Christmas Trilogy 2016 Part 3: The English Keplerians

For any scientific theory to succeed, no matter how good or true it is; it needs people who support and propagate it. Disciples, so to speak, who are prepared to spread the gospel. Kepler’s astronomical theories, his three laws of planetary motion and everything that went with them, were no different from every other theory in this aspect; they needed a fan club. On the continent of Europe the reception of Kepler’s theories was initially lukewarm to say the least and it was not only Galileo, who did his best to ignore them. Therefore it is somewhat surprising that they found a group of enthusiastic supporters right from the beginning in England. Surprising because in general in the first half of the seventeenth century England lagged well behind the continent in astronomy, as in all things mathematical.

The first Englishmen to pick up on Kepler’s theories was the small group around Thomas Harriot, who did so immediately after the publication of the Astronomia nova in 1609.

Portrait often claimed to be Thomas Harriot (1602), which hangs in Oriel College, Oxford. Source: Wikimedia Commons

Portrait often claimed to be Thomas Harriot (1602), which hangs in Oriel College, Oxford. Source: Wikimedia Commons

The group included not only Harriot but also his lens grinder Christopher Tooke, the Cornish MP Sir William Lower (c.1570–1615) and his Welsh neighbour John Prydderch (or Protheroe). Lower had long been an astronomical pupil of Harriot’s and had in turn introduced his neighbour Prydderch to the science.

The cartoon of Lower and Prydderch on page 265 of Seryddiaeth a Seryddwyr By J.S. Evans. Lower looks through a telescope while Prydderch holds a cross-staff. The cartoon had been used earlier by Arthur Mee in his book The Story of the Telescope in 1909. The artist was J. M. Staniforth, the artist-in-chief of the Western Mail newspaper.

The cartoon of Lower and Prydderch on page 265 of Seryddiaeth a Seryddwyr By J.S. Evans. Lower looks through a telescope while Prydderch holds a cross-staff. The cartoon had been used earlier by Arthur Mee in his book The Story of the Telescope in 1909. The artist was J. M. Staniforth, the artist-in-chief of the Western Mail newspaper.

This group was one of the very earliest astronomical telescopic observing teams, exchanging information and comparing observations already in 1609/10. In 1610 they were enthusiastically reading Astronomia nova and discussing the new elliptical astronomy. It was Lower, who had carefully observed Halley’s comet in 1607 (pre-telescope) together with Harriot, who first suggested that the orbits of comets would also be ellipses. Kepler still thought that comets move in straight lines. The Harriot group did not publish their active support of the Keplerian elliptical astronomy but Harriot was well networked within the mathematical communities of both England and the Continent. He had even earlier had a fairly substantial correspondence with Kepler on the topic of atmospheric refraction. It is a fairly safe assumption that Harriot’s and Lower’s support of Kepler’s theories was known to other contemporary English mathematical practitioners.

Our next group of English Keplerians is that initiated by the astronomical prodigy Jeremiah Horrocks (1618–1641). Horrocks was a self-taught astronomer who stumbled across Kepler’s theories, whilst on the search for reliable astronomical tables. He quickly established that Kepler’s Rudolphine Tables were superior to other available tables and soon became a disciple of Kepler’s elliptical astronomy. Horrocks passed on his enthusiasm for Kepler’s theories to his astronomical helpmate William Crabtree (1610–1644). In turn Crabtree seems to have been responsible for converting another young autodidactic astronomer William Gascoigne (1612–1644) to the Keplerian astronomical gospel. Crabtree referred to this little group as Nos Keplari. Horrocks contributed to the development of Keplerian astronomy with an elliptical model of the Moon’s orbit, something that Kepler had not achieved. This model was the one that would eventually make its way into Newton’s Principia. He also corrected and extended the Rudolphine Tables enabling Horrocks and Crabtree to become, famously, the first people ever to observe a transit of Venus.

opera_posthuma

Like Harriot’s group, Nos Keplari published little but they were collectively even better networked than Harriot. Horrocks had been at Oxford Emmanual College Cambridge with John Wallis and it was Wallis, a convinced nationalist, who propagated Horrocks’ posthumous astronomical reputation against foreign rivals, as he also did in the question of algebra for Harriot. Both Gascoigne and Crabtree had connections to the Towneley family, landed gentry who took a strong interest in the emerging modern science of the period. Later the Towneley’s who had connections to the Royal Society ensured that the work of Nos Keplari was not lost and forgotten, bringing it, amongst other things, to the attention of a young John Flamsteed, who would later become the first Astronomer Royal. . Gascoigne had connections to William Cavendish, the later Duke of Newcastle, under whose command he served at the battle of Marston Moor, where he died. William, his brother Charles and his wife Margaret were all enthusiastic supporters of the new sciences and important members of the English scientific and philosophical community. Gascoigne also corresponded with William Oughtred who served as private mathematics tutor to many leading members of the burgeoning English mathematical community. It is to two of Oughtred’s students that we now turn

William Oughtred by Wenceslas Hollar 1646

William Oughtred
by Wenceslas Hollar 1646

Seth Ward (1617–1689) studied at Oxford Cambridge University from 1636 to 1640 when he became a fellow of Sidney Sussex College.

Greenhill, John; Seth Ward (1617-1689), Savilian Professor of Astronomy, Oxford (1649-1660) Source: Wikimedia Commons

Greenhill, John; Seth Ward (1617-1689), Savilian Professor of Astronomy, Oxford (1649-1660)
Source: Wikimedia Commons

In the same year he took instruction in mathematics from William Oughtred. In 1649 he became Savilian Professor of Astronomy at Oxford University the same year that John Wallis was appointed Savilian Professor of Mathematics. Whilst serving as Savilian Professor, Ward became embroiled in a dispute about Keplerian astronomy with the French astronomer and mathematician Ismaël Boulliau.

Ismaël Boulliau  Source: Wikimedia Commons

Ismaël Boulliau
Source: Wikimedia Commons

Boulliau was an early and strong defender of Keplerian elliptical astronomy, who however rejected Kepler’s attempts to create a physical explanation of planetary orbits. Boulliau published his Keplerian theories in his Astronomia philoaïca in 1645. Ward attacked Boulliau’s model in his In Ismaelis Bullialdi astro-nomiae philolaicae fundamenta inquisitio brevis from 1653, presenting his own model for Kepler’s planetary laws. Boulliau responded to Ward’s attack in his De lineis spiralibus from 1657. Ward had amplified his own views in his Astronomia geometrica from 1656. This public exchange between two heavyweight champions of the elliptical astronomy did much to raise the general awareness of Kepler’s work in England. It has been suggested that the dispute was instrumental in bringing Newton’s attention to Kepler’s ideas, a claim that is however disputed by historians.

Ward went on to make a successful career in the Church of England, eventually becoming Bishop of Salisbury his successor, as Savilian Professor of Astronomy was another one of Oughtred’s student, Christopher Wren (1632–1723).

Christopher Wren by Godfrey Keller 1711  Source: Wikimedia Commons

Christopher Wren by Godfrey Keller 1711
Source: Wikimedia Commons

Wren is of course much better known as the foremost English architect of the seventeenth-century but started out as mathematician and astronomer. Wren studied at Wadham College Oxford from 1650 to 1653, where he was part of the circle of scientifically interested scholars centred on John Wilkins (1614–1672), the highly influential early supporter of heliocentric astronomy. The Wilkins group included at various times Seth Ward, John Wallis, Robert Boyle, William Petty and Robert Hooke amongst others and would go on to become one of the groups that founded the Royal Society. Wren was a protégé of Sir Charles Scarborough, a student of William Harvey who later became a famous physician in his own right; Scarborough had been a fellow student of Ward’s and was another student of Oughtred’s. Wren was appointed Gresham Professor of Astronomy and it was following his lectures at Gresham College that the meetings took place that would develop into the Royal Society. As already noted Wren then went on to succeed Ward as Savilian Professor for astronomy in 1661, a post that he resigned in 1673 when his work as Surveyor of the King’s Works (a post he took on in 1669), rebuilding London following the Great Fire of 1666, became too demanding. Wren enjoyed a good reputation as a mathematician and astronomer and like Ward was a convinced Keplerian.

Our final English Keplerian is Nicolaus Mercator (1620–1687), who was not English at all but German, but who lived in London from 1658 to 1682 teaching mathematics.

Nicolaus Mercator © 1996-2007 Eric W. Weisstein

Nicolaus Mercator
© 1996-2007 Eric W. Weisstein

In his first years in England Mercator corresponded with Boulliau on the subject of Horrock’s Transit of Venus observations. Mercator stood in contact with the leading English mathematicians, including Oughtred, John Pell and John Collins and in 1664 he published a defence of Keplerian astronomy Hypothesis astronomica nova. Mercator’s work contained an acceptable mathematical proof of Kepler’s second law, the area law, which had been a bone of contention ever since Kepler published it in 1609; Kepler’s own proof being highly debateable, to put it mildly. Mercator continued his defence of Kepler in his Institutiones astronomicae in 1676. It was probably through Mercator’s works, rather than Ward’s, that Newton became acquainted with Kepler’s astronomy. We still have Newton’s annotated copy of the latter work. Newton and Mercator were acquainted and corresponded with each other.

As I hope to have shown there was a strong continuing interest in England in Keplerian astronomy from its very beginnings in 1609 through to the 1660s when it had become de facto the astronomical model of choice in English scientific circles. As I stated at the outset, to become accepted a new scientific theory has to find supporters who are prepared to champion it against its critics. Kepler’s elliptical astronomy certainly found those supporters in England’s green and pleasant lands.

 

 

 

Advertisements

11 Comments

Filed under History of Astronomy, History of Mathematics, History of science, Renaissance Science

11 responses to “Christmas Trilogy 2016 Part 3: The English Keplerians

  1. > Seth Ward (1617–1689) studied at Oxford University from 1636 to 1640 when he became a fellow of Sidney Sussex College.

    (semi-trivia): Sidney Sussex is Cambridge.

  2. tcbmcleish

    Was Horrocks really in Oxford as well as Cambridge (Emmanuel) – I know he was at the latter because I was at Emma for 10 years in total and he is a beloved alum there (although left without graduating and by his account had a miserable time in Cambridge). Brief personal note from my mathematician and astronomical historian friend (also ex-Emmanuel) Mike Frost here http://www.mikefrost.info/horrocks.html

  3. tcbmcleish

    Ah! I think I see the Oxbridge problem (it’s quite extensive) – in your post on Wallis you have him at first attending ‘Emmanuel College Oxford’ (o culpa magna!) which you then correct (mercifully) but still in this article have Horrocks studying ‘with Wallis in Oxford’. Emmanuel (founded by Puritan Chancellor of Exchequer Walter Mildmay in 1584) was the most puritan college in either university (compare the ultra-minimalist lines on which Wren designed its chapel, compared, for example, with that in Pembroke, his other Cambridge design). Telling the difference between light and dark blue is very important!
    Great article otherwise though and I really enjoyed the trilogy. There is still a Harriot society that meets annually in Durham.

  4. Super post, fills several gaps for me

  5. Pingback: Christmas Trilogy 2016 Part 3: The English Keplerians — The Renaissance Mathematicus | math - update

  6. Pingback: Whewell’s Gazette: Year 3, Vol. #20 | Whewell's Ghost

  7. C M Graney

    A minor addition on Horrocks: He (with Crabtree, I think) observes the moon passing in front of the Pleiades, and notices that the disks of the stars are not gradually covered by the limb of the moon, but instead just “wink out” suddenly. This is the first recorded evidence that the images of stars formed by telescopes are not what they seem to be. It takes a long time for Horrocks’s observations to get published, but when they are it is the beginning of the end for one of the strongest arguments against the Copernican theory (the problem of the sizes of stars). When Haley is criticizing one of Cassini’s calculations of the sizes of stars (the immense sizes, based on measurements of their apparent sizes seen in telescopes) in the early 18th century, he cites lunar occultations of stars as evidence.

  8. Pingback: copasa – irwandi

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s