The emergence of modern astronomy – a complex mosaic: Part IV

Part I  Part II Part III

There is general agreement amongst historians of science that a major factor in the emergence of modern science in general and modern astronomy in particular was the (re)invention of moveable type printing and the arrival of the printed book in the middle of the fifteenth century. I say reinvention because moveable type printing emerged twice before in China in the eleventh century CE and in Korea in the fourteenth century, as I explained in an earlier post. For a long time it was a commonplace in the historical narrative that the printed book, like gunpowder and the compass, was a Chinese invention but extensive long-term research has failed to produce any evidence of a technology transfer and it is now thought that Johannes Gutenberg’s was an independent invention. Even within Europe Gutenberg was not the first to experiment with moveable type and his real invention was the printing press, inclusive printing ink.

amman3

Book Printers from Jost Amman  Professionals and Craftsmen

Less than twenty years after Gutenberg published his Bible, Regiomontanus printed and published the first printed astronomy book Peuerbach’s Theoricae Novae Planetarum (Nürnberg, 1473) followed by a handful of other astronomy/astrology books. Unfortunately he died before he could publish their Epytoma in almagesti Ptolemei, which was first published by Ratdolt in Venice in 1496. Both titles became standard astronomy textbooks throughout Europe for more than one hundred years. Famously also being the texts from which Copernicus learnt his astronomy and cosmology.

Peuerbach_Theoricae_novae_planetarum_1473

Theoricae Novae Planetarum Source: Wikimedia Commons

This marked the start of a wave of printed astronomy/astrology books throughout the sixteenth and seventeenth centuries including the works of Apian, Copernicus, Tycho, Kepler, Galileo and many other less well-known figures. Printing made reliable, consistent text available to a wide circle of readers. Whereas a copy of a manuscript in Copenhagen might well have serious deviations compared with a manuscript of the same work in Venice, printed copies of a book were in theory the same wherever their owners lived and worked.

Der_Astronomus_from_Jost_Amman's_Stände_und_Handwerker_Wellcome_L0069526

The Astronomer from Jost Amman’s Professionals and Craftsmen Source: Wikimedia Commons

As I pointed out in a reply to an earlier comment in this series the printed great works of astronomy, such as Copernicus’ De revolutionibusor Apian’s Astronomicum Caesareum, would have been way beyond the pocket of the average university student of the period but the professional astronomers, their patron and the institutions could and did acquire copies thus making them, at least potentially, accessible to those students. Interestingly Kepler bought a second hand copy of Copernicus’ De revolutionibus when he was still a student.

However, printing advanced the general dissemination and progress of astronomy and its related fields through purpose written textbooks. The most obvious example of this is Peter Apian’s Cosmographia, originally published by the author in Landshut in 1524. This was a basic introduction to astronomy, astrology, surveying, cartography etc. In total, over the sixteenth century, the book went through thirty-two expanded and improved editions all of which were, somewhat strangely, edited and published by Gemma Frisius and not Apian. Similar textbooks were produced by Oronce Fine, Michael Mästlin and many other sixteenth century mathematical authors.

81cfbcd42e1dc1939461d4e71d49c03a-university-of-virginia-vintage-art

Title page of Apian’s Cosmpgraphia

It was not just major monographs that profited from the invention of movable type printing. Such astronomical/astrological tools as ephemerides benefited from a certain level of consistency given by print as opposed to hand written manuscripts with their copying errors. In fact a large part of Regiomontanus’ posthumous reputation was based on his printed ephemeris, one of the few books he was able to publish before his untimely demise.

Regiomontanus also led the way in producing printed astronomical/astrological calendars, volumes much in demand from all those working in the wider field of astronomy. In fact astronomical/astrological ephemera of all types–calendars, prognostica, single-sheet wall calendars, almanacs–became a mainstay of the early printing industry providing a much need flow of ready cash.

BD7f13_1ecl

Regiomontanus Calendar Source: University of Glasgow

To give an idea of the scope of this activity, one of the calendars of Simon Marius (1573–1625), which had to be withdrawn because of political complaints by the local authorities, was said by the printer publisher to have had an edition of 12,000. Marius was only a small local astrologer; the editions of the calendars and prognostica of an Apian or a Kepler would have been much larger. An astronomical monograph, such as De revolutionibus, would have had high production costs and an edition of maybe 500. It would take several years before it turned a profit for the printer publisher if at all. The author got nothing for his troubles. A calendar (wall or pocket), prognostica or almanac had comparatively low production costs, a large edition and if the author was established sold very rapidly. The profits were usually shared fifty-fifty between the printer and the author, a reliable stream of income for both parties. Gutenberg raised some of the finance for his Bible by printing and issuing an astro-medical single-sheet wall calendar.

In an important work, Astrology and the Popular Press: English Almanacs 1500–1800historian Bernard Capp showed that astrological ephemera made up by far and away the largest sector of publishing in the early centuries of printing and more importantly that the editorial sections of the cheap almanacs were one of the major sources for disseminating the latest developments in astronomy, in particular, in the seventeenth century, heliocentricity.

Almanack_by_John_Tulley,_1692_-_Cambridge,_MA_-_DSC00098

Almanack by John Tulley, 1692. Book exhibited in the Cambridge Public Library, Cambridge, Massachusetts Source: Wikimedia Commons

Along with the development of moving type printing came an increased use of illustrations leading to a rapid development in the techniques used to produce them–woodblock printing, copperplate engraving and etching.

Formschneider

Woodblock cutter Jost Amman’s Professionals and Craftsmen Source: Wikimedia Commons

These techniques were then extended to other field related to astronomy, cartography and globe making. Printed copies of Ptolemaeus’ Geographia with maps were already being printed in the last quarter of the fifteenth century. There also quickly developed a market for large scale printed wall maps, the most famous early example being Waldseemüller’s world map that gave the very recently discovered fourth part of the world the name America after Amerigo Vespucci (1454–1512). Waldseemüller also seems to have printed the first terrestrial globe, a small globe containing the same map of the world. Unfortunately we only have a small number of printed globe gores and no surviving finished globes.

2560px-waldseemuller_map_2

Waldseemüller World Map 1507 (Wikipedia Commons)

Johannes Schöner (1477–1547) was the first to start producing serial printed globes, his first terrestrial globe in 1515 and the matching celestial globe in 1517, establishing a tradition for matching pairs of printed globes that continued until the end of the nineteenth century. Judging by comments from his correspondence his globe printing enterprise was both very successful and very lucrative. Gemma Frisius (1508–1555) took up the baton producing printed globes to be sold with reprints of Schöner’s cosmographia, the descriptive book sold with each globe to explain how to use it. Gemma’s assistant was Gerhard Mercator, who would go on to become the most successful printed globe maker of the second half of the sixteenth century. Mercator’s globes inspired both the great Dutch cartographical houses of Hondius and Blaeu, who would dominate the European globe making and cartography industry in the seventeenth century. England’s first commercial globe printer, Joseph Moxon (1627–1691) learnt his handwork from Willem Janszoon Blaeu (c. 1570–1630). Printed globe making was big business in the sixteenth and seventeenth centuries and the globes were used to teach both astronomy and astrology.

Pair-of-globes-by-Gerard-Mercator-Globe-Museum-Austrian-National-Library

Pair of globes by Gerard Mercator (Globe Museum, Austrian National Library).

Of course all of the above applies equally well to printed maps. Along with the demand for large wall maps, a market developed for collections of printed maps, what we now call atlases. Bound collection of manuscript maps existed before the invention of printing but being the product of hundreds of hours of manual labour these tended to be art treasures for rich patrons rather than practical books for everyday usage. The man, who did most to change this was Abraham Ortelius (1527–1598), whose Theatrum Orbis Terrarum, a bound, standardised, collection of maps, produced especially for traders first published in 1570 was a runaway success. Initial less successful was the more academic Atlas of his good friend and rival Gerhard Mercator. However, both publications laid the foundations for the commercial success of the cartographical publications of Blaeu and Hondius.

theatrum_orbis_terrarum_frontpage

Theatrum Orbis Terrarum Title Page Source: Wikimedia Commons

A somewhat different approach was taken by Sebastian Münster (1488–1552), with his Cosmographia, first published in 1544, which was not just a collection of maps but also a full geographical and historical description of the world. In its numerous editions it was almost certainly the biggest selling book in the sixteenth century.

1024px-Cosmographia_titelblatt_der_erstausgabe

Title page of the first edition of Münster’s Cosmographia Source: Wikimedia Commons

Like nearly-all-the-other globe makers and cartographers described here Münster was an astrologer and astronomer. Other astrologer/astronomers in the sixteenth century, who were also commercially successful as cartographers were Peter and Philipp Apian, Oronce Fine and Michael Mästlin.

It should be clear from the above that the advent of movable type printing had a very large impact on the dissemination of astronomy and its related fields at the same time raising its status in the Early Modern Period in Europe and bringing it to a much wider audience.

3 Comments

Filed under Early Scientific Publishing, History of Astrology, History of Astronomy, History of Cartography, Renaissance Science, Uncategorized

3 responses to “The emergence of modern astronomy – a complex mosaic: Part IV

  1. Pingback: The emergence of modern astronomy – a complex mosaic: Part V | The Renaissance Mathematicus

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s