of the telescope. Enter Johannes Kepler.

Kepler had already ready written extensively on theoretical optics including one of the earliest scientific analysis of how lenses functions. He was also an unabashed cheerleader for Galileo’s telescopic discoveries, sight unseen, writing the first positive, rather gushing in fact, review of Sidereus Nuncius, which Galileo used for his own propaganda purposes. Kepler realised at once that in order to confirm those discoveries a theoretical description of how the telescope functions was necessary and he sat down and wrote one. His Dioptrice, which explains the science of single lenses, the convex/concave two lens Dutch telescope used by Galileo, the convex/convex two lens astronomical or Keplerian telescope, the three lens terrestrial telescope and even the telephoto lens, was published in 1611. Galileo, arrogant and egoistical as ever, dismissed it as unreadable but it successfully silenced those who doubted the scientific objectivity of the telescope.

All of the factors that I have described above played an important and indispensible part in the discovery of the four largest moons of Jupiter. What we have here is not the act of one person at a specific point in time, in this case Galileo’s first observation of those three stars, but a chain of intertwined events or a process spread over a period of several years. There is nothing exceptional in the discovery of the moons of Jupiter but all scientific and technological discoveries involve a similar complex process carried out by a group of people over a period of time. Discovery is not the single act of a single person but a process involving several and sometimes many people spread over a period of time. The anniversaries that we like to celebrate are mostly just the starting point to that process.



Filed under History of Astronomy, History of science

A Swiss Clockmaker

We all have clichéd images in our heads when we hear the names of countries other than our own. For many people the name Switzerland evokes a muddled collection of snow-covered mountains, delicious superior chocolates and high precision clocks and watches. Jost Bürgi who was born in the small town of Lichtensteig, in the  Toggenburg region of the canton of St. Gallen on 28 February 1552 fills this cliché as the most expert clockmaker in the sixteenth century. However Bürgi was much more that just a Swiss clockmaker, he was also an instrument maker, an astronomer, a mathematician and in his private life a successful property owner and private banker, the last of course serving yet another Swiss cliché.

As we all too many figures, who made significant contributions to science and technology in the Renaissance we know next to nothing about Bürgi’s origins or background. There is no known registration of his birth or his baptism; his date of birth is known from the engraving shown below from 1592, in which the portrait was added in 1619 but which was first published in 1648. That the included date is his birthday was confirmed by Bürgi’s brother in law.


His father was probably the locksmith Lienz Bürgi but that is not known for certain. About his education or lack of it nothing is known at all and just as little is known about where he learnt his trade as clockmaker. Various speculations have been made by historians over the years but they remain just speculations. The earliest documentary proof that we have of Bürgi’s existence is his employment contract when he entered the service of the Landgrave Wilhelm IV of Hessen-Kassel as court clockmaker, already twenty-seven years old, on 25 July 1579. Wilhelm was unique amongst the German rulers of the Renaissance in that he was not only a fan or supporter of astronomy but was himself an active practicing astronomer. In his castle in Kassel he constructed, what is recognised as, the first observatory in Early Modern Europe.

Wilhelm IV. von Hessen-Kassel Source: Wikimedia Commons

Wilhelm IV. von Hessen-Kassel
Source: Wikimedia Commons

He also played a major role in persuading the Danish King Frederick II, a cousin, to supply Tycho Brahe with the necessary land and money to establish an observatory in Denmark. In the 1560s Wilhelm was supported in his astronomical activities by Andreas Schöner, the son of the famous Nürnberger cartographer, globe and instrument maker, astronomer, astrologer and mathematician Johannes Schöner. He also commissioned the clockmaker Eberhard Baldewein (1525-1593) to construct two planet clocks and a mechanical globe.


Eberhart Baldewein Planet clock 1661 Source: Wikimedia Commons

Eberhart Baldewein Planet clock 1661
Source: Wikimedia Commons

The planet clock shows the positions of the sun, moon and the planets, based on Peter Apian’s Astronomicom Caessareum, on its various dials.


Eberhard Baldewein Mechanical Celestial Globe circa 1573

Eberhard Baldewein Mechanical Celestial Globe circa 1573 The globe, finished by Heinrich Lennep in 1693, was used to record the position of the stars mapped by Wilhelm and his team in their observations.

These mechanical objects were serviced and maintained by Baldewein’s ex-apprentice, Hans Bucher, who had helped to build them and who had been employed by Wilhelm, for this purpose, since 1560. When Bucher died in 1578-1579 Bürgi was employed to replace him, charged with the maintenance of the existing objects on a fixed, but very generous salary, and commissioned to produce new mechanical instruments for which he would be paid extra. Over the next fifty years Bürgi produced many beautiful and highly efficient clocks and mechanical globes both for Wilhelm and for others.

Bürgi Quartz Clock 1622-27 Source: Swiss Physical Society

Bürgi Quartz Clock 1622-27
Source: Swiss Physical Society






Bürgi Mechanical Celestial Globe 1594 Source: Wikimedia Commons

Bürgi Mechanical Celestial Globe 1594
Source: Wikimedia Commons



Jost Bürgi and Antonius Eisenhoit: Armillary sphere with astronomical clock made 1585 in Kassel, now at Nordiska Museet in Stockholm. Source Wikimedia Commons

Jost Bürgi and Antonius Eisenhoit: Armillary sphere with astronomical clock made 1585 in Kassel, now at Nordiska Museet in Stockholm.
Source Wikimedia Commons

Bürgi was also a highly inventive clockmaker, who is credited with the invention of both the cross-beat escapement and the remontoire, two highly important improvements in clock mechanics. In the late sixteenth century the average clocks were accurate to about thirty minutes a day, Bürgi’s clock were said to be accurate to less than one minute a day. This amazing increase in accuracy allowed mechanical clocks to be used, for the first time ever, for timing astronomical observations. Bürgi also supplied clocks for this purpose for Tycho’s observatory on Hven. In 1592 Wilhelm presented his nephew Rudolph II, the German Emperor, with one of Bürgi’s mechanical globes and Bürgi was sent to Prague with the globe to demonstrate it to Rudolph. This was his first contact with what would later become his workplace. Whilst away from Kassel Bürgi’s employer, Wilhelm died. Before continuing the story we need to go back and look at some of Bürgi’s other activities.

As stated at the beginning Bürgi was not just a clockmaker. In 1584 Wilhelm appointed the Wittenberg University graduate Christoph Rothmann as court astronomer. From this point on the three, Wilhelm, Rothmann and Bürgi, were engaged in a major programme to map the heavens, similar to and just as accurate, as that of Tycho on Hven. The two observatories exchanged much information on instruments, observations and astronomical and cosmological theories. However all was not harmonious in this three-man team. Although Wilhelm treated Bürgi, whom he held in high regard, with great respect Rothmann, who appears to have been a bit of a snob, treated Bürgi with contempt because he was uneducated and couldn’t read or write Latin, that Bürgi was the better mathematician of the two might have been one reason for Rothmann’s attitude.

In the 1580s the itinerant mathematician and astronomer Paul Wittich came to Kassel from Hven and taught Bürgi prosthaphaeresis, a method using trigonometric formulas, of turning multiplication into addition, thus simplifying complex astronomical calculations. The method was first discovered by Johannes Werner in Nürnberg at the beginning of the sixteenth century but he never published it and so his discovery remained unknown. It is not known whether Wittich rediscovered the method or learnt of it from Werner’s manuscripts whilst visiting Nürnberg. The method was first published by Nicolaus Reimers Baer, who was then accused by Tycho of having plagiarised the method, Tycho claiming falsely that he had discovered it. In fact Tycho had also learnt it from Wittich. Bürgi had expanded and improved the method and when Baer also came to Kassel in 1588, Bürgi taught him the method and how to use it, in exchange for which Baer translated Copernicus’ De revolutionibus into German for Bürgi. This was the first such translation and a copy of Baer’s manuscript is still in existence in Graz. Whilst Baer was in Kassel Bürgi created a brass model of the Tychonic geocentric-heliocentric model of the cosmos, which Baer claimed to have discovered himself. When Tycho got wind of this he was apoplectic with rage.

In 1590 Rothmann disappeared off the face of the earth following a visit to Hven and for the last two years of Wilhelm’s life Bürgi took over as chief astronomical observer in Kassel, proving to be just as good in this work as in his clock making.

Following Wilhelm’s death his son Maurice who inherited the title renewed Bürgi’s contract with the court.


Kupferstich mit dem Porträt Moritz von Hessen-Kassel aus dem Werk Theatrum Europaeum von 1662 Source: Wikimedia Commons

Kupferstich mit dem Porträt Moritz von Hessen-Kassel aus dem Werk Theatrum Europaeum von 1662
Source: Wikimedia Commons

However Maurice did not share his father’s love of astronomy investing his spare time instead in the study of alchemy. Bürgi however continued to serve the court as clock and instrument maker. Over the next eight years Bürgi made several visits to the Emperor’s court in Prague and in 1604 Rudolph requested Maurice to allow him to retain Bürgi’s services on a permanent basis. Maurice acquiesced and Bürgi moved permanently to Prague although still remaining formally in service to Maurice in Kassel. Rudolph gave Bürgi a very generous contract paying him 60 gulden a month as well as full board and lodging. As in Kassel all clocks and globes were paid extra. To put that into perspective 60 gulden was a yearly wage for a young academic starting out on his career!

In Prague Bürgi worked closely with the Imperial Mathematicus, Johannes Kepler. Kepler, unlike Rothmann, respected Bürgi immensely and encouraged him to publish his mathematical works. Bürgi was the author of an original Cos, an algebra textbook, from which Kepler says he learnt much and which only saw the light of day through Kepler’s efforts. Kepler was also responsible for the publication of Bürgi’s logarithmic tables in 1620.


Bürgi's Logarithmic Tables Source: University of Graz

Bürgi’s Logarithmic Tables
Source: University of Graz

This is probably Bürgi’s greatest mathematical achievement and he is considered along side of John Napier as the inventor of logarithms. In many earlier historical works Bürgi is credited with having invented logarithms before Napier. Napier published his tables in 1614 six years before Bürgi and is known to have been working on them for twenty years, that is since 1594. Bürgi’s fan club claim that he had invented his logarithms in 1588 that is six years earlier than Napier. However modern experts on the history of logarithms think that references to 1588 are to Bürgi’s use of prosthaphaeresis and that he didn’t start work on his logarithms before 1604. However it is clear that the two men developed the concept independently of each other and both deserve the laurels for their invention. It should however be pointed out that the concept on which logarithms are based was known to Archimedes and had already been investigated by Michael Stifel earlier in the sixteenth century in a work that was probably known to Bürgi.

Through his work as clock maker Bürgi became a very wealthy man and invested his wealth with profit in property deals and as a private banker lending quite substantial sums to his customers. In 1631 Bürgi, now 80 years old, retired and returned ‘home’ to Kassel where he died in January of the following year shortly before his 81st birthday. His death was registered in the Church of St Martin’s on the 31 January 1632. Although now only known to historians of science and horology, in his own time Bürgi was a well-known and highly respected, astronomer, mathematician and clock maker who made significant and important contributions to all three disciplines.




Filed under History of Astronomy, History of Mathematics, History of science, Renaissance Science, Uncategorized