The emergence of modern astronomy – a complex mosaic: Part L

 

By the end of the eighteenth century, Newton’s version of the heliocentric theory was firmly established as the accepted model of the solar system. Whilst not yet totally accurate, a reasonable figure for the distance between the Earth and the Sun, the astronomical unit, had been measured and with it the absolute, rather than relative, sizes of the orbits of the known planets had been calculated. This also applied to Uranus, the then new planet discovered by the amateur astronomer, William Herschel (1738–1822), in 1781; the first planet discovered since antiquity. However, one major problem still existed, which needed to be solved to complete the knowledge of the then known cosmos. Astronomers and cosmologists still didn’t know the distance to the stars. It had long been accepted that the stars were spread out throughout deep space and not on a fixed sphere as believed by the early astronomer in ancient Greece. It was also accepted that because all attempts to measure any stellar parallax down the centuries had failed, the nearest stars must actually be at an unbelievably far distance from the Earth.

Here we meet a relatively common phenomenon in the history of science, almost simultaneous, independent, multiple discoveries of the same fact. After literally two millennia of failures to detect any signs of stellar parallax, three astronomers each succeeded in measuring the parallax of three different stars in the 1830s. This finally was confirmation of the Earth’s annual orbit around, independent of stellar aberration and gave a yardstick for the distance of the stars from the Earth.

The first of our three astronomers was the Scotsman, Thomas Henderson (1798–1844).

Thomas_James_Henderson,_1798-1844_Henderson-01r

Thomas Henderson Source: Wikimedia Commons

Henderson was born in Dundee where he also went to school. He trained as a lawyer but was a keen amateur astronomer. He came to the attention of Thomas Young (1773-1829), the superintendent of the HM Nautical Almanac Office, after he devised a new method for determining longitude using lunar occultation, that is when a star disappears behind the Moon. Young brought him into the world of astronomy and upon his death recommended Henderson as his successor.

Thomas_Young_by_Briggs

Copy of a portrait of Thomas Young by Henry Briggs Source: Wikimedia Commons

Henderson didn’t receive to post but was appointed director of the Royal Observatory at the Cape of Good Hope. The observatory had only opened in 1828 after several years delay in its construction. The first director Fearon Fallows (1788–1831), who had overseen the construction of the observatory had died of scarlet fever in 1831 and Henderson was appointed as his successor, arriving in 1832.

South_African_Astronomical_Observatory_1857

The Royal Observatory Cape of Good Hope in 1857 Illustrated London News, 21 March 1857/Ian Glass Source: Wikimedia Commons

The Cape played a major role in British observational astronomy. In the eighteenth century, it was here that Charles Mason (1728–1786) and Jeremiah Dixon (1733–1779), having been delayed in their journey to their designated observational post in Sumatra, observed the transit of Venus of 1761. John Herschel (1792–1871), the son and nephew of the astronomers William and Caroline Herschel, arrived at the Cape in 1834 and carried extensive astronomical observation there with his own 21-foot reflecting telescope. cooperating with Henderson successor Thomas Maclear. In 1847, Herschel published his Results of Astronomical Observations made at the Cape of Good Hope, which earned him the Copley Medal of the Royal Society.

Manuel John Johnson (1805–1859), director of the observatory on St Helena, drew Henderson’s attention to the fact that Alpha Centauri displayed a high proper motion.

observatoryladderhill_thumb610x500

Ladder Hill Observatory St Helena Source

Proper motion is the perceived motion of a star relative to the other stars. Although the position of the stars relative to each other appears not to change over long periods of time they do. There had been speculation about the possibility of this since antiquity, but it was first Edmund Halley, who in 1718 proved its existence by comparing the measured positions of prominent stars from the historical record with their current positions. A high proper motion is an indication that a star is closer to the Earth.

Aimed with this information Henderson began to try to determine the stellar parallax of Alpha Centauri. However, Henderson hated South Africa and he resigned his position at the observatory in 1833 and returned to Britain. In his luggage he had nineteen very accurate determinations of the position of Alpha Centauri. Back in Britain Henderson was appointed the first Astronomer Royal for Scotland in 1834 and professor for astronomy at the University of Edinburgh, position he held until his death.

Initially Henderson did not try to determine the parallax of Alpha Centauri from his observational data. He thought that he had too few observations and was worried that he would join the ranks of many of his predecessors, who had made false claims to having discovered stellar parallax; Henderson preferred to wait until he had received more observational data from his assistant William Meadows (?–?). This decision meant that Henderson, whose data did in fact demonstrate stellar parallax for Alpha Centauri, who had actually won the race to be the first to determine stellar parallax, by not calculating and publishing, lost the race to the German astronomer Friedrich Wilhelm Bessel (1784–1846).

Friedrich_Wilhelm_Bessel_(1839_painting)

Portrait of the German mathematician Friedrich Wilhelm Bessel by the Danish portrait painter Christian Albrecht Jensen Source: Wikimedia Commons

Like Henderson, Bessel was a self-taught mathematician and astronomer. Born in Minden as the son of a minor civil servant, at the age of fourteen he started a seven-year apprenticeship as a clerk to an import-export company in Bremen. Bessel became interested in the navigation on which the company’s ships were dependent and began to teach himself navigation, and the mathematics and astronomy on which it depended. As an exercise he recalculated the orbit of Halley’s Comet, which he showed to the astronomer Heinrich Wilhelm Olbers (1758–1840), who also lived in Bremen.

Heinrich_Wilhelm_Matthias_Olbers

Portrait of the german astronomer Heinrich Wilhelm Matthias Olbers (lithography by Rudolf Suhrlandt Source: Wikimedia Commons

Impressed by the young man’s obvious abilities, Olbers became his mentor helping him to get his work on Halley’s Comet published and guiding his astronomical education. In 1806, Olbers obtained a position for Bessel, as assistant to Johann Hieronymus Schröter (1745–1816) in Lilienthal.

460px-Johann_Hieronymus_Schröter

Johann Hieronymus Schröter Source: Wikimedia Commons

Here Bessel served his apprenticeship as an observational astronomer and established an excellent reputation.

unnamed

Schröter’s telescope in Lilienthal on which Bessel served his apprenticeship as an observational astronomer

Part of that reputation was built up through his extensive correspondence with other astronomers throughout Europe, including Johann Carl Fried Gauss (1777–1855). It was probably through Gauss’ influence that in 1809 Bessel, at the age of 25, was appointed director of the planned state observatory in Königsberg, by Friedrich Wilhelm III, King of Prussia.

Koenigsberg_observatory

Königsberg Observatory in 1830. It was destroyed by bombing in the Second World War. Source: Wikimedia Commons

Bessel oversaw the planning, building and equipping of the new observatory, which would be his home and his workplace for the rest of his life. From the beginning he planned to greatly increase the accuracy of astronomical observations and calculation. He started by recalculated the positions of the stars in John Flamsteed’s stellar catalogue, greatly increasing the accuracy of the stellar positions. Bessel also decided to try and solve the problem of determining stellar parallax, although it would be some time before he could undertake that task.

One of the astronomers with whom Bessel took up contact was Friedrich Georg Wilhelm von Struve (1793–1864), who became a good friend and his rival in the search for stellar parallax, although the rivalry was always good natured. Struve was born the son of Jacob Struve (1755–1841), a schoolteacher and mathematician, in Altona then in the Duchy of Holstein, then part of the Denmark–Norway Kingdom and a Danish citizen.

GW_Struve_2

Friedrich Georg Wilhelm von Struve Source: Wikimedia Commons

Whilst he was still a youth, his father sent him to live in Dorpat (nowadays Tartu) in Estonia with his elder brother, to avoid being drafted into the Napoleonic army. In Dorpat he registered as a student at the university to study, at the wish of his father, philosophy and philology but also registered for a course in astronomy. He financed his studies by working as a private tutor to the children of a wealthy family. He graduated with a degree in philology in 1811 and instead of becoming a history teacher, as his father wished, he took up the formal study of astronomy. The university’s only astronomer, Johann Sigismund Gottfried Huth (1763–1818), was a competent scholar but was an invalid, so Struve basically taught himself and had free run of the university’s observatory whilst still a student, installing the Dolland transit telescope that was still packed in the crates it was delivered in. In 1813 he graduated PhD and was, at the age of just twenty, appointed to the faculty of the university. He immediately began his life’s work, the systematic study of double stars.

Tartu_tähetorn_2006

The old observatory building in Dorpat (Tartu) Source: Wikimedia Commons

Like Bessel, Struve was determined to increase the accuracy of observational astronomy. In 1820 whilst in München, to pick up another piece of observational equipment, he visited Europe’s then greatest optical instrument maker, Joseph Fraunhofer (1787–1826), who was putting the finishing touches to his greatest telescopic creation, a refractor with a 9.5-inch lens.

Joseph_v_Fraunhofer

Joseph Fraunhofer Source: Wikimedia Commons

Struve had found his telescope. He succeeded in persuading the university to purchase the telescope, known as the ‘Great Refractor’ and began his search for observational perfection.

798PX-TEADUSFOTO_2015_-_04_bearbeitet

Frauenhofer’s Great Refractor Source: Wikimedia Commons

Like Struve, Bessel turned to Fraunhofer for the telescope of his dreams. However, unlike Struve, whose telescope was a general-purpose instrument, Bessel desired a special purpose-built heliometer, a telescope with a split objective lens, especially conceived to accurately measure the distance between two observed objects. The first  really practical heliometer was created by John Dolland (1706–1761) to measure the variations in the diameter of the Sun, hence the name. Bessel needed this instrument to fulfil his dream of becoming the first astronomer to accurately measure stellar parallax. Bessel got his Fraunhofer in 1829.

Koenigsberg_helio

Königsberger Heliometer Source: Wikimedia Commons

One can get a very strong impression of Bessel’s obsession with accuracy in that he devoted five years to erecting, testing, correcting and controlling his new telescope. In 1834 he was finally ready to take up the task he had set himself. However, other matters that he had to attend to prevented him from starting on his quest.

The Italian astronomer Giuseppe Piazzi (1746–1826), famous for discovering the first asteroid, Ceres, had previously determined that the star 61 Cygni had a very high proper motion, meaning it was probably relatively close to the Earth and this was Bessel’s intended target for his attempt to measure stellar parallax.

Piazzi

Giuseppe Piazzi pointing at the asteroid Ceres Painting by Giuseppe Velasco (1750–1826). Source: Wikimedia Commons

It was also Struve’s favoured object for his attempt but, unfortunately, he was unable in Dorpat with his telescope to view both 61 Cygni and a reference star against which to measure any observable parallax, so he turned his attention to Vega instead. In 1837, Bessel was more than somewhat surprised when he received a letter from Struve containing seventeen preliminary parallax observations of Vega. Struve admitted that they were not yet adequate to actually determine Vega’s parallax, but it was obvious that he was on his way. Whether Struve’s letter triggered Bessel’s ambition is not known but he relatively soon began a year of very intensive observations of 61 Cygni. In 1838 having checked and rechecked his calculations, and dismantled and thoroughly examined his telescope for any possible malfunctions, he went public with the news that he had finally observed a measurable parallax of 61 Cygni. He sent a copy of his report to John Herschel, President of the Royal Astronomical Society in London. After Herschel had carefully studied the report and after Bessel had answered all of his queries to his satisfaction. Herschel announced to the world that stellar parallax had finally been observed. For his work Bessel was awarded the Gold Medal of the Royal Astronomical Society. Just two months later, Henderson, who had in the meantime done the necessary calculations, published his measurement of the stellar parallax of Alpha Centauri. In 1839 Struve announced his for Vega. Bessel did not rest on his laurels but reassembling his helioscope he spent another year remeasuring 61 Cygni’s parallax correcting his original figures. 

All three measurements were accepted by the astronomical community and both Henderson and Struve were happy to acknowledge Bessel’s priority. There was no sense of rivalry between them and the three men remained good friends. Modern measurements have shown that Bessel’s figures were within 90% of the correct value, Henderson’s with in 75%, but Struve’s were only within 50%. The last is not surprising as Vega is much further from the Earth than either Alpha Centauri or Cygni 61 making it parallax angle much, much smaller and thus considerably more difficult to measure.

In the sixteenth century Tycho Brahe rejected heliocentricity because the failure to detect stellar parallax combined with his fallacious big star argument meant that in a heliocentric system the stars were for him inconceivably far away. I wonder what he would think about the fact that Earth’s nearest stellar neighbour Proxima Centauri is 4.224 lightyears away, that is 3. 995904 x 1013 kilometres!

 

7 Comments

Filed under History of Astronomy, History of Optics, History of science, History of Technology

7 responses to “The emergence of modern astronomy – a complex mosaic: Part L

  1. > Henderson’s value was
    Something missing there?

  2. Giulio

    Can you di a chronology of the astronomical observation that habe been fare more accurate than all the others untip their time?
    For example those of Brahe are famous, and in this post you explained those of Vessel. I am curious ti know more about this topic.
    By the way noce post as always!

    • The list is rather short. The earliest surviving star catalogue is Ptolemaeus c. 150 CE. The next major improvement is first Tycho and William IV of Hesse-Kassel (just as accurate as Tycho) both late 16th century. After that John Flamsteed late 17th, early 18th century then Bessel. After Bessel improvement only incremental.

      • Giulio

        Nice, thank you.
        So, does Cassini not belong to this list?

      • ” After Bessel improvement only incremental.”

        I would add (in the visible band) until the advent of astrometry satellites (ESA’s Hipparchos 1989-93 and Gaia since 2013).

      • Cassini didn’t make systematic stellar observations, there is no Cassini star catalogue. He concentrated more on planetary observations, albeit of a very high level of accuracy.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s