Did Edmond tell Robert to, “sling his hooke!”?

The circumstances surrounding the genesis and publication of Newton’s magnum opus, Philosophiæ Naturalis Principia Mathematica, and the priority dispute concerning the origins of the concept of universal gravity are amongst the best documented in the history of science. Two of the main protagonists wrote down their version of the story in a series of letters that they exchanged, as the whole nasty affair was taking place. Their explanations are of necessity biased and unfortunately we don’t have equivalent written evidence from the third protagonist Robert Hooke, although we do have the earlier exchange of letters between Hooke and Newton that led Hooke to making his claims to being the author of the idea. All of this is documented, analysed and discussed in detail by Richard S. Westfall in his authoritative biography of Newton, Never at Rest. Lisa Jardine sketches the whole sorry episode in the introduction to her Hooke biography The Curious Life of Robert Hooke: The Man Who Measured London. Beyond this there is a whole raft full of academic papers and monographs on Hooke, Newton, Halley, Principia and the Royal Society that discuss the whole or various aspects of the story. Any first year history of science student should be able to write an accurate and informed essay or term paper on this important moment in the history of seventeenth-century scientific publishing. In fact it would make a very useful exercise for such students. The scriptwriters of Cosmos would however get a fat F for their efforts to present the story. Maybe they should have turned to one of those first year students for help?

Thanks to the services of a beautiful fairy princess I was finally able to watch the third episode of the much hyped American television series Cosmos and, as predicted by numerous commentators on Twitter, I was more than underwhelmed by the animation telling the story of the publication of Principia Mathematica and its significance in the history of science.

Our tale starts with an introductions to the hero of the day, Edmond Halley, an interesting choice of which I actually approve but the first error come up with the tale of the young Halley’s journey to St Helena to map the southern skies. We get told that this is the first such map. This is simply not true Dutch seamen had already started mapping the southern hemisphere at the end of the sixteenth-century. Halley’s government sponsored voyage was the English attempt to catch up. Having established Halley as a scientific hero we get presented with Robert Hooke who is to play the villain of the piece.

At the beginning we get a very positive portrait of Hooke outlining the very wide range of his scientific activities. Unfortunately this presentation is spoilt by a series of bad history of science blunders. Introducing Hooke’s microscopic investigations we get told that Hooke invented the compound microscope. Given that compound microscopes were in use twenty years before Hooke was born, I hardly think so. We then get told that Hooke improved the telescope. Whilst it is true that Hooke proposed several schemes to improve the telescope, some of them positively Heath-Robinson, none of them really proved practical and there are no real improvements to the telescope that can be laid at Hooke’s door. Next up we are informed that Hooke perfected the air pump. Hooke did indeed construct the air pump that he and Robert Boyle used for their experiments, their model was in fact ‘perfected’, although improved would be a better term as it was anything but perfect, by Denis Papin.

Moving on, we are introduced to the London coffee houses, without doubt centres of scientific communication in the late seventeenth- and early eighteenth-centuries. However Tyson claims them to be laboratories of democracy. Sorry but all I can say to this piece of hogwash is bullshit. We come to the coffee house because of a legendary conversation between Halley, Hooke and Christopher Wren that took place in one of them in January 1684, concerning the law of gravity. This conversation is indisputably a key moment in the history of science and that is the reason why it is featured in this episode of Cosmos. Given this one would expect that the scriptwriters would get the story right, however ones expectations would be dashed. According to Cosmos the three speculated as to whether there was a mathematical law governing celestial motion and then Newton, to whom I will come in a minute, produced the inverse squared law of gravity like a conjuror pulling his rabbit out of his hat. In fact all three participants were aware of speculations concerning an inverse squared law of gravity and Hooke claimed that he could deduce the motions of the heavens from it. Wren doubted this claim and offered a prize for the first to do so. Hooke persisted that he already had the solution but would first reveal it when the others had admitted defeat.

Cosmos has Halley, unable to solve the problem rushing off the Cambridge to ask Newton if he could solve it. In fact Halley being in Cambridge in August of the same year met Newton and in the course of their conversation asked Newton, “what he thought the Curve would be that would be described by the Planets supposing the force of attraction towards the Sun to be reciprocal to the square of their distance from it, Sr Isaac replied immediately that it would be an Ellipsis…”[1] The description of Newton given by Cosmos introducing this fateful meeting also owes more to fantasy than reality. We get told that Newton went to pieces over his dispute with Hooke concerning his theory of light, that he had become a recluse and that he was in hiding in Cambridge. Although Newton declined to have anything more to do with the Royal Society following the numerous disputes, not just with Hooke, following the publication of his theory of light in 1672 he certainly did not go to pieces, giving as good as he got and he was not hiding in Cambridge but working there as Lucasian Professor of Mathematics. Also far from being a recluse he was corresponding with a wide range of other scholars, including Hooke with whom he had sealed an uneasy truce. Blatant misrepresentations might be all right in a historical novel but not in a supposedly serious television documentary claiming to present history of science.

We now move on to the writings that Newton’s meeting with Halley provoked. First we get shown De motu corporum in gyrum (On the Motion of Bodies in Orbit) a nine page pamphlet demonstrating the truth of Newton’s statement and quite a lot more, although Tyson doesn’t think it necessary to give us either the title or a description of the contents calling it instead, “the opening pages of modern science”, a truly crap statement. If De motu represents the opening pages of modern science what was all the stuff that Kepler, Stevin, Galileo, Pascal, Descartes, Mersenne, Huygens et al. did? Most of it before Newton was even born! There is worse to come.  In the Cosmos version of the story Halley now urges Newton to turn De motu into a book, in reality Halley wanted to enter De motu officially in the Royal Society’s register “to secure his [Newton’s] invention to himself” and it was Newton who insisted on rewriting it. It was this rewritten version that became Principia Mathematica. When almost complete the council of the Royal Society agreed that it should be published by the Society. At this point the proverbial shit hit the fan. As related in Cosmos, Hooke raised a claim to the theory of gravity and demanded that Newton give him credit for it in his book. Newton’s prickly response was to threaten to withhold volume three of the Principia, which is actually the part in which he applies his theories of motion and the law of gravity to the celestial motions i.e. the heart of the whole thing. Tyson now said, “The scientific revolution hung in the balance”! I said worse was to come.

According to convention wisdom the scientific revolution began in 1543 with the publication of Copernicus’ De revolutionibus. I’m a gradualist who doesn’t accept the term scientific revolution and for me the evolution of modern science begins around fourteen hundred although it builds on earlier medieval science. For most historians Newton’s Principia is the culmination not the beginning of the scientific revolution. It was even fashionable for a time to play down Newton’s achievement claiming that he only synthesised the results won by his predecessors. However it is now acknowledged that that synthesis was pretty awesome. However let us play a little bit of what if. If Newton had only published the first two volumes of Principia I doubt that it would have been very long before somebody applied the abstract results derived in volume one to the solar system and completed what Newton had begun. Put another way nothing hung in the balance.

In fact Halley was able to mollify Newton and the letters that the two of them exchanged at this time are the main historical source for the whole story. Cosmos paints Hooke as an unmitigated villain at this point in the story, which is again a distortion of the true facts. Hooke had indeed suggested, in print, a universal theory of gravity based on the inverse squared law and the letters he exchanged with Newton, during the uneasy truce mention above, had played a significant role in pushing Newton towards his own theories of motion and gravity. Hooke’s claim was not totally unfounded. It is true, however, that his claim was exaggerated because he did not possess the mathematical skills to turn those hypotheses into the formal mathematical structure that is the glory that is Newton’s Principia. There was blame on both sides and not just on Hooke’s. Cosmos now introduces a strange scene in which Wren and Halley meet up with Hooke and confront him on the gravity priority issues, Halley even telling Hooke to “put up or shut up”! Numerous people on Twitter commented on this sound bite, most of them betting that Halley never said it. Not only did Halley never say it, the whole scene is a product of the scriptwriter’s fantasy; in reality it never took place. Remember this is supposed to be history of science and not historical fiction.

With then get treated to the infamous History of Fish episode. In 1685 the Society had published Francis Willughby’s De historia piscium, which had been finished and edited posthumously by John Ray. The book having many lavish illustrations was costly and sold badly putting a serious strain on the Society’s, in the seventeenth-century always dodgy, finances leaving no money to fulfil the commitment to publish Newton’s Principia. This is a well-known and oft repeated story and mostly told at the cost of Willughby and his book. Cosmos did not deviate from this unfortunate pattern telling the story in a heavy handed mocking style. For the record Willughby’s book is an important publication in the history of natural history and deserves better than the treatment it got here.

Before we leave Newton and his masterwork we get presented with yet another historical clangour of mindboggling dimensions. Tyson informs us in his authoritative manner that Principia also contains Newton’s invention of the calculus. Given the amount of printer’s ink that had been used up in the academic discussion as to why Newton wrote the Principia in Euclidian geometry and not calculus this is an unforgivable gaff. I repeat for those who have not been paying attention there is no calculus in Newton’s Principia.

We now leave Newton and turn our attention to his sidekick Edmond Halley. We get a brief presentation of some of the non-astronomical aspects of the good Edmond’s life, which also contain several minor historical errors that I can’t be bothered to deal with here, before turning to the central theme of the programme, comets. There is however one major astronomical subject that I cannot ignore, the Transit of Venus. It was not, as claimed, Halley who first proposed using the Transit of Venus to determine the astronomical unit, the distance of the sun from the earth, but James Gregory in his Optica Promota published in 1663. We then get presented with the rather strange spectacle of James Cook sailing off to Tahiti in 1769 to observe the Transit. This is strange not because it’s wrong, it isn’t, Cook did indeed observe the Transit on Tahiti in 1769 but because the programme created the impression that he was the first and only person to do so. In reality Cook’s expedition was only one of many international expeditions that took place in 1769 for this purpose also there had been almost as many expeditions that had set out for the same purpose in 1761. We do not owe our knowledge of the size of the astronomical unit to some sort of solo heroic efforts of Cook in 1769 as implied by Cosmos.

The opening section of the episode was actually very well scripted with a sympathetic and understanding explanation as to how humanity came to view comets as harbingers of doom. Unfortunately this good beginning was ruined by the claim that was repeated several times throughout the script that it was Newton and Halley who were the first to view comets as astronomical objects and thus free humanity from its superstitious fear. This is just plain wrong.

In the Early Modern Period Paolo dal Pozzo Toscannelli was the first to make astronomical observations, as opposed to superstitious wonderings, of two comets in 1433 and 1456. He did not publish those observations but he did befriend Georg Peuerbach on his study journey through Renaissance Italy. Peuerbach and his pupil Regiomontanus made similar observations in Vienna in the middle of the fifteenth-century and Regiomontanus wrote an important text on the mathematical problem of measuring the parallax of a moving comet, which wasn’t published in his own lifetime.

In the 1530s several European astronomers carried out astronomical observations of a series of spectacular comets. This period led to Johannes Schöner publishing Regiomontanus’ comet text. Peter Apian published a pamphlet on his observations describing, what is incorrectly known as Apian’s Law because it was already long known to the Chinese, that the comet’s tail always points away from the sun. This series of comets and the observations of them led to an intense scientific discussion amongst European astronomers as to the physical nature of comets and their positionn in the heavens, above or below the moon, sub- or supra-lunar? Fracastoro, Frisius, Cardano, Jean Pena and Copernicus took part in this discussion.

In 1577 astronomers throughout Europe again observed a spectacular comet to test the theories proposed by those who had taken part in the 1530s discussions. Famously Tycho Brahe and Michael Maestlin, amongst others, determined that this comet was definitely supra-lunar. In the same period Brahe and John Dee corresponded on the subject of Regiomontanus’ comet text, the determination of cometary parallax.

Cometary observation again hit a high point in astronomical circles in 1618. The comets of this year famously led to the dispute between Galileo and the Jesuit astronomer Orazio Grassi that culminated in Galileo’s Il Saggiatore, one of the most often quoted scientific publications of all times. They also saw the publication of a much more low-key text, Kepler’s book on comets published in 1619. Kepler summarised in his work all of the astronomical knowledge on comets that had been gained in the Early Modern Period, concluding himself that comets are supralunar and travel in straight lines. Ironical someone else had suggested that comets follow Keplerian elliptical orbits eight years earlier. Thomas Harriot and his pupil William Lower had observed the comet of 1607, Halley’s comet, and were amongst the first to read Kepler’s Astronomia nova when it appeared in 1609 and to become convinced Keplerians. In a letter to Harriot, Lower suggested that comets, like the planets, have elliptical orbits. Lower’s suggestion did not become generally known until the nineteenth century but it shows that the discussion on the flight path of comets was already in full swing at the beginning of the seventeenth-century.

With the comets of the 1660’s the debate on the nature of comets and their flight paths again broke out amongst the astronomers of Europe with Kepler’s comet book at the centre of the debate, so when Newton and Halley entered the fray in the 1680s they were not initiating anything, as claimed by Cosmos, but joining a discussion that had been going on for more than two hundred years. A final omission in the Cosmos account concerns another man with whom both Halley and Newton would become embroiled in bitter disputes, the Astronomer Royal John Flamsteed. The early 1680s saw a series of spectacular comets that Flamsteed observed from Greenwich and Halley from Paris.  Flamsteed concluded that two of these were in fact one and the same comet first observed on its way to the sun and then again on its way away from the sun having passed behind it. He reported this theory to Newton who at first rejected it but then on further consideration accepted and adopted it, making comets a central theme for his research for the Principia, utilising Halley as his assistant for this work. That comets follow flight paths described by the various conic sections depending on their velocities, some of them elliptical, under the influence of the law of gravity is a central element of volume three of Principia and not something first determined by Halley in his 1705 paper as claimed by Cosmos. Halley undertook his research into the historical records of comets to see if he could find a reoccurring comet to confirm the theory already presented in Principia, as everybody knows he was spectacularly successful.

Having completely messed up the history of astronomical cometary observation Cosmos closed by returning to the Newton Hooke dogfight. We get told Hooke died in 1703 as a result of his unhealthy habits of doctoring himself with all sorts of substances. Given that Hooke lived to the age of 67, not at all bad for the seventeenth-century I found this to be an unnecessary slander on the poor man. Tyson then went on to say that Newton replaced him as President of the Royal Society. Robert Hooke was an employee of the Royal Society and never its President. Newton in fact followed Lord Somers in this august position. Although hedged with maybes, we then got the old myth of Newton burning Hooke’s portrait dished up once again. On this hoary old myth I recommend this post by good friend Felicity Henderson (@felicityhen) on her Hooke’s London Blog (always well worth reading). Given the vast amount of real history of science that they could have brought I don’t understand why Cosmos insists on repeating myths that were discredited long ago.

The history of science presented in this episode of Cosmos was shoddy, sloppy, badly researched, factually inaccurate and generally of a disgustingly low level. On Twitter the history of science hashtag is #histsci, historian of biology Adam Shapiro (@TryingBiology) suggested that the hashtag for Cosmos history of science should be #HistSigh, I concur.

 

[1] Richard S. Westfall, Never at Rest: A Biography of Isaac Newton, Cambridge Paperback Library, Cambridge University Press, 1983, p. 403. Quoting Abraham DeMoirve’ s account of the meeting as related to him by Newton.

29 Comments

Filed under Early Scientific Publishing, History of Astronomy, History of science, Myths of Science, Renaissance Science

29 responses to “Did Edmond tell Robert to, “sling his hooke!”?

  1. JSintheStates

    And of course “your” unjuried dissertation being published on the internet is the “correct” and empirically documented version of history that we’ll all remember in 2114! Isn’t criticism easy when you don’t need an editor or a legilimate publisher?

    • If you have a genuine factual criticism then state it. In the words attributed to Halley by Cosmos “Put up or shut up!”

    • Baerista

      Nothing Thony wrote in the above post is any way new, controversial or just “his” personal opinion. He reports the current state of knowledge in his field of expertise (history of science, in case you missed it) and compares it with the claims being made in “Cosmos”. It’s not his fault that this comparison turns out unfavourable.

      • Thank you for coming to my defence but as you know I’m more than capable of defending myself. I would however deny any claims to expertise. I strive to achieve a certain level of competence and sometimes I’m deluded into thinking that I might be near to reaching my goal. Then I turn another corner in my studies and realise just how ignorant I am and how much I still have to learn.

      • Baerista

        Sorry for overstepping,Thony, I did not mean to imply that you couldn’t answer for yourself. It’s just that this comment pissed me off a great deal and made want to vent my indignation. In my judgment (as one who earns his living doing hist-sci related stuff) you show clear signs of expertise and totally deserve to carry that label.

  2. Huenemann

    Thanks for trying to set the record straight – please, keep at it! I’m as disappointed as you by the (literally!) cartoon-like treatment of history. But the series is equally cavalier about the science component of the show – leading me to think that the sloppiness, in the interest of gaining 12-year old interest, is strategic: tell a good story, and hope that subsequent inquiry will straighten things out.

  3. Pingback: Climate inaction to be ‘catastrophe’ – Stoat

  4. Ted

    So did Ike burn that portrait of Hooke or not?

  5. David J. Ross

    Thony, thank you for taking time to comment on the consistently disappointing history in the new Cosmos. Wait till you see episode 4- at the risk of revealing, or discovering, my own latent racism, did my lying eyes actually see a suggestion that John Michell might have been Negro? The actor’s face was not shown, ala the perplexing treatment of Hooke, but I certainly got the impression of an elderly black gentleman. A contemporary is quoted commenting on Michell’s “black complexion”. I had been reading CSLewis’s Discarded Image and remembered a late section on the “humors”. A black complexion probably means a melancholy personality and has nothing to do with race! Good heavens,has it come to this!

  6. Pingback: Marketing Textbooks to Teachers in 1925 | Trying Biology

  7. Pingback: Astronomy Facts 2014 | Astronomy News

  8. I don’t understand why Cosmos insists on repeating myths that were discredited long ago.

    I suspect they set out to talk down to their audience right from the beginning since the program is on Fox Network, instead of on public television as the original was. Not that the original was free of historical error, but this program seems, consistent with the cartoon(ish) episodes, to be creating a ‘good guys’ / ‘bad guys’ “history” of science that the unwashed unfortunates who frequent Fox can manage to grasp.

    • Are you implying that a TV station owned by the Dirty Digger (R. Murdoch) does not reach the highest standards of reporting and information?

    • So Fox is pandering to the lefty elites like NDT who view the history of science as a struggle of “good” scientists versus “bad” religionists. You know – that typical Fox crowd, with their belief in global warming, evolution, and the evils of religion!

  9. M Tucker

    Tyson does not tolerate a misrepresentation of science so I think his misrepresentations of history ought to be challenged. Another excellent post!

  10. Pingback: Astronomy Knowledge 2014 | Astronomy News

  11. Reblogged this on Corpus Newtonicum and commented:
    Thony C posted an excellent response to the recent Cosmos episode about Newton’s Principia. In his words: “The history of science presented in this episode of Cosmos was shoddy, sloppy, badly researched, factually inaccurate and generally of a disgustingly low level.”

  12. Pingback: Did Edmond tells Robert to, “sling his ho...

  13. Pingback: Lists! | The Renaissance Mathematicus

  14. Pingback: The Sir Hans Sloane Birthday Collection: Giants’ Shoulders #70 | The Sloane Letters Blog

  15. Pingback: Potpourri

  16. Pingback: On Neil deGrasse Tyson and philosophical philistinism | Huenemanniac

  17. Pingback: Cryptoquote Spoiler – 07/01/14 | Unclerave's Wordy Weblog

  18. Matthew

    Thanks for the interesting article. ‘Du motu’ looks to me like a typo for ‘De motu’.

Leave a comment