The emergence of modern astronomy – a complex mosaic: Part XVII

As I stated earlier in this series only a comparatively small number of astronomers accepted the whole of Copernicus’ theory, both cosmology and astronomy. More interestingly almost none of them had any lasting impact during the final decades of the sixteenth century on the gradual acceptance of heliocentrism. Although he appears to have abandoned Copernicus’ astronomy later in life, Rheticus did have a strong impact with his Narratio Prima(1540), which through its various editions was the first introduction to the heliocentric hypothesis for many readers. Two others, whose impact was principally in the seventeenth century, were Kepler and Galileo, who will be dealt with later. However, one astronomer who did play an important role in the sixteenth century was Michael Mästlin.

michaelis_mc3a4stlin_gemc3a4lde_1619

Michael Mästlin portrait 1619 artist unknown

Michael Mästlin (1550-1631) stood at the end of a long line of important Southern German astronomers and mathematicians. A graduate of the University of Tübingen he was a student of Philipp Apian (1531–1589),

hu_alt_-_philipp_apian_1590_mr

Philipp Apian, artist unknown Source: Wikimedia Commons

 

who was a student of his more famous father Peter Apian (1495–1552) in Ingolstadt. Peter Apian had studied under Georg Tannstetter (1482–1535) in Vienna, who had studied under Andreas Stiborius (c. 1464–1515) and Johannes Stabius (1450–1522) first in Ingolstadt then in Vienna. In 1584 Mästlin succeeded his teacher Philipp Apian as professor for astronomy and mathematics at Tübingen. An active astronomer since the beginning of the 1570s Mästlin was regarded as a leading German astronomer and consulted by the Protestant princes on matters astronomical, astrological and mathematical.

Mästlin represents the transitional nature of the times probably better than any other astronomer. His Epitome Astronomiae (1582), a university textbook, which went through a total of seven editions, was a standard Ptolemaic geocentric text that he continued to teach from until his death in 1631.

introimage

However, at the same time he taught selected students the fundaments of Copernican heliocentric astronomy. Earlier accounts claimed that he did this in secret but all of the available evidence suggests that he did so quite openly. This quasi revolutionary act of teaching famously produced one significant result in that Mästlin introduced Copernican astronomy to the young Johannes Kepler, who would go on to become the most important propagator of heliocentric astronomy in the early seventeenth century.

One subject on, which the German Protestant princes consulted Mästlin was the proposed Gregorian calendar reform from 1582. Mästlin launched a vitriolic polemic against it largely on religious grounds with his Gründtlicher Bericht von der allgemeinen und nunmehr bei 1600 Jahren von dem ersten Kaiser Julio bis jetzt gebrauchten jarrechnung oder kalender (Rigorous report on the general and up till now for 1600 years used calculation of years or calendar from the first Caesar Julio) (1583). The Protestant princes accepted his advice and as a result didn’t adopt the new calendar until 1700.

On the other side of the religious divide the man charged by the Pope to promote and defend the new calendar was the Jesuit professor of astronomy and mathematics at the Collegio Romano, Christoph Clavius (1538–1612).

christopher_clavius

Christoph Clavius. Engraving Francesco Villamena, 1606 Source: Wikimedia Commons

Although Clavius was a convinced defender of the Ptolemaic system until his death, he did play a central role in the developments that led to the eventual acceptance of the heliocentric system. The Catholic universities in the last quarter of the sixteenth century still didn’t really pay the mathematical disciplines much attention and their teaching of astronomy had not really progressed beyond the High Middle Ages. Clavius introduced modern mathematics and astronomy into the Jesuit educational reform programme, following the fundamental principle of that programme, if you want to win the debate with your non-Catholic opponents you need to be better educated than them. Many Jesuit and Jesuit educated mathematicians and astronomers, who came out of the pedagogical programme established by Clavius, would, as we shall see, make significant and important contributions to the developments in astronomy in the seventeenth century.

Clavius was also the author of a number of excellent up to date textbooks on a full range of mathematical topics. His astronomy textbook In Sphaeram Ioannis de Sacro Bosco commentarius, the first edition appearing in 1570 and further updated editions appearing in 1581, 1585, 1593, 1607, 1611 and posthumously in 1618, was the most widely read astronomy textbook in the last decades of the sixteenth and early decades of the seventeenth centuries. It was strictly Ptolemaic but he presented, described and commented upon Copernicus’ heliocentric hypothesis. Although he showed great respect for Copernicus as a mathematical astronomer, he of course rejected the hypothesis. However, anybody who read Clavius’ book would be informed of Copernicus work and could if interested go looking for more information. One should never underestimate the effect of informed criticism, and Clavius’ criticism was well informed, for disseminating a scientific hypothesis. Many people certainly had their first taste of the heliocentric hypothesis through reading Clavius.

Another group who had a positive impact on the propagation of the heliocentric hypothesis in the last quarter of the sixteenth century was the so-called English School of Mathematics. Whilst Robert Recorde (1510–1558) and John Dee (1527–c. 1608) were not committed supporters of Copernicus, they did much to spread knowledge of the heliocentric hypothesis. As we have already seen John Feild (c. 1520–1587) was a declared supporter of Copernicus but as his Copernican ephemerides proved no more accurate than the Ptolemaic ones his influence diminished. Not so Dee’s foster son Thomas Digges (c. 1546–1595).

His 1576 edition of his father’s A Prognostication everlastingcontained an appendix A Perfit Description of the Caelestiall Orbes according to the most aunciente doctrine of the Pythagoreans, latelye revived by Copernicus and by Geometricall Demonstrations approved, which is an annotated translation of part of the cosmological first book of De revolutionibus into English, which continued to have an impact on English readers long after Digges’ demise.

digges4

Source: Linda Hall Library

Thomas Harriot (c. 1560–1621) was another, who was committed to the heliocentric hypothesis.

thomasharriot

Portrait often claimed to be Thomas Harriot (1602), which hangs in Oriel College, Oxford. Source: Wikimedia Commons

His biggest problem was that he published none of his scientific or mathematical work but he was well networked and contributed extensively to the debate through correspondence. The influence of this group would, as we will see, have an impact on the early acceptance of Kepler’s work inEngland.

Another figure in the last quarter of the sixteenth century, who, although not an astronomer, made a very important contribution to the cosmological debate, was the physician William Gilbert (1544–1603).

william_gilbert_45626i

William Gilbert (1544–1603) artist unknown. Source: Wellcome Library via Wikimedia Commons

Gilbert is well known in the history of science as the author of the first modern scientific investigation of magnetism in his De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure (On the Magnet and Magnetic Bodies, and on That Great Magnet the Earth).

167203_0

Gilbert carried out many of his experiments with spherical magnets, which he called terella, from which he deduced his belief that the Earth itself is a spherical magnet. Based on his erroneous belief that a suspended terella rotates freely about its axis he came to accept and propagate diurnal rotation. Book VI of De magnete, the final book, is devoted to an analysis of the Earth as a spherical magnet based on the results of Gilbert’s experiments with his terella.

In Chapter III of Book VI, On the Daily Magnetic Revolution of the Globes, as Against the Time-Honoured Opinion of a primum mobile: A Probable Hypothesis, Gilbert gives a detailed review of the history of a geocentric system with diurnal rotation starting with Heraclides of Pontus and going through to Copernicus. Gilbert rejects the whole concept of celestial spheres, dismissing them as a human construction with no real existence. He brings the standard physical arguments that it is more logical that the comparatively small Earth rotates once in twenty-four hours rather than the vastly larger sphere of the fixed stars. In the following chapter he then argues that magnetism is the origin of this rotation. In Chapter V he discusses the arguments for and against movement of the Earth. At the end of Chapter III Gilbert writes, “I pass by the earth’s other movements, for here we treat only of the diurnal rotation…” so what he effectively promotes is a geocentric system with diurnal rotation. Later in his De Mundo Nostro Sublunari Philosophia Nova (New Philosophy about our Sublunary World), Gilbert propagated a full heliocentric system but this book was first published posthumously in 1651 and had no real influence on the astronomical discussion.

Demundo

Diagram of the cosmos De Mundo p. 202 Source: Wikimedia Commons

Gilbert’s De magnete was a widely read and highly influential book in the first half of the seventeenth century. Galileo praised it but criticised its lack of mathematics. As we shall see it had a massive influence on Kepler. Because of its status the book definitely had a major impact on the acceptance of geo-heliocentric systems with diurnal rotation rather than without later in the seventeenth century.

We will stop briefly and take stock in 1593, fifty years after the publication of De revolutionibus. We have seen that within Europe astronomers had already begun to question the inherited Ptolemaic system during the fifteenth century. In the sixteenth century a major debate developed about both the astronomical and cosmological models. The Aristotelian theories of comets, the celestial spheres and celestial immutability all came under attack and were eventually overturned. Alternative models–Aristotelian homocentricity, the Capellan system and geocentricity with diurnal rotation–were promoted.  With the publication of Copernicus’ De revolutionibus with its heliocentric hypothesis the debates went into overdrive. Only a comparatively small number of astronomers propagated the heliocentric system and an even smaller number of them actually went on to have a real impact on the discussion. A much larger number showed an initial strong interest in the mathematical models in De revolutionibus and the planetary tables and ephemerides based on them, in the hope they would generate better, more accurate data for applications such as astrology, cartography and navigation. This proved not to be the case as Copernicus’ work was based on the same inaccurate and corrupted ancient data, as Ptolemaic geocentric tables. Recognising this both Wilhelm IV in Kassel and Tycho Brahe on Hven began programmes of extensive new astronomical observations. However, this very necessary new data only became generally available well into the seventeenth century. Other astronomers partially convinced by Copernicus’ arguments turned to Capellan models with Mercury and Venus orbiting the Sun rather than the Earth and full geo-heliocentric models with the Moon and the Sun orbiting the Earth and all the other five planets orbiting the Sun. This was the situation at the beginning of the 1590s but a young Johannes Kepler (1571–1630), who would have a massive impact on the future astrological and cosmological models, was waiting in the wings.

 

 

 

 

 

5 Comments

Filed under History of Astrology, History of Astronomy, Renaissance Science

5 responses to “The emergence of modern astronomy – a complex mosaic: Part XVII

  1. Carl Vehse

    “Although he [Rheticus] appears to have abandoned Copernicus’ astronomy later in life…”

    Earlier the June 5, 2019, “Part XII” noted:

    “Having gone quiet on Copernicus and his hypothesis for some time after he moved to Kraków, in a correspondence with Pierre de la Ramée [Peter Ramus] (1515-1572) he announced that he had erected a large gnomon in Kraków and was now practicing the true astronomy of the Egyptians, whatever that might be.”

    I agree that “true astronomy of the Egyptians” is peculiar phrase. Did Rheticus use that phrase in writing to Remus?

    In Dennis Danielson’s Chapter 8, “Ramus, Rhetius, and the Copernican Connection” (Ramus, Pedagogy and the Liberal Arts, Emma Annette Wilson, Ed., Routledge, 2016, 272 pages) the gnomon is explained. Also, Danielson points out that, in Kraków, Rheticus’ was funding five (human) computers generating numbers for his trigonometic tables (science of triangles) and getting those funds from his time-consuming medical work. It is possible that Rheticus simply didn’t have time or equipment (or funding) to spent on generating astronomical data.

    In his correspondence, Ramus suggested Rheticus consider the vacant regius chair of mathematics at the University of Paris, which would have allowed Rheticus to again get back into astronomy. Fortunately for Rheticus, he remained in Kraków, and avoided becoming, like Ramus, a victim of the St. Bartholomew’s Day massacre in 1572.

    Curiously, in Edward Rosen’s “The Ramus-Rheticus Correspondence” (Journal of the History of Ideas 1:3, 1940, 363-368), it seems that Ramus thought that the unsigned Preface to Copernicus’ De Revolutionibus was written by Rheticus. It’s not clear from the article whether Rheticus (who certainly knew) ever informed Remus that it was an unauthorized Preface from Andreas Osiander.

    • It’s not clear from the article whether Rheticus (who certainly knew) ever informed Remus that it was an unauthorized Preface from Andreas Osiander.

      Calling the ad lectorum unauthorised is not accurate. The person, who could authorise addition to the manuscript or not as he chose, was Johannes Petreius the printer/publisher and not Copernicus the author and he certainly authorised the ad lectorum.

  2. Jim Harrison

    You note that Clavius and other geocentric astronomers effectively advertised Copernican ideas in their books. That’s a recurrent pattern in intellectual history. Especially in eras when books could still be effectively suppressed, heterodox notions were often spread by their refuters. The classic case is Spinoza. It was quite hard to acquire his actual works, but a huge number of polemical tracts appeared through the 18th Century and it was they, rather than the authentic words of the philosopher, that spread the infection. Copernicus was not personally demonized as Spinoza, Marx, Darwin, and Nietzsche would be—as far as I know, nobody, Catholic or Protestant, ever actually accused him of heresy—but like them, his posthumous career owed a lot to people who found him worth disagreeing with.

  3. Paul Palmer

    Are there any English translations of textbooks like (I quote Thorny)

    Epitome Astronomiae (1582), (which) was a standard Ptolemaic geocentric text

    I do see Pederson’s Survey of the Almagest but I can’t afford it.

    Thanks

    • The name is Thony! Unfortunately, so-called ‘key historical texts’, Narratio Prima or Sidereus Nuncius for example, get translated but standard university textbooks rarely do.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s