Category Archives: The Paris Provencal Connection

The astronomical librarian 

I’m continuing my look at the French mathematician astronomers of the seventeenth century with some of those, who were both members of Nicolas-Claude Fabri de Peiresc’s group of telescopic, astronomical observers, as well as Marin Mersenne’s informal Academia Parisiensis, starting with Ismael Boulliau (1605–1694), who like Peiresc and Mersenne was also a prominent member of the Republic of Letters with about 5000 surviving letters. 

Ismael Boulliau Source: Wikimedia Commons

Boulliau was born in Loudun, France the second son of Ismael Boulliau a notary and amateur astronomer and Susanne Motet on 28 September 1605. The first son had been born a year earlier and was also named Ismael, but he died and so the name was transferred to their second son. Both of his parents were Calvinists. His father introduced him to astronomy and in his Astronomia philolaica (1645) Ismael junior tells us that his father observed both Halley’s comet in 1607 and the great comet of 1618. The later was when Boulliau was thirteen years old, and one can assume that he observed together with his father. 

Probably following in his father’s footsteps, he studied law but at the age of twenty-one he converted to Catholicism and in 1631, aged twenty-six, he was ordained a priest. In 1632 he moved to Paris and began to work for Pierre Dupuy (1582–1651) and his brother Jacques (1591–1656), who were keepers of the Bibliothèque du Roi, today the Bibliothèque nationale de France. Boulliau held this position until the death of the Dupuy brothers and during that time travelled widely in Europe collecting books and manuscripts for the library. 

Pierre Dupuy Source: Wikimedia Commons

Boulliau also enjoyed the patronage of the powerful and influential de Trou family, who were closely connected with the library and who financed his book collecting travels. Following the death of the Dupuy brothers he became employed by the French ambassador to the United Provinces, a member of the de Trou family, a secretary and librarian. In 1666, following a dispute with his employer, he became librarian at the Collège de Laon in Paris. For the last five years of his live he returned to the priesthood in the Abbey St Victor near Paris where he died aged 89. Although Boulliau was an active member of Mersenne’s Academia Parisiensis he never became a member of the Académie des sciences, but he was elected one of the first foreign associates of the Royal Society on 4 April 1667. 

Abbey of St. Victor, 1655 Source: Wikimedia Commons

 Like Peiresc, Boulliau was a polymath with extensive knowledge of a wide range of humanities topics, which was useful in his work as a librarian, but, as with Peiresc, it is scientific activities that are of interest here. He continued to make astronomical observations throughout his life, which were of a high level of accuracy. In his Principia, Newton puts him on a level with Kepler for his determination of the planetary orbits. In Book 3 Phenomenon 4 of Principia Newton writes: 

But of all astronomers, Kepler and Boulliau have determined the magnitude of the orbits from observations with the most diligence. 

Boulliau’s first significant scientific publication was, however, not in astronomy but in optics, his De natura lucis (On the Nature of Light) (1638) based on the discussions he was having with Gassendi on the topic. This work is not particular important in the history of optics but it does contain his discussion of Kepler’s inverse square law for the propagation of light.

Source: Wikimedia Commons

His first astronomical work Philolaus (1639), which places him firmly in the Copernican heliocentric camp but not, yet a Keplerian was next. 

He now changed tack once again with a historical mathematical work. In 1644, he translated and published the first printed edition of Theon of Smyrna’s Expositio rerum mathematicarum ad legendum Platonem utilium a general handbook for students of mathematics of no real significance. Continuing with his mathematical publications. In 1657, he published De lineis spiralibus (On Spirals) related to the work of Archimedes and Pappus on the topic.

Source: Wikimedia Commons

Much later in 1682, he published Opus novum ad arithmeticam infinitorum, which he claimed clarified the Arithmetica infinitorum(1656) of John Wallis (1616–1703).

Source: Wikimedia Commons

All of Boulliau’s work was old fashioned and geometrical. He rejected the new developments in analytical mathematics and never acknowledged Descartes’ analytical geometry. As we shall see, his astronomy was also strictly geometrical. He even criticised Kepler for being a bad geometer. 

Boulliau’s most important publication was his second astronomical text Astronomia philolaica (1645).

Source: Wikimedia Commons

In this highly influential work, he fully accepted Kepler’s elliptical orbits but rejects almost all of the rest of Kepler’s theories. As stated above his planetary hypothesis is strictly geometrical and centres round his conical hypothesis:

“The Planets, according to that astronomer [Boulliau], always revolve in circles; for that being the most perfect figure, it is impossible they should revolve in any other. No one of them, however, continues to move in any one circle, but is perpetually passing from one to another, through an infinite number of circles, in the course of each revolution; for an ellipse, said he, is an oblique section of a cone, and in a cone, betwixt the vertices of the ellipse there is an infinite number of circles, out of the infinitely small portions of which the elliptical line is compounded. The Planet, therefore, which moves in this line, is, in every point of it, moving in an infinitely small portion of a certain circle. The motion of each Planet, too, according to him, was necessarily, for the same reason, perfectly equable. An equable motion being the most perfect of all motions. It was not, however, in the elliptical line, that it was equable, but in any one of the circles that were parallel to the base of that cone, by whose section this elliptical line had been formed: for, if a ray was extended from the Planet to any one of those circles, and carried along by its periodical motion, it would cut off equal portions of that circle in equal times; another most fantastical equalizing circle, supported by no other foundation besides the frivolous connection betwixt a cone and an ellipse, and recommended by nothing but the natural passion for circular orbits and equable motions,” (Adam Smith, History of Astronomy, IV.55-57).

Boulliau’s Conical Hypothesis [RA Hatch] Source: Wikimedia Commons

Boulliau’s theory replaces Kepler’s second law, and this led to the Boulliau-Ward debate on the topic with the English astronomer Seth Ward (1617–1689), the Savilian Professor of astronomy at Oxford University.

Bishop Seth Ward, portrait by John Greenhill Source: Wikimedia Commons

Ward criticised Boulliau’s theory in his In Ismaelis Bullialdi astro-nomiae philolaicae fundamenta inquisitio brevis (1653), also pointing out mathematical errors in Boulliau’s work. 

Boulliau responded to Ward’s criticisms in 1657, acknowledging the errors and correcting but in turn criticising Ward’s model in his De lineis spiralibus. A year earlier Ward had published his own version of Keplerian astronomy in his Astronomia geometrica (1656).

Source: Wikimedia Commons

This exchange failed to find a resolution but this very public debate between two of Europe’s leading astronomers very much raised awareness of Kepler’s work and was factor in its eventual acceptance of Kepler’s elliptical heliocentric astronomy. 

It was in his Astronomia philolaica that Boulliau was the first to form an inverse squared theory of attraction between the sun and the planets. 

As for the power by which the Sun seizes or holds the planets, and which, being corporeal, functions in the manner of hands, it is emitted in straight lines throughout the whole extent of the world, and like the species of the Sun, it turns with the body of the Sun; now, seeing that it is corporeal, it becomes weaker and attenuated at a greater distance or interval, and the ratio of its decrease in strength is the same as in the case of light, namely, the duplicate proportion, but inversely, of the distances that is, 1/d2 ​.

Here we see the influence of Kepler’s theory of light propagation, which as noted Boulliau discussed in his De natura lucis. However, having set up this hypothesis Boulliau goes on to reject it. 

… I say that the Sun is moved by its own form around its axis, by which form it was ignited and made light, indeed I say that no kind of motion presses upon the remaining planets … indeed [I say] that the individual planets are driven round by individual forms with which they were provided …

Despite Boulliau’s rejection of his own hypothesis, during Newton’s dispute with Hooke over who should get credit for the theory of gravity, he gives Boulliau the credit in a letter to Edmond Halley.

…so Bullialdus [i.e., Boulliau] wrote that all force respecting ye Sun as its center & depending on matter must be reciprocally in a duplicate ratio of ye distance from ye center, & used that very argument for it by wch you, Sr, in the last Transactions have proved this ratio in gravity. Now if Mr Hook from this general Proposition in Bullialdus might learn ye proportion in gravity, why must this proportion here go for his invention?

In 1667, Boulliau published a final astronomy book, Ad astronomos monita duo in which he was the first to establish the periodicity of the variable star, Mira Ceti.

Source:

His estimate of the period 333 days was only out by a one day. Mira had first been recognised as a variable star by David Fabricius beginning 3 August 1596.

Apart from his publications Boulliau kept Mersenne’s correspondence network alive for another thirty years after Mersenne’s death, communicating with Leopoldo de’ Medici (1617–1675) in Italy, Johannes Hevelius (1611–1687) in Danzig and Christiaan Huygens (1629–1695). Huygens first imparted his discovery of the rings of Saturn to Boulliau and Boulliau distributed Huygens’ System sarturnium (1658) in Paris. Boulliau also distributed Pascal’s Letters D’Amos Dettonville (1658–1659) to English and Dutch mathematicians, his challenge on the mathematics of the cycloid, an important publication in the development of calculus.

Ismael Boulliau is a prime example of a scholar, who didn’t make any major discoveries or develop any major theories himself but still had a very significant influence on the development of science.

1 Comment

Filed under History of Astronomy, History of Mathematics, History of Optics, History of science, The Paris Provencal Connection

The amateur, astronomical, antiquarian aristocrat from Aix

In a recent blog post about the Minim friar, Marin Mersenne (1588–1648), I mentioned that when Mersenne arrived in Paris in 1619 he was introduced to the intellectual elite of the city by Nicolas-Claude Fabri de Peiresc (1580-1637). In another recent post on the Republic of Letters I also mentioned that Peiresc was probably, the periods most prolific correspondent, with more than ten thousand surviving letters. So, who was this champion letter writer and what role did he play in the European scientific community in the first third of the seventeenth century?

Nicolas-Claude Fabri de Peiresc by Louis Finson Source: Wikimedia Commons

Nicolas-Claude Fabri was born, into a family of lawyers and politicians, in the town Belgentier near Toulon on 1 December in 1580, where his parents had fled to from their hometown of Aix-en-Provence to escape the plagues. He was educated at Aix-en-Provence, Avignon, and the Jesuit College at Tournon. Having completed his schooling, he set off to Padua in Italy, nominally to study law, but he devoted the three years, 1600–1602, to a wide-ranging, encyclopaedic study of the history of the world and everything in it. 

In this he was aided in that he became a protégé of Gian Vincenzo Pinelli (1535–1601) a humanist scholar and book collector, his library numbered about 8,500 printed works, with all-embracing intellectual interests, whose main areas were botany, optics, and mathematical instruments.

Gian Vincènzo Pinelli Source: Rijksmuseum via Wikimedia Commons

Pinelli introduced Fabri to many leading scholars including Marcus Welser (1558–1614), Paolo Sarpi (1552–1623) and indirectly Joseph Scaliger (1540–1609). Pinelli also introduced him to another of his protégés, Galileo Galilei (1564–1642). One should always remember that although he was thirty-eight years old in 1602, Galileo was a virtually unknown professor of mathematics in Padua. When Pinelli died, Fabri was living in his house and became involved in sorting his papers.

In 1602, Fabri returned to Aix-en-Provence and completed his law degree, graduating in 1604. In the same year he assumed the name Peiresc, it came from a domain in the Alpes-de-Haute-Provence, which he had inherited from his father. He never actually visited Peiresc, now spelt Peyresq.

Village of Peyresq Source: Wikimedia Commons

Following graduation Peiresc travelled to the Netherlands and England via Paris, where he made the acquaintance of other notable scholars, including actually meeting Scaliger and also meeting the English antiquarian and historian William Camden (1551–1623).

Returning to Provence, in 1607, he took over his uncle’s position as conseiller to the Parliament of Provence under his patron Guillaume du Vair (1556–1621), cleric, lawyer, humanist scholar and president of the parliament.

Guillaume-du-Vair Source: Wikimedia Commons

In 1615 he returned to Paris with du Vair as his secretary, as du Vair was appointed keeper of the seals during the regency of Marie de’ Medici (1575–1642). Peiresc continued to make new contacts with leading figures from the world of scholarship, and the arts, including Peter Paul Rubens (1577–1640).

Peter Paul Rubens self-portrait 1623

Peiresc acted as a go between in the negotiations between Reubens and the French court in the commissioning of his Marie de’ Medici Cycle. Just one of Peiresc’s many acts of patronage in the fine arts.

Marie de’ Medici Cycle in the Richelieu wing of the Louvre Source: Wikimedia Commons

In 1621 de Vair died and in 1623 Peiresc returned to Provence, where he continued to serve in the parliament until his death in 1637.

Peiresc was an active scholar and patron over a wide range of intellectual activities, corresponding with a vast spectrum of Europe’s intellectual elite, but we are interested here in his activities as an astronomer. Having developed an interest for astronomical instruments during his time as Pinelli’s protégé, Peiresc’s astronomical activities were sparked by news of Galileo’s telescopic discoveries, which reached him before he got a chance to read the Sidereus Nuncius. He rectified this lack of direct knowledge by ordering a copy from Venice and borrowing one from a friend until his own copy arrived.

Source: Wikimedia Commons

He immediately began trying to construct a telescope to confirm or refute Galileo’s claims, in particular the discovery of the first four moons of Jupiter. At this point in his life Peiresc was still a geocentrist, later he became a convinced heliocentrist. We know very little about where and how he acquired his lenses, but we do know that he had various failures before he finally succeeded in observing the moons of Jupiter for himself, in November 1610. In this he was beaten to the punch by his fellow Provencal astronomer Joseph Gaultier de la Valette (1564–1647), vicar general of Aix. At this point it is not clear whether the two were competing or cooperating, as they would then later do with Gaultier de la Valette becoming a member of Peiresc’s Provencal astronomical observation group. Shortly thereafter, Peiresc became the first astronomer to make telescopic observations of the Orion Nebular and Gaultier de la Valette the second. This is rather strange as the Orion Nebular is visible to the naked eye. However, apparently none of the telescopic astronomy pioneers had turned their telescopes to it before Peiresc.

In one of the most detailed astronomical images ever produced, NASA/ESA’s Hubble Space Telescope captured an unprecedented look at the Orion Nebula. … This extensive study took 105 Hubble orbits to complete. All imaging instruments aboard the telescope were used simultaneously to study Orion. Source: Wikimedia Commons

Peiresc, like Galileo, realised that the moons of Jupiter could be used as a clock to determine longitude and began an observation programme of the moons, viewing them every single day that the weather conditions permitted, well into 1612. Having compiled tables of his observations he sent one of his own protégés Jean Lombard, about whom little is known, equipped with suitable instruments on a tour of the Mediterranean. Lombard observed the satellites at Marseille in November 1611 and then proceeded to Malta, Cyprus and to Tripoli observing as he went, until May 1612. Meanwhile, Peiresc made parallel observation in Aix and Paris, he hoped by comparing the time differences in the two sets of observations to be able to accurately determine the longitude differences. Unfortunately, the observations proved to be not accurate enough for the purpose and the world would have to wait for Giovanni Domenico Cassini (1625–1712) to become the first to successfully utilise this method of determining longitude. Peiresc’s own observation were, however, the longest continuous series of observations of the Jupiter moons made in the seventeenth century and displayed a high level of accuracy even when compared with this of Galileo.

I mentioned, above, Peiresc’s Provencal astronomical observing group. Peiresc employed/sponsored young astronomers to help him with his observation programmes, supplying them with instruments and instructions on how to use them. This group included such notable, future astronomers, as Jean-Baptiste Morin (1583–1556),

Jean-Baptiste Morin Source: Wikimedia Commons

Ismaël Boulliau (1605–1694),

Ismaël Boulliau Source: Wikimedia Commons

and Pierre Gassendi (1592–1655). Peiresc’s patronage extended well beyond this. Gassendi had held the chair of philosophy at the University of Aix-en-Provence since 1617 but in 1623 the university was taken over by the Jesuits and Gassendi was replaced by a Jesuit and became unemployed.

Portrait of Pierre Gassendi by Louis-Édouard Rioult Source: Wikimedia Commons

From then until he again found regular employment in 1634, Peiresc provided him with a home base in his own house and financed his travels and research. Similarly, Peiresc, having introduced Mersenne to Parisian intellectual circles in 1619, continued to support him financially, Mersenne as a Minim friar had no income, supplying him with instruments and financing his publications. 

Marin Mersenne Source: Wikimedia Commons

Patronage played a central role in Peiresc’s next venture into astronomy and another attempt to solve the longitude problem. There has been much talk in recent decades about so-called citizen science, in which members of the public are invited to participate in widespread scientific activities. Annual counts of the birds in one’s garden is a simple example of this. Citizen science is mostly presented as a modern phenomenon, but there are examples from the nineteenth century. Peiresc had already launched a variation on citizen science in the seventeenth century.

In order to determine longitude Peiresc further developed a method that had been in use since antiquity. Two astronomers situated in different location would observe a lunar or solar eclipse and then by comparing their observations they could determine the local time difference between their observations and thus the longitude difference between the locations. By the seventeenth century predicting eclipses had become a fairly accurate science and Peiresc thought that if he could organise and coordinated a world spanning network of observers to accurately observe and record an eclipse, he could then calculate a world spanning network of longitude measurements. The idea was good in theory but failed in practice.

Most of Peiresc’s team of observers were amateurs–missionaries, diplomats, traders, travellers–whom he supplied with astronomical instruments and written instructions on how to use them, even paying travelling expenses, where necessary. Peiresc organised mass observations for lunar eclipses in 1628, 1634, and 1635 and a solar eclipse in 1633. Unfortunately, many of his observers proved to be incompetent and the results of their observations were too inaccurate to be usable. One positive result was that Peiresc was able to correct the value for the length of the Mediterranean. Before one is too hard on Peiresc’s amateur observers, one should remember that in the middle of the eighteenth century the world’s professional astronomical community basically failed in their attempt to use the transits of Venus to determine the astronomical unit, despite being equipped with much better instruments and telescopes.

Although, Peiresc’s various astronomical activities and their results were known throughout Europe by word of mouth through his various colleagues and his correspondence, he never published any of his work. Quite why, is not really known although there are speculations.

Peiresc was a high ranking and highly influential Catholic and he applied that influence in attempts to change the Church’s treatment of astronomers he saw as being persecuted. He interceded on behalf Tommaso Campanella (1568–1639), actively supporting him when he fled to France in 1634.

Tommaso Campanella portrait by Francesco Cozza Source: Wikimedia Commons

More famously he personally interceded with the Church on behalf of Galileo, without any great success.

Nicolas-Claude Fabri de Peiresc’s career is, like that of his friend Mersenne, a good illustration that the evolution of science is a product of widespread cooperation of a community of practitioners and not the result of the genial discoveries of a handful of big names, as it is unfortunately too often presented. Morin, Boulliau, Gassendi and Mersenne, who all made serious contributions to the evolution of science in the seventeenth century, did so with the encouragement, guidance, and very active support of Peiresc.

3 Comments

Filed under History of Astronomy, History of Navigation, History of science, Renaissance Science, The Paris Provencal Connection

Musical, mathematical Minim, Marin Mersenne 

In the seventeenth century, Marin Mersenne (1588–1648) was a very central and highly influential figure in the European intellectual and scientific communities; a man, who almost literally knew everybody and was known by everybody in those communities. Today, in the big names, big events, popular versions of the history of science he remains only known to specialist historian of science and also mathematicians, who have heard of Mersenne Primes, although most of those mathematicians probably have no idea, who this Mersenne guy actually was. So, who was Marin Mersenne and why does he deserve to be better known than he is?

Marin Mersenne Source: Wikimedia Commons

Mersenne was born 8 September 1588, the son of Julien Mersenne and his wife Jeanne, simple peasants, in Moulière near Oizé, a small commune in the Pays de la Loire in North-Western France. He was first educated at the at the nearby College du Mans and then from 1604 to 1609 at the newly founded Jesuit Collège Henri-IV de La Flèche. The latter is important as in La Flèche he would have received the mathematical programme created by Christoph Clavius for the Jesuit schools and colleges, the best mathematical education available in Europe at the time. A fellow student at La Flèche was René Descartes (1596–1650) with whom he would become later in life close friends.

René Descartes at work Source: Wikimedia Commons

However, it is unlikely that they became friends then as Mersenne was eight years older. Leaving La Flèche he continued his education in Greek, Hebrew, and theology at the Collège Royal and the Sorbonne in Paris. In 1611 he became a Minim friar and a year later was ordained as a priest. The Minims are a mendicant order founded in Italy in the fifteenth century. From 1614 to 1618 he taught philosophy and theology at Nevers but was recalled to Paris in 1619 to the newly established house on the Place Royal (now Place des Vosges), where he remained, apart from travels through France, to Holland, and to Italy, until his death. 

View map of an area of Paris near Place Royale, now Place des Vosges, showing the Minim convent where Mersenne lived and the Rue des Minimes, not far from the Bastille, undated, but before 1789 (paris-grad.com) Source: Linda Hall Library

In Paris he was introduced to the intellectual elite by Nicolas-Claude Fabri de Pereisc (1580–1637)–wealthy astronomer, antiquarian, and patron of science–whom he had got to know in 1616. 

Nicolas-Claude Fabri de Peiresc by Louis Finson Source: Wikimedia Commons

Settled in Paris, Mersenne began a career as a prolific author, both editing and publishing new editions of classical works and producing original volumes. In the 1620s his emphasis was on promoting and defending the Thomist, Aristotelian philosophy and theology in which he’d been educated. In his first book, Questiones celeberrimae in Genesim (1623), 

he attacked those he saw as opponents of the true Catholic religion, Platonist, cabbalistic and hermetic authors such as Telesio, Pomponazzi, Bruno and Robert Fludd. His second book, L’impiété des déistes, athées, et libertins de ce temps (1624), continued his attacks on the propagators of magic and the occult. His third book, La Vérité des sciences (1625), attacks alchemists and sceptics and includes a compendium of texts over ancient and recent achievements in the mathematical sciences that he saw as in conformity with his Christian belief. The latter drew the attention of Pierre Gassendi (1592–1655), who became his closest friend. I shall return to their joint activities in Paris later but now turn to Mersenne’s own direct scientific contributions, which began to replace the earlier concentration on theology and philosophy.

Pierre Gassendi Source: Wikimedia Commons

Mersenne’s scientific interests lay in mathematics and in particular what Aristotle, who was not a fan of mathematics, claiming it did not apply to the real world, called the mixed sciences or mixed mathematics i.e., astronomy, optics, statics, etc. Here he compiled to collections of treatises on mixed mathematics, his Synopsis Mathematica (1626) and Universae geometriae synopsis (1644). In his Traité de l’Harmonie Universelle (1627), to which we will return, Mersenne gives a general introduction to his concept of the mathematical disciplines:

Geometry looks at continuous quantity, pure and deprived from matter and from everything which falls upon the senses; arithmetic contemplates discrete quantities, i.e. numbers; music concerns har- monic numbers, i.e. those numbers which are useful to the sound; cosmography contemplates the continuous quantity of the whole world; optics looks at it jointly with light rays; chronology talks about successive continuous quantity, i.e. past time; and mechanics concerns that quantity which is useful to machines, to the making of instruments and to anything that belongs to our works. Some also adds judiciary astrology. However, proofs of this discipline are borrowed either from astronomy (that I have comprised under cosmology) or from other sciences. 

In optics he addressed the problem of spherical aberration in lenses and mirrors and suggested a series of twin mirror reflecting telescopes, which remained purely hypothetical and were never realised.

Source: Fred Watson, “Stargazer: The Life and Times of the Telescope”, Da Capo Press, 2004, p. 115

This is because they were heavily and falsely criticised by Descartes, who didn’t really understand them. It was Mersenne, who pushed Descartes to his solution of the refraction problem and the discovery of the sine law. He wrote three books on optics, De Natura lucis (1623); Opticae (1644); L’Optique et la catoptrique (1651). Although his theoretical reflecting telescopes were published in his Harmonie universelle (1636), see below.

Mersenne also wrote and published collections of essays on other areas of mixed mathematics, mechanics, pneumatics, hydro- statics, navigation, and weights and measures, Cogitata physico-mathematica (1644); Novarum observationum physico- mathematicarum tomus III (1647). 

Mersenne dabbled a bit in mathematics itself but unlike many of his friends did not contribute much to pure mathematics except from the Mersenne prime numbers those which can be written in the form Mn = 2n − 1 for some integer n. This was his contribution to a long search by mathematicians for some form of law that consistently generates prime numbers. Mersenne’s law whilst generating some primes doesn’t consistently generate primes but it has been developed into its own small branch of mathematics. 

It was, however, in the field of music, as the title quoted above would suggest, which had been considered as a branch of mathematics in the quadrivium since antiquity, and acoustics that Mersenne made his biggest contribution. This has led to him being labelled the “father of acoustics”, a label that long term readers of this blog will know that I reject, but one that does to some extent encapsulate his foundational contributions to the discipline. He wrote and published five books on the subject over a period of twenty years–Traité de l’harmonie universelle (1627); Questions harmoniques (1634); Les preludes de l’harmonie universelle (1634); Harmonie universelle (1636); Harmonicorum libri XII (1648)–of which his monumental (800 page) Harmonie universelle was the most important and most influential.

Title page of Harmonie universelle Source: Wikimedia Commons

In this work Mersenne covers the full spectrum including the nature of sounds, movements, consonance, dissonance, genres, modes of composition, voice, singing, and all kinds of harmonic instruments. Of note is the fact that he looks at the articulation of sound by the human voice and not just the tones produced by instruments. He also twice tried to determine the speed of sound. The first time directly by measuring the elapse of time between observing the muzzle flash of a cannon and hearing the sound of the shot being fired. The value he determined 448 m/s was higher than the actual value of 342 m/s. In the second attempt, recorded in the Harmonie universelle (1636), he measured the time for the sound to echo back off a wall at a predetermined distance and recorded the value of 316 m/s. So, despite the primitive form of his experiment his values were certainly in the right range. 

Mersenne also determined the correct formular for determining the frequency of a vibrating string, something that Galileo’s father Vincenzo (1520–1591) had worked on. This is now known as Mersenne’s Law and states that the frequency is inversely proportional to the length of the string, proportional to the square root of the stretching force, and inversely proportional to the square root of the mass per unit length.

The formula for the lowest frequency is f=\frac{1}{2L}\sqrt{\frac{F}{\mu}},

where f is the frequency [Hz], L is the length [m], F is the force [N] and μ is the mass per unit length [kg/m].

Source: Wikipedia

Vincenzo Galileo was also involved in a major debate about the correct size of the intervals on the musical scale, which was rumbling on in the late sixteenth and early seventeenth centuries. It was once again Mersenne, who produced the solution that we still use today.

Although Mersenne is certainly credited and honoured by acoustic researchers and music theorists for his discoveries in these areas, perhaps his most important contribution to the development of the sciences in the seventeenth century was as a networker and science communicator in a time when scientific journals didn’t exist yet. 

Together with Gassendi he began to hold weekly meetings in his humble cell with other natural philosophers, mathematicians, and other intellectuals in Paris. Sometime after 1633 these meetings became weekly and took place in rotation in the houses of the participants and acquired the name Academia Parisiensis. The list of participants reads like an intellectual who’s who of seventeenth century Europe and included René Descartes, Étienne Pascal and his son Blaise, Gilles de Roberville, Nicolas-Claude Fabri de Pereisc, Pierre de Fermat, Claude Mydorge, the English contigent, Thomas Hobbes, Kenhelm Digby, and the Cavendishes, and for those not living in or near Paris such as Isaac Beeckman, Jan Baptist van Helmont, Constantijn Huygens and his son Christiaan, and not least Galileo Galilei by correspondence. When he died approximately six hundred letters were found in his cell from seventy-nine different correspondents. In total 193 scholars and literati have been identified as participants. Here it should be noted that although he tended to reject the new emerging sciences in his earlier defence of Thomist philosophy, he now embraced it as compatible with his teology and began to promote it.

This academy filled a similar function to the Gresham College group and Hartlib Circle in England, as well as other groups in other lands, as precursors to the more formal scientific academies such as the Académie des sciences in Paris and the Royal Society in London. There is evidence that Jean-Baptist Colbert (1619–1683), the French Minister of State, modelled his Académie des sciences on the Academia Parisiensis. Like its formal successors the Academia Parisiensis served as a forum for scholars to exchange views and theories and discuss each other’s work. Mersenne’s aim in establishing this forum was to stimulate cooperation between the participants believing science to be best followed as a collective enterprise.

Mersenne’s role was not restricted to that of convener, but he functioned as a sort of agent provocateur deliberately stimulating participants to take up research programmes that he inaugurated. For example, he brought Torricelli’s primitive barometer to Paris and introduced it to the Pascals. It is thought that he initiated the idea to send Blaise Pascal’s brother-in-law up the Puy de Dôme to measure the decreasing atmospheric pressure.

Blaise Pascal, unknown; a copy of the painting of François II Quesnel, which was made for Gérard Edelinck in 1691. Source: Wikimedia Commons

Although they never met and only corresponded, he introduced Christiaan Huygens to the concept of using a pendulum to measure time, leading to Huygens’ invention of the pendulum clock.

Portrait of Christiaan Huygens (1629-1695) C.Netscher / 1671 Source: Wikimedia Commons

It was Mersenne, who brought the still very young Blaise Pascal together with René Descartes, with the hope that the brilliant mathematicians would cooperate, in this case he failed. In fact, the two later became opponents divided by their conflicting religious views. Mersenne also expended a lot of effort promoting the work of Galileo to others in his group, even offering to translate and publish Galileo’s work in French, an offer that the Tuscan mathematician declined. He did, however, publish an unpublished text by Galileo on mechanics, Les Mechaniques de Galilée.

Although not the author of a big theory or big idea, or the instigators of a big event, Mersenne actually contributed with his activities at least as much, if not more, to the development of science in the seventeenth century as any of the more famous big names. If we really want to understand how science develops then we need to pay more attention to figures like Mersenne and turn down the volume on the big names. 

7 Comments

Filed under History of Mathematics, History of Optics, History of science, The Paris Provencal Connection