The emergence of modern astronomy – a complex mosaic: Part XXXIX

The emergence of modern astronomy – a complex mosaic: Part XXXIX

One of the most often repeated false statements in the history of science is that Isaac Newton discovered gravity. Of course he didn’t discovery it, it’s all around us. You can observe gravity every time you drop something. Making the claim more precise, by saying Newton discovered the law of gravity, doesn’t really improve the situation much. What Newton did do was he proved the law of gravity and made the fairly rational assumption based on the available evidence that this law applies universally to all bodies in the cosmos. An assumption that is not written in stone and has been questioned in the present time for the general theory of relativity, the theory that replaced the Newtonian theory of universal gravity and of which the Newtonian theory of gravity is a very good approximation for local cases. However we don’t want to take the path to modern theories of cosmology and dark matter but want to stay firmly in the seventeenth century with Newton.

We can start with a brief survey of theories of gravity before Newton. Originally gravity was the Latin term applied to Aristotle’s explanation of why, when dropped, things fall to the ground. Aristotle thought that objects did so through a form of vital attraction, returning to their natural home, consisting predominantly of the elements earth and water. Fire and air rise up. This only applied to the Earth, as things beyond the Moon were made of a fifth element, aether, the quintessence, for which the natural form of motion was uniform circular motion.

This neat model wouldn’t work, however for Copernicus’ heliocentric model, which disrupted the division between the sublunar and supralunar worlds. To get around this problem Copernicus suggested that each planet had its own gravity, like the Earth. So we have terrestrial gravity, Saturnian gravity, Venusian gravity etc. This led Alexander von Humboldt, in the 19th century, to claim that Copernicus should be honoured as the true originator of the universal theory of gravity, although it is by no means clear that Copernicus thought that he planetary gravities were all one and the same phenomenon.

The whole concept became even more questionable when the early telescopic astronomers, above all Galileo, showed that the Moon was definitely Earth like and by analogy probably the other planets too. At the end of a long line of natural philosophers stretching back to John Philoponus in the sixth century CE, Galileo also showed that gravity, whatever it might actually be, was apparently not a vitalist attraction but a force subject to mathematical laws, even if he did get the value for the acceleration due to gravity ‘g’ wrong and although he didn’t possess a clear concept of force.. Throughout the seventeenth century other natural philosophers, took up the trail and experimented with pendulums and dropped objects. A pendulum is of course an object, whose fall is controlled. Most notable were the Jesuit, natural philosopher Giovanni Battista Riccioli (1598–1671) and the Dutch natural philosopher Christiaan Huygens (1629–1695). Riccioli conducted a whole series of experiments, dropping objects inside a high tower, making a direct confirmation of the laws of fall. Both Riccioli and Huygens, who independently of each other corrected Galileo’s false value for ‘g’, experimented extensively with pendulums in particular determining the length of the one-second pendulum, i.e. a pendulum whose swing in exactly one second. As we will see later, the second pendulum played a central roll in an indirect proof of diurnal rotation. Huygens, of course, built the first functioning pendulum clock.

Turning to England, it was not Isaac Newton, who in the 1670s and 80s turned his attention to gravity but Robert Hooke (1635–1703), who was Curator of Experiments for the newly founded Royal Society. Like Riccioli and Huygens Hooke experimented extensively with dropping objects and pendulums to try and determine the nature of gravity. However his experiments were not really as successful as his continental colleagues. However, he did develop the idea that it was the force of gravity that controlled the orbits of the planets and, having accepted that comets were real solid objects and not optical phenomena, also the flight paths of comets. Although largely speculative at this point Hooke presented a theory of universal gravity, whilst Newton was still largely confused on the subject. Hooke turned to Newton in a letter with his theory in order to ask his opinion, an act that was to lead to a very heated priority dispute.

Before we handle that correspondence we need to go back to the beginnings of the 1670s and an earlier bitter dispute between the two.  In 1672 Newton announced his arrival on the European natural philosophy scene with his first publication, a letter in the Philosophical Transactions of the Royal Society (1671/72), A New Theory of Light and Colours, which described the experimental programme that he had carried out to demonstrate that white light actually consisted of the colours of the spectrum.

DUQfIo6XUAE2C0i

Newton’s original letter. Source: Royal Society

This brilliant piece of experimental optics did not receive the universal praise that, reading it today, we might have expected, in fact it was heavily criticised and attacked. Some critics were unable to reproduce Newton’s experimental results, probably because their prisms were of too poor quality. However, others, Hooke to the fore, criticised the content. Hooke and Huygens, the two current leaders in the field of optics both criticised Newton for interpreting his results within the framework of a particle theory of light, because they both propagated a wave theory of light. Newton actually wrote a paper that showed that his conclusions were just as valid under a wave theory of light, which, however, he didn’t publish. The harshest criticism came from Hooke alone, who dismissed the whole paper stating that he had already discovered anything of worth that it might contain . This did not make Newton very happy, who following this barrage of criticism announced his intention to resign from the Royal Society, to which he had only recently been elected.  Henry Oldenburg (c. 1619–1677), secretary of the Royal Society, offered to waive Newton’s membership fees if he would stay. Newton stayed but had little or nothing more to do with the society till after Hooke’s death in 1703. Newton did, however, write a very extensive paper on all of his optical work, which remained unpublished until 1704, when it formed a major part of his Opticks.

By  1679 tempers had cooled and Robert Hooke, now secretary of the Royal Society, wrote to Isaac Newton to enquire if he would be interested in reopening his dialogue with the Royal Society. In the same letter he asked Newton’s opinion on his own hypothesis that planetary motions are compounded of a tangential motion and “an attractive motion towards the centrall body…” Hooke is here referencing his Attempt to Prove the Motion of the Earth from Observations (1674, republished 1679),

hooke

which contains the following fascinating paragraph:

This depends on three Suppositions. First, That all Coelestial Bodies whatsoever, have an attractive or gravitating power towards their own Centers, whereby they attract not only their own parts, and keep them from flying from the, as we observe the earth to do, [here Hooke is obviously channelling Copernicus] but that they do also attract all other Coelestial Bodies that are within the sphere of their activity … The second supposition is this, That all bodies whatsoever that are put into a direct and simple motion, will so continue to move forward in a streight line, till they are by some other effectual power deflected and bent into a Motion, describing a Circle, Ellipsis, or some other more compounded Curve Line. [the principle of inertia, as propounded by Descartes] The third supposition is, That these attractive powers are so much the more powerful in operating, by how much nearer the body wrought upon is to there own Centers. Now what these several degrees are I have not yet experimentally verified…

Whether or not this is truly a universal theory of gravity is a much-debated topic, but if not, it comes very close and was moving much more in that direction than anything Newton had produced at the time. As we shall see later this was to cause not a little trouble between the two rather prickly men.

Newton declined the offer of a regular exchange of ideas, claiming that he was moving away from (natural) philosophy to other areas of study. He also denied having read Hooke’s paper but referred to something else in it in a later letter to Flamsteed. However, in his reply he suggested an experiment to determine the existence of diurnal rotation involving the usually dropping of objects from high towers. Unfortunately for Newton, he made a fairly serious error in his descripting of the flight path of the falling object, which Hooke picked up on and pointed out to him, if unusually politely, in his reply. Newton of course took umbrage and ended the exchange but he did not forget it.

In our next episode we will deal with the events leading up to the writing and publication of Newton’s great masterpiece, Philosophiæ Naturalis Principia Mathematica (1687), which include the repercussions of this brief exchange between Hooke and its author.

 

 

8 Comments

Filed under History of Astronomy, History of Mathematics, History of Optics, History of Physics, Renaissance Science

8 responses to “The emergence of modern astronomy – a complex mosaic: Part XXXIX

  1. Pingback: Re-Blog: The emergence of modern astronomy – a complex mosaic: Part XXXIX – συμποσίον ἀκταῖος κατακηλέω

  2. A few comments.

    1. This sentence seems to be missing a name: “Throughout the seventeenth century other natural philosophers, above all took up the trail and experimented with pendulums and dropped objects.”

    2. Galileo seems to have had an aversion to thinking of gravity as a force. He had a more operational viewpoint, being content to describe the effects of gravity mathematically, and ridiculing those who proposed causes.

    3. While GR does indeed completely recast the meaning of “gravity”, not so dark matter. Most of the evidence for dark matter, especially the initial observations (like Rubin’s galactic rotation curves), works just as well with the Newtonian approximation.

    4. The paragraph you quote, from Hooke to Newton, doesn’t mention the inverse square law. Was it elsewhere in the letter, or in another letter?

    • No, at this point in time Hooke does not explicitly mention an inverse square law, although five years later he appears to be well acquainted with it, see next episode.

  3. One typo, Riccoli dropped the balls outside the tower, not inside.

    What is crucial about Newton is that once he had the correct Earth-Moon distance in terms of Earth radii, he could show that the acceleration of the Moon towards the Earth in its orbit required the same value of g as falling objects at the earth’s surface. Once you know that the area of the surface of a sphere is 4πR² the idea of an inverse-square law is a natural development, so too much weight should not be placed on it.

    The Journal Recent Results in Early Science and Medicine Volume 10 Issue 4 (2005) contains a number of papers on Hooke-Newton, but it is behind Brill’s paywall so i cannot read them.

    The issue of pendulums is something that might be worth exploring further if you work this series of articles up into a book. It is well known these days that simple pendulums (a weight on a massless wire) behave slightly differently to compound pendulums (a weight mounted on a rigid bar) because the latter is affected by the moment of inertia of the bar about the pivot point. It is the same issue as rolling balls down ramps. It would be interesting to see if Hooke appreciated the subtleties of pendulum design.

    • Gavin Moodie

      Indeed, it is intensely annoying that the public should not have access to research undertaken at public universities funded by the public. There are entries in ResearchGate for these 2 papers which give one the option of requesting the full text from the author.

      Niccolò Guicciardini (2005) Reconsidering the Hooke-Newton Debate on Gravitation: Recent Results

      Michael Nauenberg (2005) Hooke’s and Newton’s Contributions to the Early Development of Orbital Dynamics and the Theory of Universal Gravitation

  4. Kevin Brown seems to be of the opinion that inverse square was widely suspected after Huygens came up with his expression for centrifugal force.

    He writes “Of course, at the time, the constant M in Kepler’s third law was not known to be the mass of the sun, but it was clear that if both Huygens’s law of centrifugal force and Kepler’s third law were to be satisfied for circular orbits, the force of attraction must be proportional to the reciprocal of the square of the distance.”

    From: https://www.mathpages.com/home/kmath658/kmath658.htm

    Indeed — it’s trivial to demonstrate inverse for circular orbits given Kepler’s 3rd law and and Huygens expression for centrifugal force.

    However demonstrating the same for the ellipse and other conic sections is more difficult. I believe that was one of Newton’s major accomplishments.

    • Huygens is almost certainly the source for Wren, Halley et al considering an inverse square law, which seems to have been common knowledge in the early 1680s. See next episode.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s