War, politics, religion and scientia

There is a strong tendency to view the history of science and the people who produced it in a sort of vacuum, outside of everyday society–Copernicus published this, Kepler published that, Newton synthesised it all… In fact the so-called scientific revolution took place in one of the most troubled times in European history, the age of the religious wars, the main one of which the Thirty Years War is thought to have been responsible directly and indirectly for the death of between one third and two thirds of the entire population of middle Europe. Far from being isolated from this turbulence the figures, who created modern science, were right in the middle of it and oft deeply involved and affected by it.

The idea for this blog post sort of crept into my brain as I was writing my review, two weeks ago, of two books about female spies during the English Revolution and Interregnum that is the 1640s to the 1660s. Isaac Newton was born during this period and grew up during it and, as I will now sketch, was personally involved in the political turbulence that followed on from it.

Born on Christmas Day in 1642 (os) shortly after the outbreak of the first of the three wars between the King and Parliament, Britain’s religious wars, he was just nine years old when Charles I was executed at the end of the second war.


Portrait of Newton by Godfrey Kneller, 1689 Source: Wikimedia Commons

Newton was too young to be personally involved in the wars but others whose work would be important to his own later developments were. The Keplerian astronomer William Gascoigne (1612-1644), who invented the telescope micrometer, an important development in the history of the telescope, died serving in the royalist forces at the battle of Marston Moor. The mathematician John Wallis (1616–1703), whose Arithmetica Infinitorum (1656) strongly influenced Newton’s own work on infinite series and calculus, worked as a code breaker for Cromwelland later for Charles II after the restoration.


John Wallis by Sir Godfrey Kneller

Newton first went up to university after the restoration but others of an earlier generation suffered loss of university position for being on the wrong side at the wrong time. John Wilkins (1614–1672), a parliamentarian and Cromwell’s brother-in-law, was appointed Master of Trinity College Cambridge, Newton’s college, in 1659 and removed from this position at the restoration. Wilkins’ Mathematical Magick (1648) had been a favourite of Newton’s in his youth.

Greenhill, John, c.1649-1676; John Wilkins (1614-1672), Warden (1648-1659)

Greenhill, John; John Wilkins (1614-1672), Warden (1648-1659); Wadham College, University of Oxford;

Newton’s political career began in 1689 following the so-called Glorious Revolution, when James II was chased out of Britain by William of Orange, his son-in-law, invited in by the parliament out of fear that James could reintroduce Catholicism into Britain. Newton sat in the House of Commons as MP for the University of Cambridge in the parliament of 1689, which passed the Bill of Rights, effectively a new constitution for England. Newton was not very active politically but he identified as a Whig, the party of his student Charles Montagu (1661–1715), who would go on to become one of the most powerful politicians of the age. It was Montagu, who had Newton appointed to lead the Royal Mint and it was also Montagu, who had Newton knighted in 1705in an attempt to get him re-elected to parliament.

In the standard version of story Newton represents the end of the scientific revolution and Copernicus (1473–1543) the beginning. Religion, politics and war all played a significant role in Copernicus’ life.


Copernicus, the “Torun portrait” (anonymous, c. 1580), kept in Toruń town hall, Poland.

Copernicus spent the majority of his life living in the autonomous prince-bishopric of Warmia, where as a canon of the cathedral he was effectively a member of the government. Warmia was a Catholic enclave under the protection of the Catholic Crown of Poland but as the same time was geographically part of Royal Prussia ruled over by Duke Albrecht of Prussia (1490–1568), who had converted to Lutheran Protestantism in 1552. Ironically he was converted by Andreas Osiander (1498–1552), who would go on the author the controversial ad lectorum in Copernicus’ De revolutionibus. Relations between Poland and Royal Prussia were strained at best and sometimes spilled over into armed conflict. Between 1519 and 1521 there was a war between Poland and Royal Prussia, which took place mostly in Warmia. The Prussians besieged Frombork burning down the town, but not the cathedral, forcing Copernicus to move to Allenstein (Olsztyn), where he was put in charge of organising the defences during a siege from January to February 1521.  Military commander in a religious war in not a role usually associated with Copernicus. It is an interesting historical conundrum that, during this time of religious strife, De revolutionibus, the book of a Catholic cathedral canon, was published by a Protestant printer in a strongly Protestant city-state, Nürnberg.

The leading figure of the scientific revolution most affected by the religious wars of the age must be Johannes Kepler. A Lutheran Protestant he studied and graduated at Tübingen, one of the leading Protestant universities. However, he was despatched by the university authorities to become the mathematics teacher at the Protestant school in Graz in Styria, a deeply Catholic area in Austria in 1594. He was also appointed district mathematicus.


Johannes Kepler Source: Wikimedia Commons

In 1598, Archduke Ferdinand, who became ruler of Styria in 1596, expelled all Protestant teachers and pastors from the province. Kepler was initially granted an exception because he had proved his worth as district mathematicus but in a second wave of expulsion, he too had to go. After failing to find employment elsewhere, he landed in Prague as an assistant to Tycho Brahe, the Imperial Mathematicus.


Tycho Brahe Source: Wikimedia Commons

Once again he, like Tycho, was a Protestant in a Catholic city serving a Catholic Emperor, Rudolf II. Here he soon inherited Tycho’s position as Imperial Mathematicus. However, Rudolf was tolerant, more interested in Kepler’s abilities as an astrologer than in his religious beliefs. Apart from a substantial problem in getting paid in the permanently broke imperial court, Kepler now enjoyed a fairly quiet live for the next twelve years, then everything turned pear shaped once more.

In 1612, Rudolf’s younger brother Archduke Matthias deposed him and although Kepler was allowed to keep his title of Imperial Mathematicus, and theoretically at least, his salary but he was forced to leave Prague and become district mathematicus in Linz. In Linz Kepler, who openly propagated ecumenical ideas towards other Protestant communities, most notably the Calvinists, ran into conflict with the local Lutheran pastor. The pastor demanded that Kepler sign the Formula of Concord, basically a commitment to Lutheran theology and a rejection of all other theologies. Kepler refused and was barred from Holy Communion, a severe blow for the deeply religious astronomer. He appealed to the authorities in Tübingen but they up held the ban.

In 1618 the Thirty Years War broke out and in 1620 Linz was occupied by the Catholic army of Duke Maximilian of Bavaria, which caused problems for Kepler as a Lutheran. At the same time he was fighting for the freedom of his mother, Katharina, who had been accused of witchcraft. Although he won the court case against his mother, she died shortly after regaining her freedom. In 1625, the Counterreformation reach Linz and the Protestants living there were once again persecuted. Once more Kepler was granted an exception because of his status as Imperial Mathematicus but his library was confiscated making it almost impossible for him to work, so he left Linz.

Strangely, after two years of homeless wandering Kepler moved to Sagen in Silesia in 1628, the home of Albrecht von Wallenstein the commander of the Catholic forces in the war and for whom Kepler had interpreted a horoscope much earlier in life. Kepler never found peace or stability again in his life and died in Ulm in 1630. Given the turbulence in his life and the various forced moves, which took years rather than weeks, it is fairly amazing that he managed to publish eighty-three books and pamphlets between 1596 and his death in 1630.

A younger colleague of Kepler’s who also suffered during the Thirty Years’ War was Wilhelm Schickard, who Kepler had got to know during his time in Württemberg defending his mother. Schickard would go on to produce the illustrations both Kepler’s Epitome Astronomiae Copernicanae and his Harmonice Mundi, as well as inventing a calculating machine to help Kepler with his astronomical calculations. In 1632 Württemberg was invaded by the Catholic army, who brought the plague with them, by 1635 Schickard, his wife and his four living children, his sister and her three daughters had all died of the plague.


Wilhelm Schickard, artist unknown Source: Wikimedia Commons

As I have pointed out on numerous occasions Galileo’s initial problems in 1615-16 had less to do with his scientific views than with his attempts to tell the theologians how to interpret the Bible, not an intelligent move at the height of the Counterreformation. Also in 1632 his problems were very definitely compounded by the fact that he was perceived to be on the Spanish side in the conflict between the Spanish and French Catholic authorities to influence, control the Pope, Urban VIII.


Galileo Portrait by Ottavio Leoni Source: Wikimedia Commons

I will just mention in passing that René Descartes served as a soldier in the first two years of the Thirty Year’s War, at first in the Protestant Dutch States Army under Maurice of Nassau and then under the Catholic Duke of Bavaria, Maximilian. In 1620 he took part in the Battle of the White Mountain near Prague, which marked the end of Elector Palatine Frederick V’s reign as King of Bohemia. During his time in the Netherlands Descartes trained as a military engineer, which was his introduction to the works of Simon Stevin and Isaac Beeckman.


René Descartes Portrait after Frans Hals Source: Wikimedia Commons

We have now gone full circle and are almost back to Isaac Newton. One interesting aspect of these troubled times is that although the problems caused by the wars, the religious disputes and the associated politics caused major problems in the lives of the astronomers and mathematicians, who were forced to live through them, and certainly affected their ability to carry on with their work, I can’t somehow imagine Copernicus working on De revolutionibus during the siege of Allenstein, the scholars themselves communicated quite happily across the religious divide.

Rheticus was treated as an honoured guest in Catholic Warmia although he was a professor at the University of Wittenberg, home to both Luther and Melanchthon. Copernicus himself was personal physician to both the Catholic Bishop of Frombork and the Protestant Duke of Royal Prussia. As we have seen, Kepler spent a large part of his life, although a devoted Protestant, serving high-ranking Catholic employers. The Jesuits, who knew Kepler from Prague, even invited him to take the chair for mathematics at the Catholic University of Bologna following the death of Giovanni Antonio Magini in 1617, assuring him that he did not need to convert. Although it was a very prestigious university Kepler, I think wisely, declined the invitation. The leading mathematicians of the time all communicated with each other, either directly or through intermediaries, irrespective of their religious beliefs. Athanasius Kircher, professor for mathematics and astronomy at the Jesuit Collegio Romano, collected astronomical data from Jesuits all over the world, which he then distributed to astronomers all over Europe, Catholic and Protestant, including for example the Lutheran Leibniz. Christiaan Huygens, a Dutch Calvinist, spent much of his life working as an honoured guest in Catholic Paris, where he met and influenced the Lutheran Leibniz.

When we consider the lives of scientists we should always bear in mind that they are first and foremost human beings, who live and work, like all other human beings, in the real world with all of its social, political and religious problems and that their lives are just as affected by those problems as everybody else.








Filed under History of Astronomy, History of Mathematics, History of science, Newton, Renaissance Science

6 responses to “War, politics, religion and scientia

  1. Micaela

    Thank you this. I was trained in a field rife with stark events or even starker people–where little or no consideration was given to the Sitz im Leben in which these events occurred or people acted. What a great change when attention was given to very real influencers!

  2. I like the sound of Sitz im Leben, what a nice expression. But I found myself asking ‘So what?’ several times as I read the blogpost. It seems to me that the post fails to tackle an important question, namely: to what extent are the questions, and the findings, of science determined by social context?
    It seems to me that historians like Thony have done a good job on the first part of this question, demonstrating that social context really can play a role in determining who does the science, how it is done, what questions are asked etc etc.
    But I disagree with many historians on the second part of the question. While I accept that social context may play a role in the initial reception given to a theory or observation, it seems to me that the survival of that work is primarily determined by internal considerations, i.e., how well it was done and how well it matches subsequent observations – as judged by later scientists of different beliefs, social contexts etc. This objective aspect of science is rarely acknowledged by sociologists of science but lies at the heart of the astonishing success of the scientific enterprise

    • I think the path or process from the initial publication, of something like Kepler’s laws of planetary motion, and their presentation, as a piece of abstract science is a long and tortuous one and the finished product, as found in the textbooks, and the initial presentation bear little resemblance to one another.

      • Gavin Moodie

        Indeed. In this passage Barnett (2006: 145-146) discusses mainly pedagogical recontextualisation, applying Bernstein’s (1999: 161) principle of recontextualisation, but I think you are right in arguing that this is preceded by research contextualisation:

        ‘To take an extreme example, Newton’s ideas are central to classical mechanics teaching in physics and engineering, but no one would dream of serving up raw chunks of the Principia (even when translated from Latin into English) in school or university courses. . . . In general, textbooks are constructed from multiple sources by quite radical processes of adapting, recasting and rewriting to suit the needs of particular groups of learners or the requirements of particular examination syllabuses. This pedagogising of disciplinary knowledge – making it more readily teachable and learnable in particular educational contexts – is an example of a type of recontextualisation that could be named pedagogic recontextualisation.’

        Barnett, Michael (2006) Vocational knowledge and vocational pedagogy. In Young, Michael & Gamble, Jeanne (eds) (2006) Knowledge, curriculum and qualifications for South African further education (pp 143-157). Human Sciences Research Council, Cape Town, http://www.hsrcpress.ac.za/

        Bernstein, Basil (1999) Vertical and horizontal discourse: an essay, British Journal of Sociology of Education, volume 20 number 2 pages 157-173.

  3. Not just Europe either. From the fall of the Ming, to the Time of Troubles in Russia, to the post-apocalyptic woodlands of eastern Turtle Island as plagues and competition for access to trade goods lead to wars and migrations and ethnic cleansing, the 17th century was a really bad time to live unless you moved to the Ottoman Empire or the Mughal Empire.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s