The emergence of modern astronomy – a complex mosaic: Part LII

This is a concluding summary to my The emergence of modern astronomy – a complex mosaic blog post series. It is an attempt to produce an outline sketch of the path that we have followed over the last two years. There are, at the appropriate points, links to the original posts for those, who wish to examine a given point in more detail. I thank all the readers, who have made the journey with me and in particular all those who have posted helpful comments and corrections. Constructive comments and especially corrections are always very welcome. For those who have developed a taste for a continuous history of science narrative served up in easily digestible slices at regular intervals, a new series will start today in two weeks if all goes according to plan!

There is a sort of standard popular description of the so-called astronomical revolution that took place in the Early Modern period that goes something liker this. The Ptolemaic geocentric model of the cosmos ruled unchallenged for 1400 years until Nicolas Copernicus published his trailblazing De revolutionibus in 1453, introducing the concept of the heliocentric cosmos. Following some initial resistance, Kepler with his three laws of planetary motion and Galileo with his revelatory telescopic discoveries proved the existence of heliocentricity. Isaac Newton with his law of gravity in his Principia in 1687 provided the physical mechanism for a heliocentric cosmos and astronomy became modern. What I have tried to do in this series is to show that this version of the story is almost totally mythical and that in fact the transition from a geocentric to a heliocentric model of the cosmos was a long drawn out, complex process that took many stages and involved many people and their ideas, some right, some only half right and some even totally false, but all of which contributed in some way to that transition.

The whole process started at least one hundred and fifty years before Copernicus published his magnum opus, when at the beginning of the fifteenth century it was generally acknowledged that astronomy needed to be improved, renewed and reformed. Copernicus’ heliocentric hypothesis was just one contribution, albeit a highly significant one, to that reform process. This reform process was largely triggered by the reintroduction of mathematical cartography into Europe with the translation into Latin of Ptolemaeus’ Geōgraphikḕ Hyphḗgēsis by Jacopo d’Angelo (c. 1360 – 1411) in 1406. A reliable and accurate astronomy was needed to determine longitude and latitude. Other driving forces behind the need for renewal and reform were astrology, principally in the form of astro-medicine, a widened interest in surveying driven by changes in land ownership and navigation as the Europeans began to widen and expand their trading routes and to explore the world outside of Europe.

2880px-1660_celestial_map_illustrating_Claudius_Ptolemy's_model_of_the_Universe

The Ptolemaic Cosmos: Andreas Cellarius, Harmonia Macrocosmica 1660 Source: Wikimedia Commons

At the beginning of the fifteenth century the predominant system was an uneasy marriage of Aristotelian cosmology and Ptolemaic astronomy, uneasy because they contradicted each other to a large extent. Given the need for renewal and reform there were lively debates about almost all aspects of the cosmology and astronomy throughout the fifteenth and sixteenth centuries, many aspects of the discussions had their roots deep in the European and Islamic Middle Ages, which shows that the 1400 years of unchallenged Ptolemaic geocentricity is a myth, although an underlying general acceptance of geocentricity was the norm.

A major influence on this programme of renewal was the invention of moving type book printing in the middle of the fifteenth century, which made important texts in accurate editions more readily available to interested scholars. The programme for renewal also drove a change in the teaching of mathematics and astronomy on the fifteenth century European universities. 

One debate that was new was on the nature and status of comets, a debate that starts with Toscanelli in the early fifteenth century, was taken up by Peuerbach and Regiomontanus in the middle of the century, was revived in the early sixteenth century in a Europe wide debate between Apian, Schöner, Fine, Cardano, Fracastoro and Copernicus, leading to the decisive claims in the 1570s by Tycho Brahe, Michael Mästlin, and Thaddaeus Hagecius ab Hayek that comets were celestial object above the Moon’s orbit and thus Aristotle’s claim that they were a sub-lunar meteorological phenomenon was false. Supralunar comets also demolished the Aristotelian celestial, crystalline spheres. These claims were acknowledged and accepted by the leading European Ptolemaic astronomer, Christoph Clavius, as were the claims that the 1572 nova was supralunar. Both occurrences shredded the Aristotelian cosmological concept that the heaven were immutable and unchanging.

The comet debate continued with significant impact in 1618, the 1660s, the 1680s and especially in the combined efforts of Isaac Newton and Edmund Halley, reaching a culmination in the latter’s correct prediction that the comet of 1682 would return in 1758. A major confirmation of the law of gravity.

During those early debates it was not just single objects, such as comets, that were discussed but whole astronomical systems were touted as alternatives to the Ptolemaic model. There was an active revival of the Eudoxian-Aristotelian homocentric astronomy, already proposed in the Middle Ages, because the Ptolemaic system, of deferents, epicycles and equant points, was seen to violate the so-called Platonic axioms of circular orbits and uniform circular motion. Another much discussed proposal was the possibility of diurnal rotation, a discussion that had its roots in antiquity. Also, on the table as a possibility was the Capellan system with Mercury and Venus orbiting the Sun in a geocentric system rather than the Earth.

2880px-Andreas_Cellarius_-_Planisphaerium_Copernicanum_Sive_Systema_Universi_Totius_Creati_Ex_Hypothesi_Copernicana_In_Plano_Exhibitum

The Copernican Cosmos: Andreas Cellarius, Harmonia Macrocosmica 1660 Source: Wikimedia Commons

Early in the sixteenth century, Copernicus entered these debates, as one who questioned the Ptolemaic system because of its breaches of the Platonic axioms, in particular the equant point, which he wished to ban. Quite how he arrived at his radical solution, replace geocentricity with heliocentricity we don’t know but it certainly stirred up those debates, without actually dominating them. The reception of Copernicus’ heliocentric hypothesis was complex. Some simply rejected it, as he offered no real proof for it. A small number had embraced and accepted it by the turn of the century. A larger number treated it as an instrumentalist theory and hoped that his models would deliver more accurate planetary tables and ephemerides, which they duly created. Their hopes were dashed, as the Copernican tables, based on the same ancient and corrupt data, proved just as inaccurate as the already existing Ptolemaic ones. Of interests is the fact that it generated a serious competitor, as various astronomers produced geo-heliocentric systems, extensions of the Capellan model, in which the planets orbit the Sun, which together with the Moon orbits the Earth. Such so-called Tychonic or semi-Tychonic systems, named after their most well-known propagator, incorporated all the acknowledged advantages of the Copernican model, without the problem of a moving Earth, although some of the proposed models did have diurnal rotation.

2880px-1660_chart_illustrating_Danish_astronomer_Tycho_Brahe's_model_of_the_universe

The Tychonic Cosmos: Andreas Cellarius, Harmonia Macrocosmica 1660 Source: Wikimedia Commons

The problem of inaccurate planetary tables and ephemerides was already well known in the Middle Ages and regarded as a major problem. The production of such tables was seen as the primary function of astronomy since antiquity and they were essential to all the applied areas mentioned earlier that were the driving forces behind the need for renewal and reform. Already in the fifteenth century, Regiomontanus had set out an ambitious programme of astronomical observation to provide a new data base for such tables. Unfortunately, he died before he even really got started. In the second half of the sixteenth century both Wilhelm IV Landgrave of Hessen-Kassel and Tycho Brahe took up the challenge and set up ambitious observation programmes that would eventually deliver the desired new, more accurate astronomical data.

At the end of the first decade of the seventeenth century, Kepler’s Astronomia Nova, with his first two planetary laws (derived from Tycho’s new accurate data), and the invention of the telescope and Galileo’s Sidereus Nuncius with his telescopic discoveries are, in the standard mythology, presented as significant game changing events in favour of heliocentricity. They were indeed significant but did not have the impact on the system debate that is usually attributed them. Kepler’s initial publication fell largely on deaf ears and only later became relevant. On Galileo’s telescopic observations, firstly he was only one of a group of astronomers, who in the period 1610 to 1613 each independently made those discoveries, (Thomas Harriot and William Lower, Simon Marius, Johannes Fabricius, Odo van Maelcote and Giovanni Paolo Lembo, and Christoph Scheiner) but what did they show or prove? The lunar features were another nail in the coffin of the Aristotelian concept of celestial perfection, as were the sunspots. The moons of Jupiter disproved the homocentric hypothesis. Most significant discovery was the of the phases of Venus, which showed that a pure geocentric model was impossible, but they were conform with various geo-heliocentric models.

1613 did not show any clarity on the way to finding the true model of the cosmos but rather saw a plethora of models competing for attention. There were still convinced supporters of a Ptolemaic model, both with and without diurnal rotation, despite the phases of Venus. Various Tychonic and semi-Tychonic models, once again both with and without diurnal rotation. Copernicus’ heliocentric model with its Ptolemaic deferents and epicycles and lastly Kepler’s heliocentric system with its elliptical orbits, which was regarded as a competitor to Copernicus’ system. Over the next twenty years the fog cleared substantially and following Kepler’s publication of his third law, his Epitome Astronomiae Copernicanae, which despite its title is a textbook on his elliptical system and the Rudolphine Tables, again based on Tycho’s data, which delivered the much desired accurate tables for the astrologers, navigators, surveyors and cartographers, and also of Longomontanus’ Astronomia Danica (1622) with his own tables derived from Tycho’s data presenting an updated Tychonic system with diurnal rotation, there were only two systems left in contention.

Around 1630, we now have two major world systems but not the already refuted geocentric system of Ptolemaeus and the largely forgotten Copernican system as presented in Galileo’s Dialogo but Kepler’s elliptical heliocentricity and a Tychonic system, usually with diurnal rotation. It is interesting that diurnal rotation became accepted well before full heliocentricity, although there was no actually empirical evidence for it. In terms of acceptance the Tychonic system had its nose well ahead of Kepler because of the lack of any empirical evidence for movement of the Earth.

Although there was still not a general acceptance of the heliocentric hypothesis during the seventeenth century the widespread discussion of it in continued in the published astronomical literature, which helped to spread knowledge of it and to some extent popularise it. This discussion also spread into and even dominated the newly emerging field of proto-sciencefiction.

Galileo’s Dialogo was hopelessly outdated and contributed little to nothing to the real debate on the astronomical system. However, his Discorsi made a very significant and important contribution to a closely related topic that of the evolution of modern physics. The mainstream medieval Aristotelian-Ptolemaic cosmological- astronomical model came as a complete package together with Aristotle’s theories of celestial and terrestrial motion. His cosmological model also contained a sort of friction drive rotating the spheres from the outer celestial sphere, driven by the unmoved mover (for Christians their God), down to the lunar sphere. With the gradual demolition of Aristotelian cosmology, a new physics must be developed to replace the Aristotelian theories.

Once again challenges to the Aristotelian physics had already begun in the Middle Ages, in the sixth century CE with the work of John Philoponus and the impetus theory, was extended by Islamic astronomers and then European ones in the High Middle Ages. In the fourteenth century the so-called Oxford Calculatores derived the mean speed theorem, the core of the laws of fall and this work was developed and disseminated by the so-called Paris Physicists. In the sixteenth century various mathematicians, most notably Tartaglia and Benedetti developed the theories of motion and fall further. As did in the early seventeenth century the work of Simon Stevin and Isaac Beeckman. These developments reached a temporary high point in Galileo’s Discorsi. Not only was a new terrestrial physics necessary but also importantly for astronomy a new celestial physics had to be developed. The first person to attempt this was Kepler, who replaced the early concept of animation for the planets with the concept of a force, hypothesising some sort of magnetic force emanating from the Sun driving the planets around their orbits. Giovanni Alfonso Borelli also proposed a system of forces as the source of planetary motion.

Throughout the seventeenth century various natural philosophers worked on and made contributions to defining and clarifying the basic terms that make up the science of dynamics: force, speed, velocity, acceleration, etc. as well as developing other areas of physics, Amongst them were Simon Stevin, Isaac Beeckman, Borelli, Descartes, Pascal, Riccioli and Christiaan Huygens. Their efforts were brought together and synthesised by Isaac Newton in his Principia with its three laws of motion, the law of gravity and Kepler’s three laws of planetary motion, which laid the foundations of modern physics.

In astronomy telescopic observations continued to add new details to the knowledge of the solar system. It was discovered that the planets have diurnal rotation, and the periods of their diurnal rotations were determined. This was a strong indication the Earth would also have diurnal rotation. Huygens figured out the rings of Saturn and discovered Titan its largest moon. Cassini discovered four further moons of Saturn. It was already known that the four moons of Jupiter obeyed Kepler’s third law and it would later be determined that the then known five moons of Saturn also did so. Strong confirming evidence for a Keplerian model.

Cassini showed by use of a heliometer that either the orbit of the Sun around the Earth or the Earth around the Sun was definitively an ellipse but could not determine which orbited which. There was still no real empirical evidence to distinguish between Kepler’s elliptical heliocentric model and a Tychonic geo-heliocentric one, but a new proof of Kepler’s disputed second law and an Occam’s razor argument led to the general acceptance of the Keplerian model around 1660-1670, although there was still no empirical evidence for either the Earth’s orbit around the Sun or for diurnal rotation. Newton’s Principia, with its inverse square law of gravity provided the physical mechanism for what should now best be called the Keplerian-Newtonian heliocentric cosmos.

Even at this juncture with a very widespread general acceptance of this Keplerian-Newtonian heliocentric cosmos there were still a number of open questions that needed to be answered. There were challenges to Newton’s work, which, for example, couldn’t at that point fully explain the erratic orbit of the Moon around the Earth. This problem had been solved by the middle of the eighteenth century. The mechanical philosophers on the European continent were anything but happy with Newton’s gravity, an attractive force that operates at a distance. What exactly is it and how does it function? Questions that even Newton couldn’t really answer. Leibniz also questioned Newton’s insistence that time and space were absolute, that there exists a nil point in the system from which all measurement of these parameters are taken. Leibniz preferred a relative model.

There was of course also the very major problem of the lack of any form of empirical evidence for the Earth’s movement. Going back to Copernicus nobody had in the intervening one hundred and fifty years succeeded in detecting a stellar parallax that would confirm that the Earth does indeed orbit the Sun. This proof was finally delivered in 1725 by Samuel Molyneux and James Bradley, who first observed, not stellar parallax but stellar aberration. An indirect proof of diurnal rotation was provided in the middle of the eighteenth century, when the natural philosophers of the French Scientific Academy correctly determined the shape of the Earth, as an oblate spheroid, flattened at the pols and with an equatorial bulge, confirming the hypothetical model proposed by Newton and Huygens based on the assumption of a rotating Earth.

Another outstanding problem that had existed since antiquity was determining the dimensions of the known cosmos. The first obvious method to fulfil this task was the use of parallax, but whilst it was already possible in antiquity to determine the distance of the Moon reasonably accurately using parallax, down to the eighteenth century it proved totally impossible to detect the parallax of any other celestial body and thus its distance from the Earth. Ptolemaeus’ geocentric model had dimensions cobbled together from its data on the crystalline spheres. One of the advantages of the heliocentric model is that it gives automatically relative distances for the planets from the sun and each other. This means that one only needs to determine a single actually distance correctly and all the others are automatically given. Efforts concentrated on determining the distance between the Earth and the Sun, the astronomical unit, without any real success; most efforts producing figures that were much too small.

Developing a suggestion of James Gregory, Edmond Halley explained how a transit of Venus could be used to determine solar parallax and thus the true size of the astronomical unit. In the 1760s two transits of Venus gave the world the opportunity to put Halley’s theory into practice and whilst various problems reduced the accuracy of the measurements, a reasonable approximation for the Sun’s distance from the Earth was obtained for the very first time and with it the actually dimensions of the planetary part of the then known solar system. What still remained completely in the dark was the distance of the stars from the Earth. In the 1830s, three astronomers–Thomas Henderson, Friedrich Wilhelm Bessel and Friedrich Georg Wilhelm von Struve–all independently succeeded in detecting and measuring a stellar parallax thus completing the search for the dimensions of the known cosmos and supplying a second confirmation, after stellar aberration, for the Earth’s orbiting the Sun.

In 1851, Léon Foucault, exploiting the Coriolis effect first hypothesised by Riccioli in the seventeenth century, finally gave a direct empirical demonstration of diurnal rotation using a simple pendulum, three centuries after Copernicus published his heliocentric hypothesis. Ironically this demonstration was within the grasp of Galileo, who experiment with pendulums and who so desperately wanted to be the man who proved the reality of the heliocentric model, but he never realised the possibility. His last student, Vincenzo Viviani, actually recorded the Coriolis effect on a pendulum but didn’t realise what it was and dismissed it as an experimental error.

From the middle of the eighteenth century, at the latest, the Keplerian-Newtonian heliocentric model had become accepted as the real description of the known cosmos. Newton was thought not just to have produced a real description of the cosmos but the have uncovered the final scientific truth. This was confirmed on several occasions. Firstly, Herschel’s freshly discovered new planet Uranus in 1781 fitted Newton’s theories without problem, as did the series of asteroids discovered in the early nineteenth century. Even more spectacular was the discovery of Neptune in 1846 based on observed perturbations from the path of Uranus calculated with Newton’s theory, a clear confirmation of the theory of gravity. Philosophers, such as Immanuel Kant, no longer questioned whether Newton had discovered the true picture of the cosmos but how it had been possible for him to do so.

1377093_Wallpaper2

However, appearances were deceptive, and cracks were perceptible in the Keplerian-Newtonian heliocentric model. Firstly, Leibniz’s criticism of Newton’s insistence on absolute time and space rather than a relative model would turn out to have been very perceptive. Secondly, Newton’s theory of gravity couldn’t account for the observed perihelion precession of the planet Mercury. Thirdly in the 1860s, based on the experimental work of Michael Faraday, James Maxwell produced a theory of electromagnetism, which was not compatible with Newtonian physics. Throughout the rest of the century various scientists including Hendrik Lorentz, Georg Fitzgerald, Oliver Heaviside, Henri Poincaré, Albert Michelson and Edward Morley tried to find a resolution to the disparities between the Newton’s and Maxwell’s theories. Their efforts finally lead to Albert Einstein’s Special Theory of Relativity and then on to his General theory of Relativity, which could explain the perihelion precession of the planet Mercury. The completion of the one model, the Keplerian-Newtonian heliocentric one marked the beginnings of the route to a new system that would come to replace it.

10 Comments

Filed under History of Astronomy, History of science, Newton, Renaissance Science

10 responses to “The emergence of modern astronomy – a complex mosaic: Part LII

  1. Fernando

    Many thanks for this series! I have enjoyed reading it. I hope it will become a book.

  2. Todd Timberlake

    A great conclusion to a wonderful series of posts! Thank you! I wish you much fortune in turning it into a book, which I know is a long and laborious process.
    I have one comment and one question regarding the material in this post:
    Comment: I find it interesting that Cellarius’ Tychonic planisphere is really a an Ursian (or Baerian?) model. I had not noticed this before. The orbit of Mars skims just beyond the solar orbit as Ursus suggested. Tycho would have had them clearly intersecting. Obviously Cellarius was just giving a schematic, not a scale diagram (the orbits of Mars, Jupiter, and Saturn are WAY to close together, etc) but I think Tycho would have been furious to see his name associated with this diagram since it more closely depicts the system of his greatest enemy!
    Question: How would planetary tables and ephemerides assist with surveying or navigation? They were certainly important for astrology, but I would think surveying and navigation would focus on the stars or the Sun. The complicated motions of the planets would make using them more difficult. I know Galileo had his idea of using Jupiter’s moons for finding longitude, but of course that required a telescope (and knowledge of the existence of Jupiter’s moons!) which was unavailable in the fifteenth and sixteenth centuries. Were the planets really useful for navigation/surveying/cartography or were they practically important only for astrology?

    • Interesting point on the Cellarius, to be honest I hadn’t studied it that closely.
      It’s the ephemerides that are useful but to produce them you first need planetary tables. In all three cases it’s about determining longitude. Cartography and surveying are basically two sides of the same coin. In navigation before the invention of the lunar distance method and the marine chronometer, navigators would only have a very vague idea of their longitude. They would make an accurate determination on landfall using the ephemerides.

  3. Todd, Can I point you towards “Finding Longitude” by Richard Dunn and Rebekah Higgitt

    https://thonyc.wordpress.com/2014/12/09/retelling-a-story-this-time-with-all-the-facts/

    and also Dunn and Higgitt (editors) ‘Navigational Enterprises in Europe and its Empires, 1730-1850’

    https://thonyc.wordpress.com/2018/03/29/marine-chronometer-lunar-distance-method-or-something-else-altogether/

    • Todd Timberlake

      Thanks for those references Laurence. However, those sources seem to focus on finding longitude with an accurate marine chronometer in the post-telescopic era. But Thony’s post mentioned using planetary ephemerides to find longitude in the pre-telescopic era. I’m trying to understand why planets would be useful for that. What you need is some event that observers at two locations (one with known or assigned longitude to serve as reference) see simultaneously. A lunar eclipse works great for that, so if we are talking about lunar and solar ephemerides then I get it. I guess maybe lunar occultations of a planet could be used and that would require a planetary ephemeris. I had not considered that possibility when I made my initial comment. (Of course, once you have an accurate/synchronized clock then all you need is something like a table of the rising or transit times for stars seen at, say, Greenwich, and then you can measure the local time of same to get your longitude. But that didn’t happen until long after the introduction of the telescope into astronomy.)

      • If you read carefully Todd, it should be read as planetary tables and ephemerides, a set of ephemerides contains much more astronomical data than just planetary tables. The standard method of determining longitude, which had been used since antiquity, was Lunar eclipses. of which there are between two and five in a solar year. If in your ephemeris you have the exact time of a lunar eclipse, even a partial one, for a given place of which you already know the longitude and you can determine local time for where you are and thus time the lunar eclipse then you can determine the time difference and thus the longitude

  4. Phillip Harmsworth

    Immanuel Kant died in 1804: he therefore could not have been impressed by the prediction and discovery of Neptune in 1846.

    The last paragraph omits some important details:
    – The discrepancy between theory and observation of Mercury’s motion was once attributed to the presence of another planet – see Thomas Levenson’s 2016 book “The Hunt for Vulcan”. At the time, this was an eminently reasonable assumption.
    – The incompatibility between Newtonian physics and Maxwell’s theory of electromagnetism emerged slowly after the publication of Maxwell’s work (refer Whittaker’s 1910 account “A History of the Theories of Aether and Electricity, from the Age of Descartes to the Close of the Nineteenth Century”).
    -The Pais biography of Einstein provides further information about the various attempts to align Maxwell’s theory with Newtonian mechanics.
    – Michelson and Morley performed experiments to detect the Earth’s motion relative to the aether, and found no effect. AFAIK, they did not originate a new theoretical proposal to explain their results.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s