Category Archives: Myths of Science

Was Will a Copernican?

The Will of the title is England’s most notorious playwright and poet, William Shakespeare, who was supposedly born 450 years ago today. The question is the central motivation for the new book by Canadian popular science writer, Dan Falk, The Science of Shakespeare: A New Look at the Playwright’s Universe.[1] Given that Shakespeare was born just twenty-one years after Copernicus’ De revolutionibus was published and lived through the period in which Kepler and Galileo, amongst others, made the heliocentric hypothesis the hottest item in the European scientific community it is not unreasonable to ask, as Falk does, in the more general sense, whether the cosmological and astronomical upheaval of the age left any traces in Will’s work. Traditional Shakespearean scholarship says no, Falk re-examines the evidence.

The Science of Shakespeare

I must admit that when I first got offered this book to review I had a sinking feeling that somebody was going down the same garden path that Peter Usher had already trodden. For those readers who are not aware of Mr Usher’s endeavours, he is a retired astronomer who believes that he has found the secret message encoded in Shakespeare’s Hamlet and in all of the rest of his works. Usher believes that Hamlet describes the battle for supremacy between the Ptolemaic, Tychonic and Copernican system of astronomy in the Early Modern Period. What do I think of Mr Usher’s theories? Let’s put it this way, Mr Usher manages to make the Bible decoders look like rational human beings. My feelings about reading Falk’s book where not improved on discovering, upon receiving my review copy, that it was indeed an introduction to Mr Usher’s ideas that inspired Falk to research and write his book; I feared the worst. Fortunately, although I cannot totally endorse the book, Mr Falk did indeed do his research on the whole thoroughly and it turned out to be much better than I had feared. In fact on the whole I found it to be a well-written and entertaining read.

The introduction sets the scene for his book by presenting what are respectively the most expensive science and humanities rare books, Nicolas Copernicus’ De revolutionibus and The Shakespeare First Folio, given their proximity in time it is not an unreasonable question to ask if the one influenced the other and whilst acknowledging that the traditional answer is no, Falk already brings here one of the arguments used by more modern researchers, and not just Usher, to claim the opposite. I shall deal with this later along with the other supposed arguments in favour of a heliocentric Bard.

The first five chapters deal with the largely astronomical background giving a quick rundown on ancient cosmology, the emergence of Copernican theory and its reception in late sixteenth-century England. Falk has done his homework well and this part of the book is almost totally satisfying. I say almost because it does contain two serious errors.

Falk manages to walk into a trap that Copernicus laid for the unwary. Falk writes, “and it [the Copernican model] managed to bring the total number of circles down from eighty to thirty-four.” Falk is here paraphrasing a claim that Copernicus makes in the Commentariolus the pamphlet he wrote around 1514, first announcing his heliocentric system. The claim is an estimate and not a fact. Unfortunately for Falk by the time Copernicus had worked out his system in full, in De revolutionibus, he actually needed forty-eight circles, whereas Peuerbach, in his Theoricae Novae Planetarum, the most modern version of the geocentric model, which Copernicus used and consulted himself, only required forty circles. Not a victory for the new astronomy.

Whilst discussing the Copernican reception Falk quite rightly introduces William Gilbert. He goes on to explain that Gilbert, influenced by Copernicus, discusses diurnal rotation in his De magnete, explaining it as the natural motion of a spherical magnet, based on his erroneous view that a spherical magnet left to itself rotates. Unfortunately Falk then goes on to say, “He also believed that magnetic forces emanating from the sun, together with the sun’s rotation, caused the planets to move in their heliocentric orbits”. Gilbert of course believed nothing of the sort. In Book Six of De magnete, where this discussion takes place, he states quite explicitly, “ From these arguments, therefore, we infer, not with mere probability, but with certainty, the diurnal rotations of the earth; […] I pass by the earth’s other movements, for here we treat only of the diurnal rotation [my emphasis], whereby it turns to the sun and produces the natural day (of twenty-four hours) which we call nycthermeron”. Gilbert’s model is in fact not Copernican at all but a geocentric-geokinetic one. I’ve blogged about the history of such systems here. The magnetic force explanation for the movement of the planets in a heliocentric system was hypothesised by Johannes Kepler, first in his Astronomia nova and then again later in his Epitome astronomiae Copernicanae, inspired by Gilbert’s work but not taken from him. I have a sneaking suspicion that Falk got his research notes a little muddled up here.

I found it very positive that Falk does not shy away from some controversial topics concerning sixteenth century English astronomy but whilst discussing them retains a level head. For example he looks at the claims made chiefly by Colin Ronan, who strangely doesn’t get mentioned here at all, that the Digges, that’s father and son Leonard and Thomas, invented and constructed a functioning telescope forty plus years before Hans Lippershey in Holland. Whilst quoting all of the original sources that led to these speculations Falk also gives space to those experts who clearly reject Ronan’s hypothesis, as I also do.

Having presented the scientific background Falk now moves on to Shakespeare presenting the reader with an, albeit, brief but adequate biography of the Bard. A necessary section of his book for those who come to it from the history of science rather than from English philology.

We are now half way through and can at last turn our attention to the real subject of the book, Shakespeare and science and Falk dives right in with “The Science of Hamlet”, where a tortuous trail of speculation is constructed. We start with a quote from the opening scene, “When yound same star that’s westward from the pole, Had made its course to illume that part of heaven”. This is a reference to the time of night, it being common practice in the Middle Ages to measure time at night by the position of the circumpolar stars. With a lot of jiggery-pokery we are led to the conclusion that the referenced star must be the Nova from 1572. This is not completely improbable as this Nova was the most significant celestial event during Shakespeare’s lifetime. In a fantasy dialogue Falk has Shakespeare’s father taking the young Will out to view the Nova in a prologue to the book. We now get led on to the fact that this is Tycho Brahe’s Nova. This is a classic bit of presentism. Tycho did indeed observe and write about this Nova but so did every astronomer in Europe and everybody, astronomer or no, with two eyes almost certainly observed it. So why do we need to introduce Tycho?

We now come to the central argument for an astronomical Hamlet, Rosencrantz and Guildenstern. Tycho Brahe produced an engraving of himself, he did lots of that sort of thing, in 1590, which lists sixteen of his close relatives including a Rosenkrans and a Guildensteren, Q.E.D: Shakespeare took the names from Tycho. It’s obvious isn’t it? But how? Tycho sent a copy of his astronomical letters, his Epistolae, containing said engraving to Thomas Saville, which includes Tycho’s well wishes for John Dee and Thomas Digges. What if Thomas Digges also received a copy? We then get a whole heap of arguments the Shakespeare could have (must have) known the Digges family and through them seen such a Tychonic portrait. Digges, we should not forget was a Copernican. Unfortunately none of these arguments contains a single concrete fact that Shakespeare knew the Digges family. The whole chapter is an untidy heap of unsubstantiated speculations with very little real substance.

Is it possible that Shakespeare came across the names Rosencrantz and Guildenstern by other means? To be fair to Falk he answers this question in the positive. There was a Danish diplomatic mission to England in 1592 including two delegates bearing the names Rosenkrans and Guildensteren and alone on Frederick II court in Copenhagen there were nine Rs and three Gs so a connection to Tycho is not really necessary.

Because Tycho as the Danish source of Hamletian science is so important both to Falk and Usher I will now point out something that the both either ignore or possibly deliberately sweep under the carpet. In the earlier chapters on Renaissance astronomy, when discussing Tycho, Falk points out that James VI & I actually visited Tycho’s observatory on Hven during a trip to Denmark. What he neglects to mention is why James was visiting Denmark in the first place. James went to Denmark in 1589 to fetch his bride, Anne of Denmark. This means that from 1590 onwards there would have been a strong political interest in Denmark, not only in Scotland but also in England where James was already seen as the most likely heir to the childless Elizabeth. Tycho Brahe was by no means the only reason for Shakespeare and his contemporaries to be interested in all things Danish.

Let us assume that having decided to write Hamlet Shakespeare, a good author, did some research on Denmark and the Danish court. He would discover that Denmark was ruled by an oligarchy of about twenty powerful families of, which the Brahes were one. If he chose at random two names from those twenty from his play then those chosen would have been relatives of Tycho because, as is the nature of oligarchies, the families maintained their hold on power by intermarrying. The fact that two courtiers in Hamlet bear the names of two of Tycho’s relatives thus has, in my opinion, very little significance.

Enter Usher stage right: According to Peter Usher the whole of Hamlet not only contains hidden references to Copernican astronomy but is in fact a dramatic presentation of the intellectual battle between the leading astronomical systems, Ptolemaic, Copernican and Tychonic. Hamlet is the Copernican astronomer embodied by Thomas Digges, Hamlet’s murdered father is Leonard Digges, his uncle Claudius is Ptolemaeus, Rosencrantz and Guildenstern are Tycho (apparently he has a split personality!), Laertes is Thomas Harriot and so on and so on. Only the women play no role in Usher grand scheme of things, a little strange given Ophelia’s central role in the drama! Apart from the Tycho connection sketched above Usher has discovered two smoking guns in the play that he thinks justify his interpretation. The first of these is Wittenberg. This German university town gets several name checks in the play. Usher sees this as references to Copernicanism because Rheticus, who persuaded Copernicus to publish, had studied and taught at Wittenberg. There are a couple of obvious flaws in this argument. Firstly Rheticus had left Wittenberg before the publication of De revolutionibus, in which he is incidentally never mentioned, to become professor of mathematics in Leipzig. Secondly Wittenberg was by no means a centre of Copernican scholarship, Luther and Melanchthon being both on record as opposing heliocentricity.

Is there another reason for Shakespeare to feature Wittenberg in a play about the Danish court? In fact there is. The court language in Denmark was not Danish but German and although Copenhagen had its own Lutheran university it was common practice for the Danish aristocracy to send its sons abroad for their education. See a bit of the world whilst getting your degree. Because Denmark was a strongly Lutheran country Wittenberg, home of Luther and the Reformation, was the most popular destination for young Danish aristocrats to acquire their foreign university experience. There is absolutely no need to evoke a bogus Copernican connection to justify Shakespeare’s choice of Wittenberg in his play.

Usher’s second smoking gun is the famous hawk and handsaw quote, “I am but mad north-north-west. When the wind is southerly, I know a hawk from a handsaw”. (For those not in the know handsaw is thought to be a typo for hernshaw a kind of heron). For Usher this rather enigmatic passage is interpreted to mean that for someone on Hven when the wind comes from north-north-west this means Elsinore the home of Claudius and Ptolemaic astronomy, so madness, whereas a wind from the south means Wittenberg the home of Copernicanism. Having already demolished the theory that Wittenberg is the home of Copernicanism I don’t really need to say more but I do have to ask why Hamlet should be positioned on Hven, Tycho’s realm, whilst making this speech? It really doesn’t make much sense to me Mr Usher.

There are a whole series of even less convincing finds by Usher not only in Hamlet but in all of Shakespeare’s plays to justify his fantasy constructions that I’m not going to go into here, but there is one further issue that I postponed from the introduction, an argument used by those not totally convinced by Usher’s bizarre arguments but willing to accept that Shakespeare’s work possible does contain some hidden references to heliocentricity. The quote in question comes from Troilus and Cressida, “the glorious planet Sol / In noble eminence enthroned and sphered…” We get told that, “by emphasizing the role of the sun, the passage may hint at the new heliocentric astronomy.” Talk about clutching at straws. Within traditional geocentric astronomy, astrology and alchemy the sun played a special role for very obvious reasons. The sun determines day and night, it defines the year, it brings light and warmth, it is by far and away the most prominent body in the sky do I really need to go one. I will add one astronomical note for those philologists who are apparently too lazy to read up on the history of the subject. In geocentric cosmology the sun was regarded as the ruler of the planets because, in the most commonly accepted order of the orbits, it occupies the central position in the heavens with three inner plants and three outer planets below and above it.

At the end of his chapter on Usher Falk tries a bait and switch. He presents a list of off the wall papers presented at a major Shakespearean conference that he attended whilst researching his book with an argument that Usher’s thesis is no crazier than these. Just because other people spout shit doesn’t make Usher’s shit anymore palatable. I will however give Falk credit, although he does present Usher’s garbage with considerably more sympathy than he deserves he also lets Usher’s critics speak for themselves leaving it to the reader to make up her or his mind on the subject.

What now follows in a chapter on Galileo and the telescopic discoveries made around 1610; in itself not a bad retelling of well-known material. This is included because we now have Usher and others trying to convince us that Shakespeare’s late play Cymbeline contain hidden references to Galileo’s (and Marius’ but he doesn’t get a mention) discovery of the four largest moons of Jupiter. I leave it to Falk’s readers to find if the arguments are convincing.

Because the book’s title is The Science of Shakespeare and not the astronomy or cosmology of Shakespeare Falk now turns to what are now commonly known as the occult sciences. Unfortunately he doesn’t seem to have done his homework here anywhere near as well as he did for the astronomy and cosmology in the main part of the book. We start with astrology and here he fall on his nose at the first hurdle. Falk tells us:

In England, astrology came to have two more or less distinct branches, known as “natural astrology” and “judicial astrology”. Natural astrology was, in fact, something like straight-ahead astronomy; it focused on tracking and predicting the motions of the sun, moon, and planets. Judicial astrology was closer to what we think of today as just plain “astrology – the attempt to link celestial happenings to earthly affairs, and to use astronomical knowledge to predict terrestrial happenings.

Wrong! Astronomy focused on tracking and predicting the motions of the sun, moon, and planets. That’s the difference between astronomy and astrology, although in Shakespeare’s time the two words were still used interchangeably. In fact astrology has four major divisions that go back to antiquity and were not first developed in Renaissance England. These are judicial astrology, electional astrology, horary astrology and natural astrology. Judicial or natal astrology is more or less as Falk describes it. Electional astrology is the casting of horoscopes to determine the correct or propitious time or date to start an undertaking. When should one marry, when lay the foundation stone of a building or new town, when to undertake a journey or even when to start a military campaign. Horary astrology is the attempt to answer questions by astrologers casting horoscopes upon receipt of the question. This is the classic detective story astrology used to detect thieves or to discover the hiding place of stolen goods. Natural astrology is the branch of astrology that deals with the things of the natural world i.e. astro-medicine and astro-meteorology. Theses division are important in the history of astrology, as there were extensive debates and disputes as to the validity of each of them, each of the four having its own champions and opponents. Interestingly even the strongest opponents of astrology in general in the High Middle Ages and the Renaissance tended to accept the validity of natural astrology whilst simultaneously launching vitriolic invective against the widespread judicial astrology.

Although having got off to a bad start Falk’s discussion of judicial astrology in Shakespeare is reasonably good. He acknowledges that Shakespeare’s work is permeated by astrological references, whilst being a good mirror of his own society he also lets the opponents of astrology speak their piece. Unfortunately I got the feeling that Falk was trying to persuade the reader that Shakespeare was an opponent of astrology and that despite the fact that in his biographical chapter on the Bard he warns the reader against trying to determine Shakespeare’s character or personality from his works. I was particularly irritated by statements that Carl Sagen or Richard Dawkins would find favour with a particular anti-astrology speech or Neil deGrasse Tyson and Laurence Krauss would applaud a piece of scepticism. I found these comments out of place and quite frankly somewhat bizarre.

After astrology we turn to magic. This chapter slightly disturbs me, as it is largely about demonic magic, Macbeth’s witches and all that, which unlike natural magic was never considered scientia and thus not science. Towards the end of the chapter Falk does briefly discuss the difference between demonic and natural magic but his definition of natural magic is even more wrong than his definition of natural astrology. I’m not even going to go there, as an attempt to explain natural magic would probably end up as long as this already over long review. Even worse Falk talks about astrology as being magic. This is within the context of a book on Renaissance history a serious category mistake. Astrology is not a form of magic. Falk makes the same category mistake as he discusses alchemy in this chapter. Alchemy gets dismissed in a couple of short paragraphs somewhat of a disappointment as alchemy played a very central role in Elizabethan learned society, with even Elizabeth herself a practicing alchemist. Falk closes out the chapter by stating that “Astrology, witchcraft, alchemy, magic … and science. It was all part of a package; all were thoroughly intertwined in the sixteenth century, and even into the early years of the seventeenth.” This was indeed true although it went much further into the seventeenth century than the early years. However I find it slightly sad that Falk choses to illustrate this with a quick sketch of the live and work of Johannes Kepler. This sketch whilst basically correct doesn’t do Kepler’s scientific achievements justice. We also get the following old myth dished up, “We might note that Kepler was a practicing astrologer, and that he cast horoscopes for the German nobility. It’s not clear, however, how much faith he put in the power of the starts to influence our lives” [my emphasis]. Just for the record Kepler was a 100% convinced astrologer and any claims to the contrary are wishful thinking from those who would prefer their scientific heroes free of the taint of the occult.

Next up is Renaissance medicine a recurring theme in Shakespeare’s plays. An adequate treatment of the subject as far as it goes but neither here nor in his discussion of astrology does Falk even mention let alone discuss astro-medicine. This is a strange omission as astrological medicine was one of the dominant directions in medical practice in Shakespearean times. This chapter contains the strangest claim in the whole book. In his discussion of the differences between physicians, surgeons, apothecaries, and midwifes Falk produces the following gem, “Since the Middle Ages, the practice of medicine had been associated with the Catholic Church and so physicians were forbidden to shed blood”. Now I’m not a historian of medicine but I’ve read a lot of literature on the history of medicine and I’ve never come across anything of the sort in fact I will go as far as to say that this statement is a total myth of the same sort as the claim that the Church had banned dissection. I’m quite prepared to admit that I’m wrong should any of my highly educated readers show Falk to be in the right but somehow I don’t think I’m going to have to.

In the penultimate chapter Falk takes a sharp left turn. The chapter opens with a brief discussion of Lucretius’ De rerum natura and a free advert for Stephen Greenblatt’s The Swerve. As Falk correctly says De rerum natura was a highly popular and influential book in Shakespeare’s time so one might well expect to find this popularity reflected in Shakespeare’s writings. All that Falk can deliver is one instance of the word atomi in Romeo and Juliet. This doesn’t stop him discussing Lucretius and recommending Greenblatt’s book. Greenblatt is one of the experts on Shakespeare that Falk consulted for his book, as he tells us on numerous occasions in the text and he gives an enthusiastic endorsement to Greenblatt’s work on the rediscovery of Lucretius’ poem in the Middle Ages. Unfortunately, this high opinion of The Swerve is not shared by many historians of medieval philosophy including one guest author here at The Renaissance Mathematicus.

Falk now introduces us to the sixteenth-century French essayist Montaigne trying to conceive him as a modern scientific skeptic, again gratuitously name dropping some actual ones, this time Laurence Krauss and Stephen Hawking. He does however admit that the attempt is at best dubious. He lets us know that Montaigne briefly refers to Copernicus, noting that there are now two possible cosmologies however reflecting that maybe in a thousand years a third model will come along and overthrow both of them. For this insight Falk credits Montaigne with being a sixteenth-century Karl Popper. There is however method in all this. We now get shown that Shakespeare was a diligent reader of the English translation of Montaigne’s essays traces of them turning up all over his own writings. This leads Falk to the categorical claim that at least here Shakespeare must have [my emphasis] come across Copernicus and Copernicanism. I always react allergically when somebody writing a historical text having failed to produce a direct link between two things sets up a plausible but speculative link and then says, “must”. There is no must about it. We simply do not know if Shakespeare read all of Montaigne’s voluminous output or only selected essays or if reading the essay in question skipped over the brief lines referring to Copernicus or even reading them gave them no significance and promptly forgot them again. What makes Falk’s last ditch attempt to link Shakespeare and Copernicus all the more questionable, having failed earlier in his book to produce a genuine smoking gun, is that he has spent a lot of words trying to convince the reader that Hamlet is the Bard’s Copernican work, whereas the English translation of the Montaigne essay first appeared in 1603 after Hamlet was written.

The final chapter of the book goes off on another tangent, this time in the direction of atheism. We get a potted history of atheism in the Early Modern Period and parallel to it a synopsis of how lacking in hope King Lear is. Combining this with the fact the Will’s friend Kit Marlowe was accused of atheism Falk ventures the hypothesis that Shakespeare had abandoned a belief in god. At the latest here, it becomes clear that Falk wishes to recreate Shakespeare as a sort of sixteenth-century Richard Dawkins. Enthusiastically embracing, albeit secretly, the new mode of scientific thinking and rejecting humanities dependency on god. However having come this far Falk baulks at the final hurdle hurriedly qualifying his own hypothesis, “We can’t definitely label Shakespeare an atheist, just as we can’t call him a scientist – even if we suspect we are seeing hints of such a world view.” In my opinion Falk has made a valiant effort to find facts to support his thesis but for me his argument is far too full of gaping holes to be really convincing.

Although this is not a an academic book its subject matter is of an academic nature so I think it is fair to ask about the academic apparatus, foot- or endnotes, bibliography and index. The book is equipped with, what I’m told, are hanging endnotes. That is endnotes giving sources for direct quotes in the text but without indications (quote numbers) in the text that they exist. This is possibly the worst solution to the notes problem that exists and I abhor it. I also found several direct quotes in the text for which no endnote exists. What makes this choice even stranger is that the text also has spasmodic footnotes referring to quotes in the text. Why some quotes earn footnotes and others hanging endnotes is not at all clear to me. The bibliography is quite extensive and gives ample evidence of the work that Falk has obviously invested in his book. There is no index! I find the omission of an index in this age of advance word processors, which make the compilation of an index child’s play, unforgivable.

I realise that if anybody has stayed with me up to here that they might think that having made so many negative comments I would not recommend Falk’s book, they would be wrong. On the whole I found the book well written, entertaining and informative. It is not free of errors but very few popular books on the history of science ever are. One of the very positive aspects of the book is that when even Falk presents a speculative theory concerning some aspect of science and a Shakespearean play he makes very clear that it is speculative and also presents alternative explanations for the text in question leaving it up to the readers to decide for themselves whether to accept the proffered hypothesis or not. On the whole I enjoyed reading this book and would recommend it as a stimulating read for anybody interested in the subject matter, although they should be on their toes whilst reading.

 

 

[1] Dan Falk, The Science of Shakespeare: A New Look at the Playwright’s Universe, Thomas Dunne Press, St. Martin’s Press, New York, 2014.

9 Comments

Filed under History of Alchemy, History of Astrology, History of Astronomy, Myths of Science, Renaissance Science

Lists!

People appear to love list. The Internet is full of lists. The 10 most popular dog breeds, the 10 biggest waves ever ridden by a surfer, the 10… you get the idea. The lists very often have ten entries, it’s a shame that we all have the same number of fingers otherwise we could a bit more variation, the 7 biggest… or the 11 smartest… Science and its history are far from immune from this cyber cancer, lists of all sorts being produced and posted with gay abandon. We recently even had the Top 10 scientists of the 13th century! Apart from the fact that the use of the word scientist here is highly anachronistic any such selection is of course subjective and disputable. However the subject of this post is not medieval scholars, tempting though it is, but a list of “17 Equations That Changed the World”

17 Equations that Changed the World

17 Equations that Changed the World

Although it claims to be by Ian Stewart I have no idea of the original source of this list but I have stumbled across it several times in the last few months. Now when I was a young mathematical acolyte and budding historian of maths I devoured Ian Stewart’s books at the same rate as those of Martin Gardner and Isaac Asimov. Put another way Ian Stewart was a major influence on my development. As I got older, but probably not wiser, I came to realise that Stewart, a mathematician and populariser, wasn’t very accurate in his historical attributions, in fact he is down right sloppy. This list is no exception.

Don’t worry I’m not going to go through all seventeen entries but the first time I read it I immediately noticed that the first five all have significant problems and I thought it would make an interesting exercise to explain why.

We start off with what is possibly the most well known theorem in the whole of mathematics Proposition 47 from Book I of Euclid’s Elements. The correct attribution of this theorem is actually an exercise in history of mathematics 101.

In right-angled triangles the square on the side subtending the right angle is equal to the squares on the sides containing the right angle.

Now Euclid is thought to have written his Elements around 300 BCE and he doesn’t attribute this theorem to anybody. The first to putatively attach Pythagoras’ name to Euclid’s Proposition 47 was Proclus in his commentary on the Elements written in the fifth century CE. However Proclus doesn’t sound very convinced by his own attribution.

If we listen to those who wish to recount ancient history, we may find some of them referring this theorem to Pythagoras and saying that he sacrificed an ox in honour of his discovery. But for my part, while I admire those who first observed the truth of this theorem, I marvel more at the writer of the Elements, not only because he made it fast by a more lucid demonstration, but because he compelled assent to the still more general theorem by the irrefragable arguments of science in the sixth Book. For in that Book he proves generally that, in right-angled triangles, the figure on the side subtending the right angle is equal to the similar and similarly situated figures described on the sides about the right angle.

Proclus would seem to want to award the credits to Euclid not Pythagoras. Those who wished to recount ancient history were Cicero writing in the first century BCE and Plutarch writing in the first century CE. One thing that makes this anecdote from antiquity somewhat dubious is the fact that the Pythagoreans rejected animal sacrifice. There is no actual contemporary evidence that associates either the Pythagoreans or Pythagoras to the theorem that we name after him. However all of this is rather academic, as the theorem existed more than a thousand years before the Pythagoreans.

There is clear evidence that the Babylonians knew of the theorem in the Old Babylonian period around 1700 BCE. However although we have several instances of them using the theorem we don’t have a Babylonia proof of the theorem Maybe they didn’t have one but there are still literally tons of Babylonian clay tablets that have never been transcribed let alone translated. It could well be that somewhere the Babylonian Pythagoras is still waiting to be discovered.

The Babylonians were not the only ones to have the theorem independently of the Greeks. A clear example of the theorem can be found in the Indian Sulba Sutras. Unfortunately the dating of early Indian texts is very problematic and the best we can do is to say the Sulba Sutras date from between 800 and 200 BCE, so if the Indian Pythagoras predated the Greek one is almost impossible to determine.

Never to be left out when it comes to ancient invention and discovery the Chinese also had their own Pythagoras. The greatest Chinese mathematical classic The Nine Chapters of the Mathematical Arts contains problems that require use of the theorem in Chapter 9. In Chinese it is known as the Gougu rule. Once again dating is a major problem, the earliest existing manuscript dates from 179 CE but the contents are probably much earlier in origin, currently thought to date to 300 to 200 BCE. A simple and elegant pictorial proof of the theorem turns up in another Chinese classic the Zhou Bi Suan

Chinese Pythagoras

Chinese Pythagoras

Jing. Also very difficult to date but probably originating around 300BCE. As can be seen this theorem doesn’t have a simple history.

Stewart now takes a massive leap into the seventeenth century CE and the invention of logarithms. Once again his simple attribution to John Napier is exactly that, simplistic and historically misleading. We can find the principle on which logarithms are based in the work of several earlier mathematicians. We can find forms of proto-logarithms in both Babylonian and Indian mathematics and also in the system that Archimedes invented to describe very large numbers. In the fifteenth century Triparty, of the French mathematician Nicolas Chuquet we find the comparison between the arithmetical and geometrical progressions that underlay the concept of logarithms but if Chuquet ever took the next step is not clear. In the sixteenth century the German mathematician Michael Stifel studied the same comparison of progressions in his Arithmetica integra and did take the next step outlining the principle of logarithms but doesn’t seem to have developed the idea further.

It was in fact John Napier who took the final step and published the first set of logarithmic tables in his book Mirifici Logarithmorum Canonis Descriptio in 1614. However the Swiss clockmaker and mathematician, Jost Bürgi developed logarithms independently of Napier during the same period although his book of tables, Arithmetische und Geometrische Progress Tabulen, was first published in 1620.

We stay in the seventeenth century for Stewart’s next equation, which is the production of a first derivative using the so-called h-method confusingly labelled calculus, confusing that is because calculus is a branch of mathematics and not an equation, and attributed to Newton 1668. To say that this line has a lot of issues would be a mild understatement. I will try to keep it relatively short. Anybody with half an idea of the history of calculus will already be asking themselves, what about Leibniz? Newton and Leibniz both developed their ideas of the calculus independently in the same period with Newton probably developing his ideas first but Leibniz being the first in print. This situation led to what is probably the most notorious priority dispute in the whole of the history of mathematics and science. What makes Stewart’s statement even more piquant is that he attributes the discovery to Newton but his equation for the first derivative is written in Leibniz’ notations. Of course there is an about two thousand year long history to the development of the calculus that I outlined in an earlier post, so I won’t repeat it now. I will however point out that the h-method to determine the first derivative is not from either Newton or Leibniz but Pierre Fermat.

Newton gets a second bite of the cherry, this time, with the equation for gravity. I’ve lost count of the number of time that I’ve pointed out that the basics of the law of gravity, the inverse square relationship, does not originate with Newton. A very quick rundown.

The first to suggest that the planets were kept in their courses by a force was Kepler who suggested a directly proportional relationship based on Gilbert’s investigations of the magnet. Borelli also speculated on forces driving the planets in his Theoricae Mediceorum Planetarum ex Causius Physicus Deductae published in 1666 and known to Newton. The first to suggest an inverse square relationship was Ismael Boulliau, a story that I’ve already told here, although I there claim erroneously that Newton admits his knowledge of Boulliau’s priority in Principia, he doesn’t, it’s in the letters he exchanged with Halley in his dispute with Hooke. In the middle of the seventeenth century Wren, Halley, Hooke and Newton all independently came to the conclusion that the force governing the planetary orbits was probably inversely proportional to the square of the distance, i.e. the law of gravity. Newton’s achievement was to show that this law was equivalent to Kepler’s third law of planetary motion and that it also allowed the deduction of Kepler’s first two laws.

Stewart’s fifth equation is his simplest i = √-1, which he attributes to Euler. Now whilst it is probably true that Euler introduced the letter “i” as the symbol for the square root of minus one, by the time he did so mathematicians had been playing with and cursing the concept for a couple of hundred years.

The first person to consciously use imaginary or complex numbers was the sixteenth century polymath Girolamo Cardano in his Ars magna, the first systematic study of the solution of polynomials published by Petreius in Nürnberg in 1545. Cardano solved cubic equation in which during the solution so-called conjugate pairs of complex numbers turned up, which when multiplied together lost their imaginary parts thus delivering real solutions. (Conjugate pairs of complex numbers are ones of the form a + b√-c and a – b√-c which when multiplied together become a2 +b2c.) Cardano thought the complex numbers were nonsensical but the solutions worked so he left them in.

Later in the century the Italian mathematician Rafael Bombelli worked quite rationally with complex numbers developing the rule for their manipulation in his Algebra published in 1572. If any one name should be attached to this equation then it’s Bombelli’s.

bombelli

Of course not everybody was as happy with these very strange entities as Bombelli and it was Descartes who gave them the name imaginary in 1637. It was intended to be derogatory. Euler did much to develop the theory of complex numbers in the eighteenth century but it was first the development, independently by three mathematicians, Caspar Wessel in 1799, Jean-Robert Argand in 1806 and of course Gauss, of the geometrical interpretation of complex numbers that they became finally universally accepted.

Having ploughed your way through the historical thickets of this post some of you might be thinking that I’m just nit picking, but there is a deeper point that I’m trying to make. It is very rare in the history of mathematics or science that a theorem, theory, invention, discovery, idea, concept or hypothesis emerges in its final form, like Athena born fully armed from Zeus’ forehead. Almost always there is an, often long, period of evolution involving many thinkers and often taking long and devious routes. Very often they occur as multiple discoveries with more than one progenitor, frequently leading to priority disputes. The idea of a simple list of discoveries with one date and one name whilst superficially attractive leads inevitably to a false concept of the evolution of science and of scientific methodology. Let us get away from such lists and let students of science and mathematics really learn just how messy, complex and, I think, fascinating the histories of their disciplines really are.

10 Comments

Filed under History of Mathematics, Myths of Science

Did Edmond tells Robert to, “sling his hooke!”?

The circumstances surrounding the genesis and publication of Newton’s magnum opus, Philosophiæ Naturalis Principia Mathematica, and the priority dispute concerning the origins of the concept of universal gravity are amongst the best documented in the history of science. Two of the main protagonists wrote down their version of the story in a series of letters that they exchanged, as the whole nasty affair was taking place. Their explanations are of necessity biased and unfortunately we don’t have equivalent written evidence from the third protagonist Robert Hooke, although we do have the earlier exchange of letters between Hooke and Newton that led Hooke to making his claims to being the author of the idea. All of this is documented, analysed and discussed in detail by Richard S. Westfall in his authoritative biography of Newton, Never at Rest. Lisa Jardine sketches the whole sorry episode in the introduction to her Hooke biography The Curious Life of Robert Hooke: The Man Who Measured London. Beyond this there is a whole raft full of academic papers and monographs on Hooke, Newton, Halley, Principia and the Royal Society that discus the whole or various aspects of the story. Any first year history of science student should be able to write an accurate and informed essay or term paper on this important moment in the history of seventeenth-century scientific publishing. In fact it would make a very useful exercise for such students. The scriptwriters of Cosmos would however get a fat F for their efforts to present the story. Maybe they should have turned to one of those first year students for help?

Thanks to the services of a beautiful fairy princess I was finally able to watch the third episode of the much hyped American television series Cosmos and, as predicted by numerous commentators on Twitter, I was more than underwhelmed by the animation telling the story of the publication of Principia Mathematica and its significance in the history of science.

Our tale starts with an introductions to the hero of the day, Edmond Halley, an interesting choice of which I actually approve but the first error come up with the tale of the young Halley’s journey to St Helena to map the southern skies. We get told that this is the first such map. This is simply not true Dutch seamen had already started mapping the southern hemisphere at the end of the sixteenth-century. Halley’s government sponsored voyage was the English attempt to catch up. Having established Halley as a scientific hero we get presented with Robert Hooke who is to play the villain of the piece.

At the beginning we get a very positive portrait of Hooke outlining the very wide range of his scientific activities. Unfortunately this presentation is spoilt by a series of bad history of science blunders. Introducing Hooke’s microscopic investigations we get told that Hooke invented the compound microscope. Given that compound microscopes were in use twenty years before Hooke was born, I hardly think so. We then get told that Hooke improved the telescope. Whilst it is true that Hooke proposed several schemes to improve the telescope, some of them positively Heath-Robinson, none of them really proved practical and there are no real improvements to the telescope that can be laid at Hooke’s door. Next up we are informed that Hooke perfected the air pump. Hooke did indeed construct the air pump that he and Robert Boyle used for their experiments, their model was in fact ‘perfected’, although improved would be a better term as it was anything but perfect, by Denis Papin.

Moving on, we are introduced to the London coffee houses, without doubt centres of scientific communication in the late seventeenth- and early eighteenth-centuries. However Tyson claims them to be laboratories of democracy. Sorry but all I can say to this piece of hogwash is bullshit. We come to the coffee house because of a legendary conversation between Halley, Hooke and Christopher Wren that took place in one of them in January 1684, concerning the law of gravity. This conversation is indisputably a key moment in the history of science and that is the reason why it is featured in this episode of Cosmos. Given this one would expect that the scriptwriters would get the story right, however ones expectations would be dashed. According to Cosmos the three speculated as to whether there was a mathematical law governing celestial motion and then Newton, to whom I will come in a minute, produced the inverse squared law of gravity like a conjuror pulling his rabbit out of his hat. In fact all three participants were aware of speculations concerning an inverse squared law of gravity and Hooke claimed that he could deduce the motions of the heavens from it. Wren doubted this claim and offered a prize for the first to do so. Hooke persisted that he already had the solution but would first reveal it when the others had admitted defeat.

Cosmos has Halley, unable to solve the problem rushing off the Cambridge to ask Newton if he could solve it. In fact Halley being in Cambridge in August of the same year met Newton and in the course of their conversation asked Newton, “what he thought the Curve would be that would be described by the Planets supposing the force of attraction towards the Sun to be reciprocal to the square of their distance from it, Sr Isaac replied immediately that it would be an Ellipsis…”[1] The description of Newton given by Cosmos introducing this fateful meeting also owes more to fantasy than reality. We get told that Newton went to pieces over his dispute with Hooke concerning his theory of light, that he had become a recluse and that he was in hiding in Cambridge. Although Newton declined to have anything more to do with the Royal Society following the numerous disputes, not just with Hooke, following the publication of his theory of light in 1672 he certainly did not go to pieces, giving as good as he got and he was not hiding in Cambridge but working there as Lucasian Professor of Mathematics. Also far from being a recluse he was corresponding with a wide range of other scholars, including Hooke with whom he had sealed an uneasy truce. Blatant misrepresentations might be all right in a historical novel but not in a supposedly serious television documentary claiming to present history of science.

We now move on to the writings that Newton’s meeting with Halley provoked. First we get shown Du motu corporum in gyrum (On the Motion of Bodies in Orbit) a nine page pamphlet demonstrating the truth of Newton’s statement and quite a lot more, although Tyson doesn’t think it necessary to give us either the title or a description of the contents calling it instead, “the opening pages of modern science”, a truly crap statement. If De motu represents the opening pages of modern science what was all the stuff that Kepler, Stevin, Galileo, Pascal, Descartes, Mersenne, Huygens et al. did? Most of it before Newton was even born! There is worse to come.  In the Cosmos version of the story Halley now urges Newton to turn De motu into a book, in reality Halley wanted to enter De motu officially in the Royal Society’s register “to secure his [Newton’s] invention to himself” and it was Newton who insisted on rewriting it. It was this rewritten version that became Principia Mathematica. When almost complete the council of the Royal Society agreed that it should be published by the Society. At this point the proverbial shit hit the fan. As related in Cosmos, Hooke raised a claim to the theory of gravity and demanded that Newton give him credit for it in his book. Newton’s prickly response was to threaten to withhold volume three of the Principia, which is actually the part in which he applies his theories of motion and the law of gravity to the celestial motions i.e. the heart of the whole thing. Tyson now said, “The scientific revolution hung in the balance”! I said worse was to come.

According to convention wisdom the scientific revolution began in 1543 with the publication of Copernicus’ De revolutionibus. I’m a gradualist who doesn’t accept the term scientific revolution and for me the evolution of modern science begins around fourteen hundred although it builds on earlier medieval science. For most historians Newton’s Principia is the culmination not the beginning of the scientific revolution. It was even fashionable for a time to play down Newton’s achievement claiming that he only synthesised the result won by his predecessors. However it is now acknowledged that that synthesis was pretty awesome. However let us play a little bit of what if. If Newton had only published the first two volumes of Principia I doubt that it would have been very long before somebody applied the abstract results derived in volume one to the solar system and completed what Newton had begun. Put another way nothing hung in the balance.

In fact Halley was able to mollify Newton and the letters that the two of them exchanged at this time are the main historical source for the whole story. Cosmos paints Hooke as an unmitigated villain at this point in the story, which is again a distortion of the true facts. Hooke had indeed suggested, in print, a universal theory of gravity based on the inverse squared law and the letters he exchanged with Newton, during the uneasy truce mention above, had played a significant role in pushing Newton towards his own theories of motion and gravity. Hooke’s claim was not totally unfounded. It is true, however, that his claim was exaggerated because he did not possess the mathematical skills to turn those hypotheses into the formal mathematical structure that is the glory that is Newton’s Principia. There was blame on both sides and not just on Hooke’s. Cosmos now introduces a strange scene in which Wren and Halley meet up with Hooke and confront him on the gravity priority issues, Halley even telling Hooke to “put up or shut up”! Numerous people on Twitter commented on this sound bite, most of them betting that Halley never said it. Not only did Halley never say it, the whole scene is a product of the scriptwriter’s fantasy; in reality it never took place. Remember this is supposed to be history of science and not historical fiction.

With then get treated to the infamous History of Fish episode. In 1685 the Society had published Francis Willughby’s De historia piscium, which had been finished and edited posthumously by John Ray. The book having many lavish illustrations was costly and sold badly putting a serious strain on the Society’s, in the seventeenth-century always dodgy, finances leaving no money to fulfil the commitment to publish Newton’s Principia. This is a well-known and oft repeated story and mostly told at the cost of Willughby and his book. Cosmos did not deviate from this unfortunate pattern telling the story in a heavy handed mocking style. For the record Willughby’s book is an important publication in the history of natural history and deserves better than the treatment it got here.

Before we leave Newton and his masterwork we get presented with yet another historical clangour of mindboggling dimensions. Tyson informs us in his authoritative manner that Principia also contains Newton’s invention of the calculus. Given the amount of printer’s ink that had been used up in the academic discussion as to why Newton wrote the Principia in Euclidian geometry and not calculus this is an unforgivable gaff. I repeat for those who have not been paying attention there is no calculus in Newton’s Principia.

We now leave Newton and turn our attention to his sidekick Edmond Halley. We get a brief presentation of some of the non-astronomical aspects of the good Edmond’s life, which also contain several minor historical errors that I can’t be bothered to deal with here, before turning to the central theme of the programme, comets. There is however one major astronomical subject that I cannot ignore, the Transit of Venus. It was not, as claimed, Halley who first proposed using the Transit of Venus to determine the astronomical unit, the distance of the sun from the earth, but James Gregory in his Optica Promota published in 1663. We then get presented with the rather strange spectacle of James Cook sailing off to Tahiti in 1769 to observe the Transit. This is strange not because it’s wrong, it isn’t, Cook did indeed observe the Transit on Tahiti in 1769 but because the programme created the impression that he was the first and only person to do so. In reality Cook’s expedition was only one of many international expeditions that took place in 1769 for this purpose also there had been almost as many expeditions that had set out for the same purpose in 1761. We do not owe our knowledge of the size of the astronomical unit to some sort of solo heroic efforts of Cook in 1769 as implied by Cosmos.

The opening section of the episode was actually very well scripted with a sympathetic and understanding explanation as to how humanity came to view comets as harbingers of doom. Unfortunately this good beginning was ruined by the claim that was repeated several times throughout the script that it was Newton and Halley who were the first to view comets as astronomical objects and thus free humanity from its superstitious fear. This is just plain wrong.

In the Early Modern Period Paolo dal Pozzo Toscannelli was the first to make astronomical observations, as opposed to superstitious wonderings, of two comets in 1433 and 1456. He did not publish those observations but he did befriend Georg Peuerbach on his study journey through Renaissance Italy. Peuerbach and his pupil Regiomontanus made similar observations in Vienna in the middle of the fifteenth-century and Regiomontanus wrote an important text on the mathematical problem of measuring the parallax of a moving comet, which wasn’t published in his own lifetime.

In the 1530s several European astronomers carried out astronomical observations of a series of spectacular comets. This period led to Johannes Schöner publishing Regiomontanus’ comet text. Peter Apian published a pamphlet on his observations describing, what is incorrectly known as Apian’s Law because it was already long known to the Chinese, that the comet’s tail always points away from the sun. This series of comets and the observations of them led to an intense scientific discussion amongst European astronomers as to the physical nature of comets and their position in the heavens, above or below the moon, sub- or supra-lunar? Fracastoro, Frisius, Cardano, Jean Pena and Copernicus took part in this discussion.

In 1577 astronomers throughout Europe again observed a spectacular comet to test the theories proposed by those who had taken part in the 1530s discussions. Famously Tycho Brahe and Michael Maestlin, amongst others, determined that this comet was definitely supra-lunar. In the same period Brahe and John Dee corresponded on the subject of Regiomontanus’ comet text, the determination of cometary parallax.

Cometary observation again hit a high point in astronomical circles in 1618. The comets of this year famously led to the dispute between Galileo and the Jesuit astronomer Orazio Grassi that culminated in Galileo’s Il Saggiatore, one of the most often quoted scientific publications of all times. They also saw the publication of a much more low-key text, Kepler’s book on comets published in 1619. Kepler summarised in his work all of the astronomical knowledge on comets that had been gained in the Early Modern Period, concluding himself that comets are supralunar and travel in straight lines. Ironical someone else had suggested that comets follow Keplerian elliptical orbits eight years earlier. Thomas Harriot and his pupil William Lower had observed the comet of 1607, Halley’s comet, and were amongst the first to read Kepler’s Astronomia nova when it appeared in 1609 and to become convinced Keplerians. In a letter to Harriot, Lower suggested that comets, like the planets, have elliptical orbits. Lower’s suggestion did not become generally known until the nineteenth century but it shows that the discussion on the flight path of comets was already in full swing at the beginning of the seventeenth-century.

With the comets of the 1660’s the debate on the nature of comets and their flight paths again broke out amongst the astronomers of Europe with Kepler’s comet book at the centre of the debate, so when Newton and Halley entered the fray in the 1680s they were not initiating anything, as claimed by Cosmos, but joining a discussion that had been going on for more than two hundred years. A final omission in the Cosmos account concerns another man with whom both Halley and Newton would become embroiled in bitter disputes, the Astronomer Royal John Flamsteed. The early 1680s saw a series of spectacular comets that Flamsteed observed from Greenwich and Halley from Paris.  Flamsteed concluded that two of these were in fact one and the same comet first observed on its way to the sun and then again on its way away from the sun having passed behind it. He reported this theory to Newton who at first rejected it but then on further consideration accepted and adopted it, making comets a central theme for his research for the Principia, utilising Halley as his assistant for this work. That comets follow flight paths described by the various conic sections depending on their velocities, some of them elliptical, under the influence of the law of gravity is a central element of volume three of Principia and not something first determined by Halley in his 1705 paper as claimed by Cosmos. Halley undertook his research into the historical records of comets to see if he could find a reoccurring comet to confirm the theory already presented in Principia, as everybody knows he was spectacularly successful.

Having completely messed up the history of astronomical cometary observation Cosmos closed by returning to the Newton Hooke dogfight. We get told Hooke died in 1703 as a result of his unhealthy habits of doctoring himself with all sorts of substances. Given that Hooke lived to the age of 67, not at all bad for the seventeenth-century I found this to be an unnecessary slander on the poor man. Tyson then went on to say that Newton replaced him as President of the Royal Society. Robert Hooke was an employee of the Royal Society and never its President. Newton in fact followed Lord Somers in this august position. Although hedged with maybes, we then got the old myth of Newton burning Hooke’s portrait dished up once again. On this hoary old myth I recommend this post by good friend Felicity Henderson (@felicityhen) on her Hooke’s London Blog (always well worth reading). Given the vast amount of real history of science that they could have brought I don’t understand why Cosmos insists on repeating myths that were discredited long ago.

The history of science presented in this episode of Cosmos was shoddy, sloppy, badly researched, factually inaccurate and generally of a disgustingly low level. On Twitter the history of science hashtag is #histsci, historian of biology Adam Shapiro (@TryingBiology) suggested that the hashtag for Cosmos history of science should be #HistSigh, I concur.

 

[1] Richard S. Westfall, Never at Rest: A Biography of Isaac Newton, Cambridge Paperback Library, Cambridge University Press, 1983, p. 403. Quoting Abraham DeMoirve’ s account of the meeting as related to him by Newton.

25 Comments

Filed under Early Scientific Publishing, History of Astronomy, History of science, Myths of Science, Renaissance Science

SHOCK! HORROR! OUTRAGE! RELIGION HINDERS PROGRESS OF SCIENCE!

The title is supposed to make you think of a typical article in the Daily Fail, Britain’s most obnoxious representative of the gutter press. It represents one of the dominant reactions by members of the Gnu Model ArmyTM to the Cosmos Bruno AffairTM. According to people such as Jason Rosenhouse and P Z Myer the persecution of such notable scientists as Giordano Bruno and Galileo Galilei by the Catholic Church has definitely hindered the progress of science and for good measure they or their supporters quote the words of wisdom of Über-Guru Neil deGasse Tyson that without religion science would be a thousand years more advanced. What an outrage, truly horrific the Church it seems has a lot to answer for, although I find it rather strange that they can’t dish up more examples than poor old Giordano and that universal symbol of Church oppression Galileo. I’m sure if they re-read their Draper-White they could manage to find some new names to beat the ignorant historians around the head with. I say ignorant historians because it was the historians complaining about the Bruno cartoon on the first episode of Cosmos that has brought out this charge by these stalwart defenders of scientific integrity.

Let us assume for a moment that Rosenhouse-Myer are correct and that the Catholic Church did in fact persecute Bruno and Galileo to block scientific progress does this necessarily mean that they were successful in their dastardly deeds? Did they truly manage to interrupt, slow down, or hinder the adoption, acceptance or acknowledgement of the heliocentric hypothesis or the belief in an infinite universe or the perception that the sun is a star or vice versa? No doubt about it, this is a serious charge and one that should definitely be explicated.

Now Myer and Tyson are both practicing scientists whilst Rosenhouse is a mathematician, all of them work in disciplines that require one, if one makes a substantial claim, to provide the appropriate evidence or proof to support that claim. What is with their claim that religion has blocked the advance of science in general or in the case of Bruno and Galileo the acceptance of modern astronomy and cosmology in particular? Have our scientific practitioners provided the necessary evidence to back up their claims? Do they provide a tightly argued historical thesis based on solid documentary evidence to prove their assertions? Can they demonstrate that if the Church had not intervened modern astronomy would have become accepted much earlier than it was? Given their outspoken support of the ‘scientific method’, whatever that might be, you would expect them to do so, wouldn’t you? Do they hell! They don’t waste one single word on the topic. No evidence, no proofs, no academic arguments just plain straightforward unsubstantiated claims in the style of the gutter press. A pretty poor showing for the defenders of scientific faith.

But could they still be right? Even if they don’t take the trouble to provide the historical discourse necessary to substantiate their claims, could it be true that the Church’s actions against Bruno and Galileo did in fact have a negative influence on the acceptance of heliocentricity and other aspects of modern astronomy and cosmology? Let us examine the historical facts and answer the questions that Rosenhouse-Myer and Tyson are apparently above answering, the truth being apparently so obviously clear that they don’t require answering.

To start with the poor Giordano, Bruno was one of those who advocated Copernicus’ heliocentric astronomy already in the sixteenth-century. He however went beyond Copernicus in a series of cosmological speculations and it is these that Cosmos thought to be so important that they devoted eleven minutes of a forty-five minute broadcast to them. I shall deal with the acceptance of heliocentricity separately later and only address Bruno’s cosmology now. Copernicus himself expressly left the question as to whether the cosmos is finite or infinite, as he said, to the philosophers, with good reason. This question was purely speculative and could not, with the evidence and possibilities available to the Renaissance astronomer, be addressed in anything approaching a scientific manner. To all intents and purposes the cosmos appeared finite and Renaissance scholars had no means available to prove otherwise. Bruno’s speculation was of course not new.

In his own times Nicolas Cusanus had already considered the question and earlier, in the first-century BCE, the Epicurean philosopher poet Lucretius, Bruno’s inspiration, had included it in his scientific poem De rerum natura. Lucretius of course did not invent the concept but was merely repeating the beliefs of the fifth-century BCE Greek atomists. All of this demonstrates that the idea of an infinite cosmos was fairly common at the beginning of the seventeenth century and nothing the Church said or did was likely to stop anybody speculating about it. The thing that prevented anybody from going further than speculation was the lack of the necessary scientific apparatus to investigate the question, a similar situation to that of the string-theorists and multiverse advocates of today.

This does not mean that astronomers did not address the problem of the size of the cosmos and the distance to the stars. Amongst others Galileo, Jeremiah Horrocks, Christiaan Huygens and Isaac Newton all tried to estimate/calculate the distances within the solar system and outward towards the stars. First in the middle of the eighteenth century with the transit of Venus measurements were these efforts rewarded with a minimum of success. It wasn’t until the early nineteenth century that the first stellar distance measurements, through stellar parallax, were achieved. All of these delays were not caused by anything the Church had done but by the necessity of first developing the required scientific theories and apparatus.

Bruno’s next cosmological speculation was that the sun and the stars were one and the same. Once again there was nothing new in this. Anaxagoras had already had the same idea in the fifth-century BCE and John Philoponus in the fifth-century CE. Once again the problem with this speculation was not any form of religious objection but a lack of scientific theory and expertise to test it. This first became available in the nineteenth century with development of spectroscopy. This of course first required the development of the new matter theory throughout the seventeenth and eighteenth centuries, a process that involved an awful lot of science.

Bruno’s last speculation and the one that bothered the Church was the existence of inhabited planets other than the Earth. Again this was nothing new and whatever the Church might have thought about it that speculation generated a lively debate in the seventeenth century that is still going on. We still don’t actually know whether we are alone or not.

Given my knowledge of the history of science I can’t see anywhere, where the Church hindered or even slowed down scientific progress on those things that Bruno speculated about in his cosmological fantasy. But what about heliocentricity, here surely the Church’s persecution of both Bruno and Galileo hindered science bay the hounds of anti-religious rationalism.

What follows is a brief sketch of the acceptance of the heliocentric astronomy hypothesis in the sixteenth and seventeenth centuries. This is a subject I’ve dealt with before in various posts but it doesn’t hurt to repeat the process as there are several important lessons to be learnt here. To begin with there is a common myth that acceptance of ‘correct’ new scientific theories is almost instantaneous. To exaggerate slightly, Einstein published his General Theory of Relativity in 1915 and the world changed overnight or at the latest when Eddington confirmed the bending of light rays conform with general relativity in 1919. In reality the acceptance of the general theory of relativity was still a topic of discussion when I was being educated fifty years later and that despite numerous confirmatory tests. Before it is accepted a major new scientific theory must be examined, questioned, tested, reformed, modified and shown to be superior to all serious alternatives. In the Early Modern Period with communication considerably slower this process was even slower.

Copernicus published his De revolutionibus in 1543 and there were only ten people in the entire world, including Bruno but much more importantly both Kepler and Galileo, who accepted it lock, stock and barrel by 1600. This system had only one real scientific advantage over the geocentric one; it could explain the retrograde movement of the planets. However this was not considered to be very important at the time. There were some relatively low-key religious objection but these did not play any significant role in the very slow initial acceptance of the theory. The problematic objections were observationally empirical and had already been discussed by Ptolemaeus in his Syntaxis Mathematiké in the second-century CE. Put very simple if the world is spinning very fast and hurtling through space at an alarming speed why don’t we get blown away? Copernicus had the correct answer to this problem when he suggested that the atmosphere was carried round with the earth in the form of a bubble so to speak. Unfortunately he lacked the physics to explain and justify such a claim. It would take most of the seventeenth century and the combined scientific efforts of Kepler, Galileo, Stevin, Borelli, Descartes, Pascal, Huygens, Newton and a whole boatload of lesser lights to create the necessary physics to explain how gravity holds the atmosphere in place whilst the earth is moving.  This process was not hindered by the Church in anyway whatsoever.

There was a second level of acceptance of Copernicus theory, an instrumental one, as a mathematical model to deliver astronomical data for various applications, astrology, cartography, navigations etc. Here the system based on the same inaccurate data as the Ptolemaic one did not fair particularly well. Disgusted by the inaccuracy of both systems Tycho Brahe started a new long-term observational programme to obtain new accurate data. Whilst doing so he developed a third model, the so-called geo-heliocentric model, in which the planets orbited the sun, which in turn orbited the stationary earth. This model had the advantage of explaining retrograde motion without setting the earth in motions, a win-win situation.

The first major development came with the invention of the telescope in 1608 and its application to astronomical observation from 1609 onwards. The first telescopic discoveries did not provide any proofs for either the Copernican or the Tychonic models but did refute both the Aristotelian homocentric model and the Ptolemaic model. Around the same time a new candidate, the Keplerian elliptical astronomy, entered the ring with the publications of Kepler’s Astronomia nova in 1609. For a full list of the plethora of possible astronomical models at the beginning of the seventeenth century see this earlier post.

By 1620 the leading candidate was a Tychonic model with diurnal rotation. It should be pointed out that due to the attempts of Galileo and Foscarini to reinterpret Holy Scripture in favour of heliocentricity the Catholic Church had entered the action in 1615 and forbidden the heliocentric theory but not the heliocentric hypothesis. The distinction is important. The theory says heliocentricity is a scientific fact the hypothesis says it’s a possibility. At this time heliocentricity was in fact an unproved hypothesis and not a theory. This is the point where Rosenhouse-Myers step in and claim that the Church hindered scientific progress but did they. The straightforward answer is no. The astronomers and physicist carried on looking for answers to the open questions and solutions to the existing problems. There is no evidence whatsoever of a slowing down or interruption in their research efforts.

Between 1618 and 1621 Kepler published his Epitome astronomiae Copernicanae explaining his elliptical astronomy and his three laws of planetary motion in simple terms and in 1627 the Tabulae Rudolphinae the astronomical tables based on his system and Tycho’s new accurate data. It was these two publications that would lead to the general acceptance of heliocentricity by those able to judge by around 1660. Kepler’s publications delivered the desired accurate prognoses of planetary positions, eclipses etc. required by astrologers, cartographers, navigators etc.

At no point in the 120 years between the initial publication of Copernicus’ De revolutionibus and the general acceptance of heliocentricity in the form of Kepler’s elliptical astronomy is there any evidence of the Church having slowed or hindered progress in this historical process. To close it should be pointed out that it would be another seventy years before any solid scientific evidence for the heliocentric hypothesis was found by Bradley, in the form of stellar aberration.

 

 

 

 

24 Comments

Filed under History of Astronomy, History of science, Myths of Science, Uncategorized

Cartoons and Fables – How Cosmos Got the Story of Bruno Wrong

One of the joys of writing this blog is that I have a number of readers/commentators who are more intelligent, more knowledgeable, more erudite and above all more sensible than I. Every now and then I succeed in trapping, blackmailing, bullying or conning one of them into writing a guest post in order to give you the readers an alternative perspective on the world of the history of science and the chance to read something of quality. This time I have succeeded in acquiring the literary services of Tim O’Neill, historian and inexhaustible warrior against the misuse and abuse of the history of science. In his post Tim adds his tuppence worth to the debate raging far and wide about the Bruno cartoon in the first edition of the Cosmos reboot. Enjoy! 

A few months ago while visiting Rome I did something a tourist should not do in a strange city – I took a short cut.  Walking back from the Forum to my apartment over the Tiber, I should have taken the obvious route down the Corso Vittorio Emanuele II toward the Castel  Saint ‘Angelo, but I decided I knew where I was going, so I took a more direct path through some back streets and soon became completely lost.  After winding my way through a maze of smaller laneways trying to find a major road I saw a piazza up ahead and so decided to use that to get my bearings.  I stopped under a statue in the middle of the square to get out a map, looked up at the statue and immediately knew where I was.  I realised I was in the Campo de’Fiori, because the statue was the famous monument to Giordano Bruno, raised on the spot where he was burned at the stake in February 1600.

Bruno 2013 Photo: Tim O'Neill

Bruno 2013
Photo: Tim O’Neill

Bruno is the poster boy of the Draper-White Thesis – the idea that science and religion have always been at war and an idea beloved by the New Atheist movement despite the fact it was rejected by actual historians of science about a century ago.  Try to engage in an attempt at intelligent discussion of the real and much more complex and nuanced interrelations between religion and what was to emerge as modern science in the medieval and early modern periods and Bruno is usually brandished as “proof” that the Church was the implacable and ignorant foe of early science.  After all, why else did they burn him for daring to say the earth wasn’t the centre of the universe and that the stars were other suns with planets?  For those who prefer simple slogans and caricatures to the hard work of actually analysing and understanding history, Bruno is a simple answer to a intricate question.  Nuance and complexity are the first casualties in a culture war.

So when I saw the first preview clips of the revamped version of Carl Sagan’s Cosmos, this time presented by Sagan’s genial protégé Neil deGrasse Tyson, and noticed an animated sequence of someone being menaced by Inquisitors and burned at the stake, I knew that the revived Cosmos was going to be presenting some bungled history.  This was also following in Sagan’s footsteps, I suppose, since in the original series he veered off into a mangled version of the story of Hypatia of Alexandria that fixed the false idea of her as a martyr for science in the minds of a generation, as I’ve discussed elsewhere.

So when the first instalment of the new series – Cosmos: A Spacetime Odyssey -  went to air last week, at its heart was an eleven minute version of the Bruno myth.  I often refer to the simplistic moral fable that people mistake for the history of the relationship between the Church and early science as “the cartoon version”, because it’s oversimplified, two-dimensional and reduced to a black and while caricature.  But in this case it really is a cartoon version – the sequence was animated, with the voice of Bruno provided by the series’ Executive Producer, Seth MacFarlane, of Family Guy fame, which seems to be why Bruno has an Italian accent of a kind usually heard in ads for pizza or pasta sauce.

The clichés didn’t end with the silly accents.  In the weirdly distorted version of the story the program tells, Bruno is depicted as an earnest young friar in Naples who was a true seeker after truth.  But DeGrasse Tyson assures us that he “dared to read the books banned by the Church and that was his undoing.”   We then get a sequence of Bruno reading  a copy of Lucretius’ On the Nature of Things which he has hidden under the floorboards of his cell.  The first problem here is that Lucretius’ work was not “banned by the Church” at all and no-one needed to hide it under their floor.  Poggio Bracciolini had published a printed edition of the book a century before Bruno was born and it had never been banned when the medieval manuscripts Bracciolini worked from had been copied nor was it banned once his edition made it widely available.  The idea that the Church banned and/or tried to destroy Lucretius’ work is a myth that Christopher Hitchens liked to repeat and which has been given a lease of popular life via Stephen Greenblatt’s appalling pseudo historical work The Swerve, which somehow won a Pulitzer Prize despite being a pastiche of howlers.

The DeGrasse Tyson cartoon goes on to depict Bruno having his mind opened to the idea of an infinite universe by Lucretius’ book but then being kicked out of his friary by a mob of Disney villain-style Church types who turn up unexpectedly like Monty Python’s Spanish Inquisition.  This, of course, makes for a much better parable than the truth – Lucretius’ work wasn’t “banned by the Church” and Bruno actually ran away from his religious house and wasn’t thrown out for reading naughty books.

It would also have complicated this simplistic cartoon fable to note where Bruno got his ideas about a vast cosmos where the earth was not the centre, where the stars were other suns, where there was a multiplicity of worlds and where some of these other worlds could even have been inhabited just like ours.  Because this was not something Bruno got from Lucretius nor was it something he dreamed up himself in a vision, as the Cosmos cartoon alleges.  It’s something he drew directly from the man he called “the divine Cusanus” – the fifteenth century natural philosopher and theologian Nicholas of Cusa.

If the writers of the series were actually interested in the real history of the origins of scientific thought, there are many people whose stories would have been far more worthy of telling than Bruno – people who actually were proto-scientists.  The writers of the show, Stephen Soter and Sagan’s widow Ann Druyan, seem to have known enough about Bruno to know they could not present him as a scientist and DeGrasse Tyson’s narration does mention that he was “no scientist” at one point.  But they delicately skim over the fact that the guy was, to our way of thinking, a complete mystical loon.  In his defence of the criticism the Bruno sequence has since attracted Soter notes that several  other early science figures also pursued studies that we find abjectly unscientific, such as Newton’s obsessions with alchemy and apocalyptic calculation.  But the difference is that Newton and Kepler pursued those ideas as well as studies that were based on real empirical science, whereas Bruno’s hermetical mysticism, sacred geometry and garbled and largely invented ancient Egyptian religion were all of his studies – he did no actual science at all.

But if they wanted to be truly accurate they should have detailed or even merely acknowledged Bruno’s debt to Nicholas of Cusa, who expounded on a non-finite cosmos without a centre 109 years before Bruno was even born.  Here is Cusanus on the subject in his book De docta ignorantia :

” The universe has no circumference, for if it had a centre and a circumference there would be some and some thing beyond the world, suppositions which are wholly lacking in truth. Since, therefore, it is impossible that the universe should be enclosed within a corporeal centre and corporeal boundary, it is not within our power to understand the universe, whose centre and circumference are God. And though the universe cannot be infinite, nevertheless it cannot be conceived as finite since there are no limits within which it could be confined.”

That’s the insight that the Bruno cartoon attributes solely to Bruno.  So why not attribute it to “the divine Cusanus”?  Well, that would ruin the whole parable.  Because far from being kicked around by grim-looking Disney villains imprisoned and burned at the stake, Cusanus was revered and actually made a cardinal.  So that doesn’t lend itself very well to a moral fable about free-thinking geniuses being oppressed by dogmatic theocrats.

The cartoon then goes on to depict brave Bruno lecturing at Oxford, with grumpy and aristocratic-sounding scholars there objecting to his espousal of Copernicanism and eventually throwing fruit at him and driving him away.  Again, the reality wasn’t quite as worthy.  There is zero record of any objection to heliocentrism and the problem the Oxford scholars had with Bruno was actually his plagiarism of another scholar’s work.  But, again, that doesn’t lend itself to a fable about a pure and persecuted freethinker.

Throughout the cartoon the idea is that he is afflicted because he supports heliocentrism and the idea of an unbounded cosmos  where the earth is not the centre.  As we’ve seen, the latter idea was not new and not controversial.  By the 1580s Copernicus’ heliocentric hypothesis wasn’t particularly new either, though it was more controversial – virtually no astronomers accepted it because it was recognised as having severe scientific flaws.  The important point to remember here is that at  that stage it was not considered heretical by religious authorities, even though some thought it had some potentially bothersome implications.

Copernicus had not even been the first proto-scientist to explore the idea of a moving  earth.  The medieval scholar Nicholas Oresme had analysed the evidence that supported the idea the earth rotated way back in 1377 and regarded it as at least plausible.  The Church didn’t bat an eyelid.  Copernicus’ calculations and his theory had been in circulation long before his opus was published posthumously and and it had interested several prominent churchmen, including Pope Clement VII, who got Johan Widmanstadt to deliver a public lecture on the theory in the Vatican gardens, which the Pope found fascinating.  Nicholas Cardinal Schoenburg then urged Copernicus to publish his full work, though Copernicus delayed not because of any fear of religious persecution but because of the potential reaction of other mathematicians and astronomers.  Heliocentrism didn’t become a religious hot topic until the beginning of the Galileo affair in 1616, a decade and half after Bruno’s death.

Again, the Cosmos writers seem to be at least vaguely aware of all this and so do some fancy footwork to keep their parable on track.  In the cartoon’s depiction of Bruno’s trial we get the first hint that the Church’s beef with Bruno might actually have been to do with ideas that had zero to do with an infinite cosmos, multiple worlds or any cosmological speculations at all.  So the Disney villain Inquisitor reads out a list of accusations such as “questioning the Holy Trinity and the divinity of Jesus Christ” and a few other purely religious charges.  The depiction gives the impression that these are somehow less important or even trumped up accusations, when in fact these are the actual reasons Bruno was burned at the stake, along with others beside.  As horrific as it is to us, denying the virginity of Mary, saying Jesus was merely a magician and denying Transubstantiation did get you burned in 1600 AD, though only if you refused repeated opportunities to recant.

But the cartoon wants to stick to its parable, so they tack on the final and, we are led to believe, most serious charge – “asserting the existence of other worlds”.  As we’ve already seen, however, this was not actually a problem at all.  Here’s NIcholas of Cusa on these other worlds in the book that inspired many of Bruno’s beliefs:

“Life, as it exists on Earth in the form of men, animals and plants, is to be found, let us suppose in a high form in the solar and stellar regions. Rather than think that so many stars and parts of the heavens are uninhabited and that this earth of ours alone is peopled – and that with beings perhaps of an inferior type – we will suppose that in every region there are inhabitants, differing in nature by rank and all owing their origin to God, who is the center and circumference of all stellar regions …. Of the inhabitants then of worlds other than our own we can know still less having no standards by which to appraise them.”

Again, remember that Cusanus was not burned at the stake, he was revered, praised and made a cardinal.

The only mention of other worlds in the accusations against Bruno specifies that he believed in “a plurality of worlds and their eternity“.  It was that last part that was the problem, not subscribing to an idea that a prince of the Church had espoused a century earlier.

The cartoon concludes with DeGrasse Tyson’s caveats about Bruno being “no scientist” and his ideas being no more than a “lucky guess”.  Some commenters seem to think that this somehow absolves the whole sequence of its distortions and that it means the show depicts Bruno only as a martyr to free thought and a lesson on the dangers of dogmatism.  But the problem with the cartoon is that it makes up a silly pastiche of real history, fantasy and oversimplified nonsense to achieve this aim.  The real story of Cusanus would actually have been a much more interesting one to tell and wouldn’t have had the Draper-White inspired baggage of the Bruno myths.  But the whole sequence seems to have had an agenda and a burned heretic story served that agenda’s purpose in a way that a revered and untrammelled medieval cardinal’s story would not have.

The objective here was to make a point about free thought and dogmatism in the context of the culture wars in the US about Creationism.  That Bruno was a believer in God was an idea that was repeated several times in the cartoon, even though he was actually more of a pantheist than anything.  But he is depicted as an open-minded and unconstrained believer who is oppressed and finally killed by the forces of dogmatic literalism.  The cartoon Bruno’s cry to the fruit-throwing Oxford scholars  – “Your God is too small!” – is actually the point of the whole parable.  This entire sequence was aimed at the dogmatic literalists in the American culture war while still trying to appeal to believers, given the majority of the show’s American audience would have been theists.  That’s the framework of this fable and the writers chopped up bits of the actual historical Bruno story and then clumsily forced them into this modern message.

This sequence wasn’t history or anything remotely like it – it was politics, pure and simple.

Which brings me back to my encounter with the statue in the Campo de’Fiori.  The statue was created by Ettore Ferrari and erected in 1889 in the wake of the unification of Italy in the face of Church opposition.  The monument, raised by members of the Grande Orient d’Italia Masonic order, was a deliberate political symbol of anti-clericalism.  Atheists and free thinkers revere it to this day and commemorate Bruno’s execution on Febrary 17 each year.

Of course, anyone who points out that Bruno is a rather ridiculous icon for atheists, given his kooky mystical views and magical practices is usually ignored.  And anyone who has the temerity to point out that he was executed for purely religious ideas and not any speculation about multiple worlds or a non-finite cosmos is usually (bizarrely) told they are somehow justifying his horrific execution.  As I’ve often noted, for people who call themselves rationalists, many of my fellow atheists can be less than rational.  Unfortunately, Neil deGrasse Tyson, Ann Druyan, Steven Soter and Seth MacFarlane’s silly Bruno cartoon will definitely not help in that regard.

74 Comments

Filed under History of Astronomy, Myths of Science, Renaissance Science

A strange defence

This week saw the broadcast of the first episode of the remake of the legendary television series COSMOS, originally hosted by Carl Sagan and now being presented by Neil deGasse Tyson. Although I have now had the chance to view it thanks to the good offices of the man for all things Darwinian, Michael Barton (@darwinsbulldog), I’m not going to blog about it as Tim O’Neill, Renaissance Mathematicus reader and commentator, and fellow invincible warrior in the struggle against bad history of science,  is writing a guest post on the subject, which if all goes well will appear here on next Monday. However this post is directly concerned with one part of the show.

The centrepiece of the episode was an anime style carton on the life and thoughts of infamous Renaissance heretic Giordano Bruno. This immediately led to a raising chorus of voices on Twitter wondering what my views on this would be. Having in the mean time seen it I labelled it on Twitter an “Anime Draper-White for the Twenty-First Century”. For anybody who doesn’t know John William Draper (1811 – 1882) and Andrew Dickson White (1832 – 1918) are the two nineteenth century American academics who created the myth of a war (their term) between science and religion. A myth still unfortunately believed in by many a gnu atheist.  I’m not going to say anything more about this unfortunate piece of animated bollocks, as I’m sure that Tim will comment extensively in his guest post.

However the rest of the Intertubes has not remained silent on the issue and I can recommend the eminently sensible post on the subject by Meg Rosenburg (@trueanomalies) and the wonderfully provocative post by Becky Ferreira (@beckyferreira) “What ‘cosmos’ got wrong about Giordano Bruno, the heretic scientist, which contains the absolutely brilliant description of Bruno: “Bruno was a walking, talking shit storm, with a black belt in burning bridges”.  How I wish that I had coined that sentence!

The debate continued at Discovery Magazine with a blog post by Cory S. Powell, “Did “Cosmos” pick the wrong hero?”, in which Powell suggests that Thomas Digges would have made a better subject for the cartoon than Bruno. Personally I side with Meg Rosenburg who asks whether we need any heroes at all when discussing the history of science; a rhetorical question to which the answer is no.

Powell’s post finally provoked a response from the makers of “Cosmos” in the form of a post by Steven Soter, astrophysicist and co-writer of “Cosmos”, titled The Cosmos of Giordano Bruno (now with added response from Powell) and it is to this post that I now wish to reply, as it contains a number of very questionable statements.

In his second paragraph Soter writes the following:

Powell’s critique dwells on the well-known facts that Bruno was a mystic and an extremely difficult person. Well, so was Isaac Newton, who devoted as much time to alchemy and biblical numerology as to physics. But that has no bearing whatever on his good ideas.

I could write a whole post just about this one paragraph. First off Soter is putting Bruno a man who had one half correct cosmological idea during an intoxicating religious fantasy, that makes you wonder if he’d been hitting the magic mushrooms, with Isaac Newton who produced some of the most important new mathematics, astronomy, and mathematical physics in the history of mankind. That’s one hell of a lopsided analogy Mr Soter! Secondly as anybody knows, who is up to date on his Newton research, or who has simply read some of my blog posts on the man, Newton’s theology and his alchemy did have a massive bearing on his ‘good ideas’.

Soter then corrects Powell as to who first claimed that the universe was infinite, which to be fair Powell got wrong, although neither of them remarks that Lucretius, Bruno’s source, didn’t think of this himself but actually got the idea from the Greek atomists.

We now come to the core of the matter and the reason why Soter et al claim to have included the Bruno cartoon in their show:

Bruno’s originality lies elsewhere. He was indisputably the first person to grasp that the Sun is a star and the stars are other suns with their own planets. That is arguably the greatest idea in the history of astronomy. Before Bruno, none of the other Copernicans ever imagined it.

Leaving aside the hyperbole about ‘the greatest idea in the history of astronomy’, as he says the question is highly debateable, this paragraph still has several issues. Firstly the Greek philosopher Anaxagoras had already suggested that the sun and the stars were one and the same in the fifth century BCE, although he didn’t hypothesise the presence of other planets. Secondly if this was the real reason for including the Bruno cartoon in this episode, why was the main emphasis of the cartoon placed on the Church’s treatment of Bruno as a heretic even to the extent of presenting the Church officials as demons with red glowing eyes, I smell a rat.

If you think I’m misinterpreting the message of the cartoon I offer this comment from Meg Roserburg’s post, Albeit says:

No offense, but I think you’re missing the point here. The moral of the story, as stated in Cosmos, is: don’t let your beliefs stand in the path of reality. Bruno’s necessarily oversimplified story is just a warning about anti-science and dogmatic thinking.

Throughout the Internet you can find similar interpretations, so either the message of the cartoon was other than claimed by Soter or they really made a balls up of scripting it.

Soter than attacks Powell’s suggestion that Thomas Digges should have been featured rather than Bruno, after all he did suggest that the universe is infinite before Bruno. Soter’s argument is a little strange he writes:

But Digges regarded the stars as “the court of the celestial angels” not as the suns of other material earths. And that was a big step backwards. In contrast, Bruno wrote, “the composition of our own stars and world is the same as that as many other stars and worlds as we can see.” His profound intuition had to wait three centuries to be verified by the spectroscope.

First off Digges’ claim that the stars were the court of the celestial angels is just bog standard medieval cosmology, so in that sense is not a step backwards. Secondly Digges wrote and published earlier than Bruno, so in that sense it is also not a step backwards.

That the composition of everything in the cosmos was the same is neither new nor original to Bruno. The Stoics had believed this in antiquity and there had been a major revival in Stoic scientific philosophy in the sixteenth century making Bruno considerably less original on this count than Soter would like to see him.

Soter is also guilty here of quote mining, selecting those parts of Bruno’s fantasy that fit with our modern concepts and quietly ignoring those that don’t. This is a form of presentism known as searching for predecessors. One takes an accepted scientific idea and filters through history to see if somebody had the same idea earlier, then crying eureka and declaring the discovered thinker to be a genius ahead of his or her times. This activity can best be observed in popular histories of atomism where everybody who ever believed that matter consists of some sort of particles are all swept up into one glorious heap and declared to be predecessors of John Dalton. In Bruno’s case one has to ignore the rather inconvenient fact that he thought that the whole of space was filled with identical solar systems placed throughout space at equal intervals, a conception that doesn’t quite fit with our actually understanding of the universe.

Soter now attacks Powell for saying that neither Kepler nor Galileo thought much of Bruno. Soter mocks and ridicules Kepler for believing in a finite universe.  This is ironic given that Soter thinks it is irrelevant that Bruno produced fifty tons of shit including rejecting the use of mathematics in science because he produced one tiny little diamond of thought.

Soter then quote mines again making Kepler to a supporter of Bruno. He correctly quotes a passage from Kepler’s Dissertatio cum Nuncio Sidereo (1610) his response to Galileo’s telescopic discoveries.

What other conclusion shall we draw from this difference, Galileo, than that the fixed stars generate their lights from within, whereas the planets, being opaque, are illuminated from without; that is, to use Bruno’s terms, the former are suns, the latter, moons or planets?

Here Kepler is referring to the difference in the images of planets and stars when viewed through the new invention the telescope. Kepler would here be appearing to support Bruno’s theory and that is the impression that Soter wisher the reader to have but this is actually an illusion. Kepler says let us use Bruno’s term, he doesn’t say let us adopt Bruno’s theory. You might think I’m splitting hairs and that by adopting Bruno’s term Kepler is of course adopting Bruno’s theory but this is very definitely not the case. How can I be so sure? Because Kepler himself tells us so, he does so by evoking what is now known as Olbers’ paradox.  Kepler argues, as did Heinrich Olbers, a German astronomer, in the nineteenth century, that if the heavens were filled with an infinity of suns equally distributed in all direction, as Bruno claimed, then there would never be a night, these suns lighting up the skies twenty-four hours a day. His, incorrect but rational solution, to the paradox was that the Sun and the stars are fundamentally different and thus Bruno was wrong. Far from being a tacit supporter of Bruno’s hypothesis, as Soter would have us believe, Kepler actually refuted it with a good solid, if incorrect, scientific argument. A further irony in this situation is that Kepler was not the first to realise that an infinity of suns would lead to Olbers’ paradox, thus seeming to invalidate Bruno’s hypothesis, Thomas Digges, who hypothesised an infinity of stars before Bruno, also explicitly recognised the problem.

Having abused Kepler Soter now moves on to Galileo accusing him of plagiarism and cowardice, in the process again making a false claim:

Galileo never once mentioned Bruno’s name. Of course in the land of the Inquisition he had good reasons. But in his “Dialogue on the Two Chief World Systems” (the book that got him into deep trouble), he discretely accepted Bruno’s greatest idea, writing that the fixed stars are other suns.

Don’t let anybody tell you that being a pedantic history of science blogger is an easy life. Although I possess two different translations of Galileo’s magnum opus I don’t know it off by heart and was not aware of Galileo “discretely accepting Bruno’s greatest idea”, so I spent about four hours yesterday evening going through every single reference to star, stars or sun listed in the index to the Drake translation comparing with the Finocchiaro translation and searching for further information in five volumes of secondary literature. The only consolation for all of this effort was that I found the passage to which Soter is probably referring. On The Second Day in a discussion on the movement of the heavenly bodies Salviati makes the following observation:

Now behold how nature, favoring our needs and wishes, presents us with two striking conditions no less different than motion and rest; they are lightness and darkness – that is, being brilliant by nature or being obscure and totally lacking in light. Therefore bodies shining with internal and external splendour are very different in nature from bodies deprived of all light. Now the earth is deprived of light; more splendid in itself is the sun, and the fixed stars are no less so. The six moving planets entirely lack light, like the earth; therefore their essence resembles the earth and differs from the sun and the fixed stars: Hence the earth moves and the sun and the stellar sphere are motionless.

This passage is, like the Kepler quote above, very clearly based on Galileo’s telescopic observations of the stars and planet and their respective telescopic images and is not borrowed from Bruno. It is also clear that here Galileo is only referring to the stars and the sun both being self-illuminating, his discussion only treats of one attribute, lightness or darkness, but he doesn’t take the next step of saying that therefore they are the same. He might possibly have thought so but then again he might not. It is also clear here that with his reference to the stellar sphere Galileo s still accepting a traditional bounded finite cosmos.

I now turn to the implicit argument that Galileo didn’t reference Bruno because of the Inquisition, either through caution or, as I provocatively said above, through cowardice. This argument is not unique to Soter but has been used by numerous commentators in the Internet in the last few days. In the Roman Inquisition had, like the FBI, had a Most Wanted list, then during the first part of Galileo’s life Numero Uno on that list would have, without any doubt, been the Servite monk Paolo Sarpi (1552 – 1623).  To quote John Heilbron’s Galileo biography, “…the Servite Sarpi, would present the Vatican with a graver threat than Bruno”. During his years in the Republic of Venice, as professor of mathematics at the University of Padua, Galileo’s best mate and intellectual sparing partner was Sarpi, a fact that was publically well known. Unlike Bruno, who they regarded as a nuisance, the Venetian authorities, who were very proud of their intellectual rebel, Sarpi, who was Venetian born and bred, refused to deliver him to the Roman Inquisitions. Making him even more of a thorn in the side of the Church. Galileo’s close friendship to Sarpi was far more dangerous to his relations with the Church than any casual scientific reference to Bruno would have been. Galileo did not quote Bruno because he didn’t want to, not because he was scared of the Inquisition.

It is worth noting in this context that when Galileo applied for and was granted the position of court philosophicus and mathematicus to the Medici in Florence his Sarpian friends in Venice warned him against leaving the comparatively safe haven of thr Republic, where he was free to think and say almost anything he liked, for the shark infested waters of court intrigue and religious orthodoxy of Florence and Rome. However fame, fortune and social status were more important to Galileo than freedom of thought and speech so he ignored his friends’ warnings with the well known historical consequences.

To close this already over long post I would like to address a historiographical point related to Soter’s deification of Bruno in the history of science. Wirkungsgeschichte is a German term that refers to the historical impact of a scientific theory, invention, or discovery. Some ideas make little or no impact and disappear from the historical stage requiring them to be rediscovered at a later date. A classic example of this is the correct explanation of the cause of the rainbow. Theodoric of Freiberg discovered the correct explanation through empirical experiments in the thirteenth century. However his discovery had almost no impact and got lost, meaning that it wasn’t until the seventeenth century, when Descartes rediscovered it, that the correct explanation of the rainbow became generally known. Bruno’s lucky guess that the stars are suns or that the sun is a star had almost no impact and was largely ignored and forgotten. This makes him in a historical sense a dubious figure to elevate to the status of a scientific hero, as Soter apparently wished to do with his very strange animation in the COSMOS broadcast.

28 Comments

Filed under History of Astronomy, History of science, Myths of Science, Renaissance Science

Where does the AD/BC dating convention come from?

I was already on record as expressing scepticism about Neil deGrasse Tyson’s forthcoming Cosmos television series, as I view his knowledge of the history of science as at least as bad if not worse than Carl Sagan’s was and that was pretty terrible. Yesterday evening my Twitter stream was full of people wondering what I would have thought of N dG T’s elevation of Giordano Bruno to the status of a great scientific thinker. Fortunately I can’t view Cosmos here in Germany and so I was spared this particular piece of history of science inanity. However I came across another wonderful example of N dG T’s fantasy version of the history of science today.

Massimo Pigliucci’s Rationally Speaking has a new podcast interview, Neil deGrasse Tyson on Why He Doesn’t Call Himself an Atheist. Tyson rejects the label atheist because of the expectations that radical atheists place on him, an attitude that I can more than sympathise with. The particular trigger for this discussion was Tyson being volubly criticised for using the expression god speed in a video, which he quite rightly regards as being an imposition. In the course of the discussion Tyson then goes on to list other Christian things that he likes, uses, accepts despite not believing in the Christian God. Again I have no argument with him in this. However he then let off a minor tirade about the calendar and those who reject the use of AD/BC.

Tyson’s argument was roughly as follows, The Gregorian Calendar is a great invention and should be respected. It was a Christian invention, created by Jesuit scientist. Accept it! (A paraphrase not a direct quote) This brief outburst contains a whole series of historical errors that are unfortunately typical for Tyson.

First off his main bone of contention the origins of the AD/BC dating system has nothing to do with Gregorian Calendar. The use of Anno Domini goes back to Dionysius Exiguus  (Dennis the Short) in the sixth century CE in his attempt to produce an accurate system to determine the date of Easter. He introduced it to replace the use of the era of Diocletian used in the Alexandrian method of calculating Easter, because Diocletian was notorious for having persecuted the Christians. Dionysius’ system found very little resonance until the Venerable Bede used it in the eight century CE in his Ecclesiastical History of the English People. Bede’s popularity as a historian and teacher led to the gradual acceptance of the AD convention. BC created in analogy to the AD convention didn’t come into common usage until the late seventeenth century CE. There is a certain irony in the fact that Dionysius miscalculated the birth of Christ who was most probably born sometime between six and four BCE. Whatever, the AD/BC dating convention has nothing to do with the Gregorian Calendar, although this did take it over.

Tyson’s little outburst however contains more historical errors. The Gregorian Calendar is indeed a Christian invention but it was not created by Jesuit scientists. First off to refer to anybody who existed before 1834 as a scientist is a historical anachronism to be avoided if at all possible. Personally I’m coming to the conclusion that the word scientist should be generally avoided, as it’s a highly ambiguous word, but that is the subject for another post. The people who created the Gregorian Calendar should be referred to as astronomers. Calendar creation and calculation has been the task of astronomers since the early years of antiquity.

Unfortunately for our intrepid science communicator the Gregorian Calendar was not created by the Jesuits. The original scheme for the calendar was worked out by Aloysius Lilius (vernacular either Luigi Lilio, or Luigi Giglio) who was a physician and astronomer from Calabria in Italy. Lillius was not a cleric of any sort let alone a Jesuit. His scheme was examined, contemplated and finally recommended by a committee that met irregularly over a period of more than ten years. The exact composition of this committee is not known, as it varied over the years, but nine members signed the final recommendation to the Pope of whom only one, the least significant member Christoph Clavius, was a Jesuit. Following the introduction of the calendar by the Catholic Church Clavius, at the request of the Pope, took over the defence of the new system of time measurement against its many critics, writing six books on the subject over the next thirty odd years, thus becoming closely associated with the calendar although he did not create it.

These are all facts that are easily accessible to anybody with use of a good library or who knows their way around the Internet (hint, hint Wikipedia!) and there is absolutely no excuse for Tyson to spout his fully incorrect version of history, which will unfortunately be accepted as gospel by his army of worshipers.

Addendum: Both the Jewish and the Islamic calendars are older than the Gregorian calendar so why should these two non Christian peoples accept the AD/BC dating convention? There are other older calendars in use in India, China, Persia, same argument. Also the Gregorian calendar is only a slightly modified version of the Julian calendar, which was distinctly non Christian and it was nothing more or less than the Egyptian solar calendar in use since about four thousand BCE, again anything but Christian.

29 Comments

Filed under Myths of Science, Renaissance Science

Oh, FFS!

Jason Rosenhouse is a mathematician and science blogger who has been very actively engaged in the American dispute between scientists and creationists for a number of years. Unlike many of his fellow warriors for science Jason has displayed a remarkable openness and tolerance for the thoughts and beliefs of the creationists. He attended creationist’s lectures and meetings over a number of years listening to what they have to say, engaging in non-provocative discussions with other attendees and generally trying to understand the creationist mind-set. He turned his experiences into a critically acclaimed book, Among the Creationists: Dispatches from the Anti-Evolutionist Front Line. Unfortunately Jason does not display the same level of tolerance and understanding for the work of historians and in particular historians of science when it comes to the historical relationship between religion and science. In his most recent blog post he talks about the aftermath of the much-trumpeted public debate between Bill Nye and Ken Ham. In the middle of his post Jason delivers up the following gem of a paragraph full of historical ignorance and prejudice:

I do think I have some basis for thinking that teaching Ham’s view, that science is the servant of religion and must submit its conclusions to the religious authorities for approval, has a deleterious effect on society. After all, that was the dominant view in Christiandom [sic] for quite some time, and there’s a reason that period in our history is known as the Dark Ages. The issue wasn’t simply rare cases like Galileo, where the Church actually came down on someone. It was the chilling effect of the Church’s constant policing of acceptable and unacceptable thought. That was precisely the attitude that needed to be weakened before the scientific revolution could occur.

Far from reflecting the latest considerations of the historical experts on the subject this paragraph could have been written by an enthusiastic fan of the nineteenth century Draper-White conflict between religion and science hypothesis writing in the nineteen fifties.

For a start historians have long since dropped the term Dark Ages preferring to refer to the period between the collapse of the Roman Empire in the West and the rebirth of urban culture in Europe as the Early Middle Ages.  As with all historical periodization’s it is difficult to give an exact beginning or end to this period but it can be considered to start somewhere between four and five hundred CE and to be over by one thousand CE. Of course Jason use of the derogatory term Dark Ages is deliberate as he wishes to place the blame for their existence in Western history on the rise of Christianity. This thesis, the rise of Christianity equals the collapse of western science, is unfortunately highly popular amongst those of the Gnu Model Army who prefer to follow their own prejudices rather than to study history. Science in Antiquity already began to collapse in the middle of the second century CE with a general decline in intellectual activity within an increasingly turbulent and unstable Roman Empire i.e. before Christianity as a religion even existed. Rome didn’t fall in a day, to coin a phrase, but declined over a period of a couple of hundred years and science declined with it. Science wasn’t dead but it was already smelling funny when Christianity first began to be a social and political force in the fourth century. The situation was exacerbated as the fall of Rome was followed by what my German neighbours call the Völkerwanderung and is known in English as the Migration Period.  During the period between four and eight hundred CE successive waves of migrants flowed into Europe from the east displacing the inhabitants and generally causing chaos. Remember all those Goths, Vandals, Angles, Saxons, Lombards, Suebi, Frisii, Franks, Huns, Avars, Slavs, Bulgars, and Alans that you learnt and then forgot about in those boring school history lessons? It should be pointed out none of them even remotely Christian. Science flourishes in stable urban cultures, which quite simple did not exist in the Early Middle Ages in Europe. In fact science and learning in general almost completely disappeared, almost but not completely. Where were the remnants of learning conserved during these extremely turbulent times in Europe? Within the Christian monasteries that’s where!

When did this decline in learning begin to be reversed and why? The reversal started in the eighth century as Karl der Große (that’s Charlemagne for the English) conquered and united a very large part of Europe and had himself crowed Emperor. Karl was an semi-illiterate barbarian but he introduced the first European Renaissance, the Carolingian Renaissance. Why? Because he was a Christian and his Christian advisors, foremost Alcuin of York, taught him the importance of learning, education and what could best be described as proto-science. Christianity did not kill off science in the Early Middle Ages but it was responsible for reviving it. (This paragraph was modified 28.02.2014 in response to justified criticism from my wise readers. See comments!)

By about one thousand CE urban civilisation began to be re-established in Europe and with it the demand for knowledge grew. Over the next two hundred years Christian scholars created the European universities and travelled to the boundaries of Europe with the Islamic Empire where with the help of Arabic and Jewish scholars they translated the scientific works of the Greeks and the Arabs into Latin creating the so-called first scientific Renaissance. All of the European translators where Christian clerics of one sort or another. Far from blocking science or scientific discourse they reintroduced science into European culture. During the High Middle Ages, roughly twelve hundred to fifteen hundred CE, groups of scholars such as the Oxford Calculatores and the Paris Physicists absorbed, developed and expanded the scientific knowledge that the translators had made available to them. All of these scholars were Christian clerics of one sort or another.

The turn of the century between the fifteenth and sixteenth centuries saw the next Renaissance with a new influx of Greek and Roman knowledge from the original sources rather than through the multiple translations of the Arabic sources creating another push in the development of the sciences within Europe. Once again all of the scholars had received the education necessary for their work from church run Christian universities.

Jason’s next statement causes me to invoke, for the first time since I coined it, Christie’s Law: In any Internet history of science discussion on the relationship between religion and science the first person to invoke the Galileo Affair has lost. I’m not going to explain here all of the very complex motive that led a highly paranoid Pope to degrade his own favourite natural philosopher but I will repeat, not for the first time, that of all the causes for the Galileo affair a dispute between science and religion was the very least of them. A man with the ego the size of St Peter’s Basilica who had used his scientific discoveries to worm his way up the greasy pole of Northern Italian absolutist court politics in order to become a court favourite. Suffered the fate of many such a court favourite when he thought that his position gave him the freedom to take the piss out of and insult his liege lord. Actually by the standards of the time he got off very lightly, ask Essex!

Jason’s next statement, “It was the chilling effect of the Church’s constant policing of acceptable and unacceptable thought” is put quite simply historical bollocks and attributes to the Church far more control than they ever had. Removal of this non-existent control is certainly not the reason for the scientific revolution or even a condition for its taking place. The reasons for the acceleration in the acquisition of new scientific knowledge in the sixteenth and seventeenth centuries are multitudinous and highly complex and any changes in the attitude of the Churches, don’t forget the Reformation, played at best a minimal role in the process. I suggest that Jason goes away and does some serious research on the subject before he again decides to pontificate about the causes and conditions of the so-called scientific revolution. I could give him a reading list on the subject if he’s interested.

45 Comments

Filed under Myths of Science

Why Newton’s Apple is not a good story.

Over on the Scientific American Guest Blog we have another non-historian trying his hand at the history of science under the title Newton’s Apple: Science and the Value of a Good Story. Our author, Ned Potter a Senior Vice President of an international communications firm and former science correspondent, tells us that Isaac Newton almost invariably tops any list of history’s greatest scientists and then poses the question, why? His answer is that Newton had a great story to tell:

It’s the one about the apple. You remember it – how the young Newton, sent home from school at Cambridge to avoid the plague of 1665, was sitting under a tree one day, saw an apple fall to the ground, and, in a flash of insight, came to understand the workings of gravity.

Right there in his retelling, Potter, reveals why Newton’s Apple is anything but a great story but before I explain why, I have other fish to fry. In a lackadaisical paragraph our intrepid author summarises Newton’s scientific career:

He published his Principia Mathematica in 1687. In his spare time he designed the first reflecting telescope, laid the foundations for calculus, brought us the understanding of light and color, and in his later years – it would be disingenuous to leave this out – tried his hand at alchemy and assigning dates to events in the Bible.

He did not design the first reflecting telescope in his spare time. Investigating the nature of light and colour was at the centre of his scientific endeavours twenty years before he composed the Principia Mathematicae and his design of the reflecting telescope was his answer to the problem of chromatic aberration in lenses that his new theories on colour had discovered and explained. It also wasn’t the first reflecting telescope but the first functioning one, as I’ve already explained elsewhere. Laying the foundations of calculus was also not a spare time activity. We now turn to something that I’m slowly getting tired of correcting. Newton did not try his hand at alchemy and assigning dates to events in the Bible in his later years but started both activities in his youth continuing them for many years. They also played a very central role in the heuristics of his scientific research, as I’ve said on more than one occasion.

My readers may ask themselves why the dating of Newton’s, by modern standards, non-scientific activities is such an important subject for me. It’s rather the other way around. By pretending that Newton only did these things in his dotage people like Potter came claim that Newton was a rational modern scientist in his youth who went off the rail in his old age, poor man. This is the creation of a myth in the history of science. Newton’s alchemy, theology and chronology are a central part of what made him the scientist that he was, to deny this is to deny the man himself and to put a mythological figure, who never existed, in his place. That is not doing history of science and should also have no place in the popular presentation of science.  But back to Newton’s Apple!

The offending phrase is of course saw an apple fall to the ground, and, in a flash of insight, came to understand the workings of gravity. This is not what happened and it also creates a completely false impression of the scientific process of discovery.  Nobody, not even Newton, understands a complex scientific theory such as the theory of universal gravity in a flash of inspiration and claims that they do misinform non-scientists about how science works.

Assuming the apple story to be basically true, and there are many historian of science who think that it is a myth, what Newton thought is very different to coming to understand the workings of gravity in a flash of insight. The sight of the falling apple led him to pose a question to himself, something along the lines of, ”what causes the apple to fall to the ground?” This led to another question, and herein lies Newton’s brilliance, is that which causes the apple to fall downwards the same as that, which prevents the moon from shooting off in a tangent to its orbit as the law of inertia say it should? Here we have the beginning of an idea that can only have taken place in a mind prepared by the requisite study to be able to form this particular idea. The idea alone is in itself useless unless one possesses the necessary knowledge to test it. Newton did possess this knowledge of dynamics, astronomy and mathematics, which he had acquired through intensive personal study over the previous years rather than from his university lecturers. He then applied this knowledge to testing his newly won hypothesis, a fairly complex and demanding mathematical calculation that required both time and effort. And see here the result!  The two aren’t the same! Newton’s initial attack on the problem failed because of inadequate data. He put the problem aside and devoted himself instead to the study of optics (see above). However he did not forget that insight and many years later he returned to the problem with fresh data and showed that his initial insight had in fact been correct. The way was now open to the development of the universal theory of gravity. Note after all of the steps that we have already gone through we have not arrived at the workings of the theory of gravity, we have merely started down the road towards it. In fact Newton would have to invest two years of very intense work, to the exclusion of everything else in his life, between 1684 and 1687 in order to finally develop the theory in all of its glory, as published in his Principia. The process can hardly be described as “a flash of insight”.

I hope that I have made clear that, in the sense of Ned Potter, Newton’s Apple is anything but a good story, as it creates a complete misconception of the scientific process, a process that even in the case of a monster intellect such as Newton’s involves an incredible amount of study and sheer hard work.

The story as presented by Potter could however have its uses in teaching an introductory course in the history of science and in illustrating the scientific process. One presents the students with the myth of Newton’s Apple à la Potter and then have them research the real historical situation. To look for, read and analyse the original sources of the apple story, William Stukeley, as well as John Conduit and Voltaire, who both had the story from Catherine Barton, Newton’s niece and housekeeper as well as Conduit’s wife. Then have them study the real process by which Newton developed his theory of universal gravity, as I have sketched it, demonstrating how misleading such tales can be. As such I think that the Newton’s Apple story can be put to good pedagogical use, however as Potter wishes it to be considered:

Over the years, inevitably, the details have been embellished. Ask around today, and people may tell you that the apple bonked Newton on the head. But the point remains: if you have an important point to make, especially in science but also in other fields, there’s nothing like a good story to make it memorable.

I think it’s anything but a good story particularly if the important point being made is completely false.

7 Comments

Filed under History of science, Myths of Science, Newton

Resignation.

I was shocked to the core when I read it. I mean my whole existence put in doubt by one simple stinging paragraph. How could I go on after having been so exposed? And that by such a high authority, as The Times Higher Education, no less. Wondering what I’m babbling about? I’ll let you see for yourselves. The following was posted in the THE by neuroscientist Russell Foster yesterday as his patent answer to the cocktail party question, “and what do you do?”

“Well,” I say, “as a scientist my occupation grapples with the fundamental nature of truth. It is worth reflecting that before the emergence of a robust scientific class in the 19th century, truth was defined by the whim of the ruling class. Indeed, we scientists wrested truth away from the claws of religious dogma and liberated humanity from the leaden hand of ignorance and, in the process, provided the evidenced-based infrastructure required for a truly democratic society – namely individual liberty and equality of opportunity. I suppose I’m just part of that meritocratic force that has defined our civilisation.”

First of all I wish to apologise to all of my readers for having deluded you for so long by maintaining the very obvious fiction that something like science or the search for truth existed before the nineteenth century. My efforts in this direction have now been exposed for the tissue of lies that they so obviously are and I can only hang my head in contrition and shame and beg for your forgiveness. I think under the circumstances it would be foolish for me to go on with the charade that I call my blog so I shall be ceasing all postings with immediate effect and withdrawing to a penguin colony in Antarctica to contemplate the error of my ways.

23 Comments

Filed under Myths of Science