Category Archives: History of Astrology

The weather and the stars

My attention was recently drawn to the MacTutor history of maths website article on The History of Weather Forecasting. The article is largely concerned with the mathematics of weather forecasting from the nineteenth century onwards but has some short introductory paragraphs covering the prehistory of meteorology, which unfortunately displays a woeful ignorance of the subject. Under the heading Early Attempts we get served up the following:

It is not known when people first started to observe the skies, but at around 650 BC, the Babylonians produced the first short-range weather forecasts, based on their observations of the stars and clouds. The Chinese also recognised weather patterns, and by 300 BC astronomers had developed a calendar which divided the year into 24 festivals, each associated with a different weather phenomenon. Generally, weather was attributed to the vagaries of the gods, as the wide range of weather gods in various cultures, for example the Egyptian sun god Ra and Thor, the Norse god of thunder and lightning, proves. Many ancient civilisations developed rites such as rain dances and animal sacrifices in order to propitiate the weather gods.

The ancient Greeks were the first to develop a more scientific approach to explaining the weather. The work of the philosopher and scientist Aristotle (384-322 BC) is especially noteworthy, as it dominated people’s views on and their knowledge of the weather for the next 2000 years. In 340 BC, Aristotle wrote his book Meteorologica, where he tried to explain the formation of rain, clouds, wind and storms. In addition, he also described celestial phenomena such as comets and haloes. Many of his observations were — in retrospect — surprisingly accurate. For example, he believed that heat could cause water to evaporate. But he also jumped to quite a few wrong conclusions, such as that winds form “as the Earth exhales“, which were rectified from the Renaissance onwards.

Throughout the Middle Ages and beyond, the Church was the only official institution that was allowed to explain the causes of weather, and Aristotle’s Meteorologica was established as Christian dogma. Besides, weather observations were passed on in the form of rhymes, which are now known as weather lore. Many of these proverbs are based on very good observations and are accurate, as contemporary meteorologists have discovered.

This brief synopsis, which covers approximately one thousand years actually almost completely ignores the main form of weather forecasting practiced throughout the period covered astrometeorology. As any astute reader will have already deduce astrometeorology is a branch of astrology and is in fact astrological weather forecasting. This is one of the more rational forms of astrology; weather comes from the heavens, be it sunshine, fog, wind, or one of the many forms of precipitation (rain, snow, sleet, hail), so it would seem fairly logical to assume that the heaven cause or control the weather. This is exactly what people in antiquity did in many different cultures and actually what the article above is referring to in both of the first two quoted sentences although the author doesn’t seem to or doesn’t want to know it. It was not Aristotle’s views as expressed in the Meteorologica that “dominated people’s views on and knowledge of the weather for the next 2000 years” but astrometeorology. There is a slight irony here as a quote from Aristotle’s Meteorologica delivered one of main justifications for astrology in Western thought up to the Early Modern period. Astrometeorology is along with astro-medicine one of the branches of natural astrology and as such was even accepted throughout the Middle Ages and the Renaissance by people who rejected other forms of astrology, for example judicial or horoscope astrology.

This very widespread acceptance meant that it was astrometeorology that was the dominant form of weather forecasting in the Middle Ages accepted even by the Church at a time when judicial astrology was, at least official, heavily frowned upon. One might well say, so what? What does it matter what people believed before the emergence of scientific meteorology in the seventeenth century, when this superstitious twaddle got drop anyway? The answer is quit simple; astrometeorology played a significant role in the emergence of that scientific meteorology.

During the Renaissance astrology reached its highest level of popularity in the history of Western culture. Almost all mathematicians and astronomers (mostly one and the same) were also practicing astrologers and they were not just doing it for the money as is often falsely claimed by those who try to deny the significance of astrology in the Early Modern period; they really believed in it. However these were the people who also laid the foundations of the modern empirical approach to the sciences and they were often painfully aware of the lack of empirical justification for the science of astrology that they practiced. To counter this weakness they set about developing various projects to give astrology a solid empirical base, one of the principle projects involving astrometeorology. This project consisted of keeping accurate and continuous weather diaries. They thought that by recording the weather over long periods of time on a daily basis they could then distinguish the correlation, that they were sure existed, between the weather and the movement of the celestial bodies. The oldest known such weather diary was kept by Roger Bacon in the thirteenth century. Bacon was of course not only a fervent believer in astrology but also an early proponent of empirical methods in science. There are other scattered medieval weather diaries but the process first really kicked off at the end of the fifteenth century. The keeping of weather diaries was greatly furthered by the introduction of printed ephemerides, which provided the potential meteorologist with a convenient place to record his observations directly next to the astronomical/astrological information for the day.

A notable writer of weather diaries was Johannes Stöfler (1452-1531), who taught and influenced Philipp Melanchthon (a powerful advocate of Renaissance astrology), Sebastian Münster and others. Another was the Nürnberger mathematicus Johannes Werner (1462-1522), who first suggested the chronometer method of determining longitude. Probably most well-known as weather diary keeper was Tycho Brahe (1546-1601), without doubt the important observational astronomer in the pre-telescope era. Tycho is possibly also responsible for David Fabricius (1564-1617), discoverer, amongst other things, of the first variable star, Mira, keeping a weather diary. Fabricius help Johannes Kepler (1571-1630) to formulate his theory of elliptical planetary orbits in an extended correspondence; systematically criticising Kepler various formulations. Kepler a passionate astrologer also kept a weather diary. He famously established his reputation as an astrologer by correctly predicting an especially hard winter in his first prognostications as district mathematicus in Graz in 1594. Weather diaries were also kept by many other less well-known figures. It is significant that Pico della Mirandola (1463-1494) the most strident Renaissance critic of astrology also kept a weather diary and used the results as one of his arguments for rejecting astrology.

Pico della Mirandola was of course right the systematic keeping of weather diaries did not, as hoped, provide an empirical basis for the science of astrology but did exactly the opposite showing that astrometeorology, at least, was a refuted theory. However the results were not all negative. The systematic empirical weather observations contained in the diaries laid the foundations for scientific meteorology in the seventeenth century. The data collected by those Renaissance astrologers is still used by modern meteorologists to help establish long-term weather patterns.

 

 

5 Comments

Filed under History of Astrology, History of science, Renaissance Science

The horror, the horror!

For those readers who might have wondered what The Renaissance Mathematicus looks and sounds like, you need wonder no more. There is now a video on Youtube in which I stumble and stutter my way through a very impromptu, not quite fifteen minute, lecture on the relationship between astronomy, astrology and medicine in the Early Modern Period. During which I indulge in a lot of arm waving and from time to time scratch my fleas. This video was filmed in the kitchen of the Remeis Observatory in Bamberg during a coffee break at the Astronomy in Franconia Conference last Monday, complete with the sounds of somebody loading the dishwasher.

The cameraman, who also puts some questions during this solo performance, was Chris Graney who requested my golden words for his students back in Louisville, the poor sods.

1 Comment

Filed under History of Astronomy, Autobiographical, History of Astrology, History of medicine

Planetary Tables and Heliocentricity: A Rough Guide

Since it emerged sometime in the middle of the first millennium BCE the principal function of mathematical astronomy was to provide the most accurate possible predictions of the future positions of the main celestial bodies. This information was contained in the form of tables calculated with the help of the mathematical models, which had been derived by the astronomers from the observed behaviour of those bodies, the planets. The earliest Babylonian models were algebraic but were soon replaced by the Greeks with geometrical models based on spheres and circles. To a large extent it did not matter if those models were depictions of reality, what mattered was the accuracy of the prediction that they produced; that is the reliability of the associated tables. The models of mathematical astronomy were judge on the quality of the data they produced and not on whether they were a true reproduction of what was going on in the heavens. This data was used principally for astrology but also for cartography and navigation. Mathematical astronomy was a handmaiden to other disciplines.

Before I outline the history of such tables, a brief comment on terminology. Data on the movement of celestial bodies is published under the titles planetary tables and ephemerides (singular ephemeris). I know of no formal distinction between the two names but as far as I can determine planetary tables is generally used for tables calculated for quantitatively larger intervals, ten days for example, and these are normally calculated directly from the mathematical models for the planetary movement. Ephemeris is generally used for tables calculated for smaller interval, daily positions for example, and are often not calculated directly from the mathematical models but are interpolated from the values given in the planetary tables. Maybe one of my super intelligent and incredibly well read readers knows better and will correct me in the comments.

The Babylonians produced individual planetary tables, in particular of Venus, but we find the first extensive set in the work of Ptolemaeus. He included tables calculated from his geometrical models in his Syntaxis Mathematiké (The Almagest), published around 150 CE, and to make life easier for those who wished to use them he extracted the tables and published them separately, in extended form with directions of their use, in what is known as his Handy Tables. This publication provided both a source and an archetype for all future planetary tables.

The important role played by planetary tables in mathematical astronomy is illustrated by the fact that the first astronomical works produced by Islamic astronomers in Arabic in the eighth-century CE were planetary tables known in Arabic as zījes (singular zīj). These initial zījes were based on Indian sources and earlier Sassanid Persian models. These were quickly followed by those based on Ptolemaeus’ Handy Tables. Later sets of tables included material drawn from Islamic Arabic sources. Over 200 zījes are known from the period between the eighth and the fifteenth centuries. Because planetary tables are dependent on the observers geographical position most of these are only recalculation of existing tables for new locations. New zījes continued to be produced in India well into the eighteenth-century.

With the coming of the European translators in the twelfth and thirteenth centuries and the first mathematical Renaissance the pattern repeated itself with zījes being amongst the first astronomical documents translated from Arabic into Latin. Abū ʿAbdallāh Muḥammad ibn Mūsā al-Khwārizmī was originally better known in Europe for his zīj than for The Compendious Book on Calculation by Completion and Balancing” (al-Kitab al-mukhtasar fi hisab al-jabr wa’l-muqabala), the book that introduced algebra into the West. The Toledan Tables were created in Toledo in the eleventh-century partially based on the work of Abū Isḥāq Ibrāhīm ibn Yaḥyā al-Naqqāsh al-Zarqālī, known in Latin as Arzachel. In the twelfth-century they were translated in Latin by Gerard of Cremona, the most prolific of the translators, and became the benchmark for European planetary tables.

In the thirteenth- century the Toledan Tables were superseded by the Alfonsine Tables, which were produced by the so-called Toledo School of Translators from Islamic sources under the sponsorship of Alfonso X of Castile. The Alfonsine Tables remained the primary source of planetary tables and ephemerides in Europe down to the Renaissance where they were used by Peuerbach, Regiomontanus and Copernicus. Having set up the world’s first scientific press Regiomontanus produced the first ever printed ephemerides, which were distinguished by the accuracies of their calculations and low level of printing errors. Regiomontanus’ ephemerides were very popular and enjoyed many editions, many of them pirated. Columbus took a pirate edition of them on his first voyage to America and used them to impress some natives by accurately predicting an eclipse of the moon.

By the fifteenth-century astronomers and other users of astronomical data were very much aware of the numerous inaccuracies in that data, many of them having crept in over the centuries through frequent translation and copying errors. Regiomontanus was aware that the problem could only be solved by collecting new basic observational data from which to calculate the tables. He started on such an observational programme in Nürnberg in 1470 but his early death in 1475 put an end to his endeavours.

When Copernicus published his De revolutionibus in 1543 many astronomers hoped that his mathematical models for the planetary orbits would lead to more accurate planetary tables and this pragmatic attitude to his work was the principle positive reception that it received. Copernicus’ fellow professor of mathematic in Wittenberg Erasmus Reinhold calculated the first set of planetary tables based on De revolutionibus. The Prutenic Tables, sponsored by Duke Albrecht of Brandenburg Prussia (Prutenic is Latin for Prussian), were printed and published in 1551. Ephemerides based on Copernicus were produced by Johannes Stadius, a student of Gemma Frisius, in 1554 and by John Feild (sic), with a forward by John Dee, in 1557. Unfortunately they didn’t live up to expectations. The problem was that Copernicus’ work and the tables were based on the same corrupted data as the Alfonsine Tables. In his unpublished manuscript on navigation Thomas Harriot complained about the inaccuracies in the Alfonsine Tables and then goes on to say that the Prutenic Tables are not any better. However he follows this complaint up with the information that Wilhelm IV of Hessen-Kassel and Tycho Brahe on Hven are gathering new observational data that should improve the situation.

As a young astronomer the Danish aristocrat, Tycho Brahe, was indignant that the times given in both the Alfonsine and the Prutenic tables for a specific astronomical event that he wished to observe were highly inaccurate. Like Regiomontanus, a hundred years earlier, he realised that the problem lay in the inaccurate and corrupted data on which both sets of tables were based. Like Regiomontanus he started an extensive programme of astronomical observations to solve the problem, initially at his purpose built observatory financed by the Danish Crown on the island of Hven and then later, through force of circumstances, under the auspices of Rudolph II, the Holy Roman German Emperor, in Prague. Tycho devoted almost thirty years to accruing a vast collection of astronomical data. Although he was using the same observational instruments available to Ptolemaeus fifteen hundred years earlier, he devoted an incredible amount of time and effort to improving those instruments and the methods of using them, meaning that his observations were more accurate by several factors than those of his predecessors. What was now needed was somebody to turn this data into planetary tables, enter Johannes Kepler. Kepler joined Tycho in Prague in 1600 and was specifically appointed to the task of producing planetary tables from Tycho’s data. Contrary to popular belief he was not employed by Tycho but directly by Rudolph.

Following Tycho’s death, a short time later, a major problem ensued. Kepler was official appointed Imperial Mathematicus, as Tycho’s successor, and still had his original commission to produce the planetary tables for the Emperor, however, legally, he no longer had the data; this was Tycho’s private property and on his death passed into the possession of his heirs. Kepler was in physical possession of the data, however, and hung on to it during the protracted, complicated and at times vitriolic negotiations with Tycho’s son in law, Frans Gansneb Genaamd Tengnagel van de Camp, over their future use. In the end the heirs granted Kepler permission to use the data with the proviso that any publications based on them must carry Tengnagel’s name as co-author. Kepler then proceeded to calculate the tables.

Put like this, it sounds like a fairly straightforward task, however it was difficult and tedious work that Kepler loathed intensely. It was not made any easier by the personal and political circumstances surrounding Kepler over the years he took to complete the task. Wars, famine, usurpation of the Emperor’s throne (don’t forget the Emperor was his employer) and family disasters all served to make his life more difficult.

Finally in 1626, twenty-six years after he started Kepler had finally reduced Tycho’s thirty years of observations into planetary tables for general use, now he only had to get them printed. Drumming up the financial resources for the task was the first hurdle that Kepler successfully cleared. He then purchased the necessary paper and settled in Linz to complete the task of turning his calculations into a book. As the printing was progressing all the Protestants in Linz were ordered to leave the city, Kepler, being Imperial Mathematicus, and his printer were granted an exemption to finish printing the tables but then Wallenstein laid siege to the city to supress a peasants uprising. In the ensuing chaos the printing shop and the partially finished tables went up in flames.

Leaving Linz Kepler now moved to Ulm where, starting from the beginning again, he was finally able to complete the printing of the Rudophine Tables, named after the Emperor who had originally commissioned them but dedicated to the current Emperor, Ferdinand II. Although technically not his property, because he had paid the costs of having them printed Kepler took the finished volumes to the book fair in Frankfurt to sell in September 1627.

Due to the accuracy of Tycho’s observational data and the diligence of Kepler’s mathematical calculations the new tables were of a level of accuracy never seen before in the history of astronomy and fairly quickly became the benchmark for all astronomical work. Perceived to have been calculated on the basis of Kepler’s own elliptical heliocentric astronomy they became the most important artefact in the general acceptance of heliocentricity in the seventeenth century. As already stated above systems of mathematical astronomy were judged on the data that they produced for use by astrologers, cartographers, navigators et al. Using the Rudolphine Tables Gassendi was able to predict and observe a transit of Mercury in 1631, as Jeremiah Horrocks succeeded in predicting and observing a transit of Venus for the first time in human history based on his own calculations of an ephemeris for Venus using Kepler’s tables, it served as a confirming instance of the superiority of both the tables and Kepler’s elliptical astronomy, which was the system that came to be accepted by most working astronomers in Europe around 1660. The principle battle in the war of the astronomical systems had been won by a rather boring set of mathematical tables, Johannes Kepler’s Tabulae Rudolphinae.

Rudolphine Tables Frontispiece

Rudolphine Tables Frontispiece

 

 

14 Comments

Filed under History of Astrology, History of Astronomy, History of Cartography, History of Navigation, History of science, Renaissance Science

Was Will a Copernican?

The Will of the title is England’s most notorious playwright and poet, William Shakespeare, who was supposedly born 450 years ago today. The question is the central motivation for the new book by Canadian popular science writer, Dan Falk, The Science of Shakespeare: A New Look at the Playwright’s Universe.[1] Given that Shakespeare was born just twenty-one years after Copernicus’ De revolutionibus was published and lived through the period in which Kepler and Galileo, amongst others, made the heliocentric hypothesis the hottest item in the European scientific community it is not unreasonable to ask, as Falk does, in the more general sense, whether the cosmological and astronomical upheaval of the age left any traces in Will’s work. Traditional Shakespearean scholarship says no, Falk re-examines the evidence.

The Science of Shakespeare

I must admit that when I first got offered this book to review I had a sinking feeling that somebody was going down the same garden path that Peter Usher had already trodden. For those readers who are not aware of Mr Usher’s endeavours, he is a retired astronomer who believes that he has found the secret message encoded in Shakespeare’s Hamlet and in all of the rest of his works. Usher believes that Hamlet describes the battle for supremacy between the Ptolemaic, Tychonic and Copernican system of astronomy in the Early Modern Period. What do I think of Mr Usher’s theories? Let’s put it this way, Mr Usher manages to make the Bible decoders look like rational human beings. My feelings about reading Falk’s book where not improved on discovering, upon receiving my review copy, that it was indeed an introduction to Mr Usher’s ideas that inspired Falk to research and write his book; I feared the worst. Fortunately, although I cannot totally endorse the book, Mr Falk did indeed do his research on the whole thoroughly and it turned out to be much better than I had feared. In fact on the whole I found it to be a well-written and entertaining read.

The introduction sets the scene for his book by presenting what are respectively the most expensive science and humanities rare books, Nicolas Copernicus’ De revolutionibus and The Shakespeare First Folio, given their proximity in time it is not an unreasonable question to ask if the one influenced the other and whilst acknowledging that the traditional answer is no, Falk already brings here one of the arguments used by more modern researchers, and not just Usher, to claim the opposite. I shall deal with this later along with the other supposed arguments in favour of a heliocentric Bard.

The first five chapters deal with the largely astronomical background giving a quick rundown on ancient cosmology, the emergence of Copernican theory and its reception in late sixteenth-century England. Falk has done his homework well and this part of the book is almost totally satisfying. I say almost because it does contain two serious errors.

Falk manages to walk into a trap that Copernicus laid for the unwary. Falk writes, “and it [the Copernican model] managed to bring the total number of circles down from eighty to thirty-four.” Falk is here paraphrasing a claim that Copernicus makes in the Commentariolus the pamphlet he wrote around 1514, first announcing his heliocentric system. The claim is an estimate and not a fact. Unfortunately for Falk by the time Copernicus had worked out his system in full, in De revolutionibus, he actually needed forty-eight circles, whereas Peuerbach, in his Theoricae Novae Planetarum, the most modern version of the geocentric model, which Copernicus used and consulted himself, only required forty circles. Not a victory for the new astronomy.

Whilst discussing the Copernican reception Falk quite rightly introduces William Gilbert. He goes on to explain that Gilbert, influenced by Copernicus, discusses diurnal rotation in his De magnete, explaining it as the natural motion of a spherical magnet, based on his erroneous view that a spherical magnet left to itself rotates. Unfortunately Falk then goes on to say, “He also believed that magnetic forces emanating from the sun, together with the sun’s rotation, caused the planets to move in their heliocentric orbits”. Gilbert of course believed nothing of the sort. In Book Six of De magnete, where this discussion takes place, he states quite explicitly, “ From these arguments, therefore, we infer, not with mere probability, but with certainty, the diurnal rotations of the earth; […] I pass by the earth’s other movements, for here we treat only of the diurnal rotation [my emphasis], whereby it turns to the sun and produces the natural day (of twenty-four hours) which we call nycthermeron”. Gilbert’s model is in fact not Copernican at all but a geocentric-geokinetic one. I’ve blogged about the history of such systems here. The magnetic force explanation for the movement of the planets in a heliocentric system was hypothesised by Johannes Kepler, first in his Astronomia nova and then again later in his Epitome astronomiae Copernicanae, inspired by Gilbert’s work but not taken from him. I have a sneaking suspicion that Falk got his research notes a little muddled up here.

I found it very positive that Falk does not shy away from some controversial topics concerning sixteenth century English astronomy but whilst discussing them retains a level head. For example he looks at the claims made chiefly by Colin Ronan, who strangely doesn’t get mentioned here at all, that the Digges, that’s father and son Leonard and Thomas, invented and constructed a functioning telescope forty plus years before Hans Lippershey in Holland. Whilst quoting all of the original sources that led to these speculations Falk also gives space to those experts who clearly reject Ronan’s hypothesis, as I also do.

Having presented the scientific background Falk now moves on to Shakespeare presenting the reader with an, albeit, brief but adequate biography of the Bard. A necessary section of his book for those who come to it from the history of science rather than from English philology.

We are now half way through and can at last turn our attention to the real subject of the book, Shakespeare and science and Falk dives right in with “The Science of Hamlet”, where a tortuous trail of speculation is constructed. We start with a quote from the opening scene, “When yound same star that’s westward from the pole, Had made its course to illume that part of heaven”. This is a reference to the time of night, it being common practice in the Middle Ages to measure time at night by the position of the circumpolar stars. With a lot of jiggery-pokery we are led to the conclusion that the referenced star must be the Nova from 1572. This is not completely improbable as this Nova was the most significant celestial event during Shakespeare’s lifetime. In a fantasy dialogue Falk has Shakespeare’s father taking the young Will out to view the Nova in a prologue to the book. We now get led on to the fact that this is Tycho Brahe’s Nova. This is a classic bit of presentism. Tycho did indeed observe and write about this Nova but so did every astronomer in Europe and everybody, astronomer or no, with two eyes almost certainly observed it. So why do we need to introduce Tycho?

We now come to the central argument for an astronomical Hamlet, Rosencrantz and Guildenstern. Tycho Brahe produced an engraving of himself, he did lots of that sort of thing, in 1590, which lists sixteen of his close relatives including a Rosenkrans and a Guildensteren, Q.E.D: Shakespeare took the names from Tycho. It’s obvious isn’t it? But how? Tycho sent a copy of his astronomical letters, his Epistolae, containing said engraving to Thomas Saville, which includes Tycho’s well wishes for John Dee and Thomas Digges. What if Thomas Digges also received a copy? We then get a whole heap of arguments the Shakespeare could have (must have) known the Digges family and through them seen such a Tychonic portrait. Digges, we should not forget was a Copernican. Unfortunately none of these arguments contains a single concrete fact that Shakespeare knew the Digges family. The whole chapter is an untidy heap of unsubstantiated speculations with very little real substance.

Is it possible that Shakespeare came across the names Rosencrantz and Guildenstern by other means? To be fair to Falk he answers this question in the positive. There was a Danish diplomatic mission to England in 1592 including two delegates bearing the names Rosenkrans and Guildensteren and alone on Frederick II court in Copenhagen there were nine Rs and three Gs so a connection to Tycho is not really necessary.

Because Tycho as the Danish source of Hamletian science is so important both to Falk and Usher I will now point out something that the both either ignore or possibly deliberately sweep under the carpet. In the earlier chapters on Renaissance astronomy, when discussing Tycho, Falk points out that James VI & I actually visited Tycho’s observatory on Hven during a trip to Denmark. What he neglects to mention is why James was visiting Denmark in the first place. James went to Denmark in 1589 to fetch his bride, Anne of Denmark. This means that from 1590 onwards there would have been a strong political interest in Denmark, not only in Scotland but also in England where James was already seen as the most likely heir to the childless Elizabeth. Tycho Brahe was by no means the only reason for Shakespeare and his contemporaries to be interested in all things Danish.

Let us assume that having decided to write Hamlet Shakespeare, a good author, did some research on Denmark and the Danish court. He would discover that Denmark was ruled by an oligarchy of about twenty powerful families of, which the Brahes were one. If he chose at random two names from those twenty from his play then those chosen would have been relatives of Tycho because, as is the nature of oligarchies, the families maintained their hold on power by intermarrying. The fact that two courtiers in Hamlet bear the names of two of Tycho’s relatives thus has, in my opinion, very little significance.

Enter Usher stage right: According to Peter Usher the whole of Hamlet not only contains hidden references to Copernican astronomy but is in fact a dramatic presentation of the intellectual battle between the leading astronomical systems, Ptolemaic, Copernican and Tychonic. Hamlet is the Copernican astronomer embodied by Thomas Digges, Hamlet’s murdered father is Leonard Digges, his uncle Claudius is Ptolemaeus, Rosencrantz and Guildenstern are Tycho (apparently he has a split personality!), Laertes is Thomas Harriot and so on and so on. Only the women play no role in Usher grand scheme of things, a little strange given Ophelia’s central role in the drama! Apart from the Tycho connection sketched above Usher has discovered two smoking guns in the play that he thinks justify his interpretation. The first of these is Wittenberg. This German university town gets several name checks in the play. Usher sees this as references to Copernicanism because Rheticus, who persuaded Copernicus to publish, had studied and taught at Wittenberg. There are a couple of obvious flaws in this argument. Firstly Rheticus had left Wittenberg before the publication of De revolutionibus, in which he is incidentally never mentioned, to become professor of mathematics in Leipzig. Secondly Wittenberg was by no means a centre of Copernican scholarship, Luther and Melanchthon being both on record as opposing heliocentricity.

Is there another reason for Shakespeare to feature Wittenberg in a play about the Danish court? In fact there is. The court language in Denmark was not Danish but German and although Copenhagen had its own Lutheran university it was common practice for the Danish aristocracy to send its sons abroad for their education. See a bit of the world whilst getting your degree. Because Denmark was a strongly Lutheran country Wittenberg, home of Luther and the Reformation, was the most popular destination for young Danish aristocrats to acquire their foreign university experience. There is absolutely no need to evoke a bogus Copernican connection to justify Shakespeare’s choice of Wittenberg in his play.

Usher’s second smoking gun is the famous hawk and handsaw quote, “I am but mad north-north-west. When the wind is southerly, I know a hawk from a handsaw”. (For those not in the know handsaw is thought to be a typo for hernshaw a kind of heron). For Usher this rather enigmatic passage is interpreted to mean that for someone on Hven when the wind comes from north-north-west this means Elsinore the home of Claudius and Ptolemaic astronomy, so madness, whereas a wind from the south means Wittenberg the home of Copernicanism. Having already demolished the theory that Wittenberg is the home of Copernicanism I don’t really need to say more but I do have to ask why Hamlet should be positioned on Hven, Tycho’s realm, whilst making this speech? It really doesn’t make much sense to me Mr Usher.

There are a whole series of even less convincing finds by Usher not only in Hamlet but in all of Shakespeare’s plays to justify his fantasy constructions that I’m not going to go into here, but there is one further issue that I postponed from the introduction, an argument used by those not totally convinced by Usher’s bizarre arguments but willing to accept that Shakespeare’s work possible does contain some hidden references to heliocentricity. The quote in question comes from Troilus and Cressida, “the glorious planet Sol / In noble eminence enthroned and sphered…” We get told that, “by emphasizing the role of the sun, the passage may hint at the new heliocentric astronomy.” Talk about clutching at straws. Within traditional geocentric astronomy, astrology and alchemy the sun played a special role for very obvious reasons. The sun determines day and night, it defines the year, it brings light and warmth, it is by far and away the most prominent body in the sky do I really need to go one. I will add one astronomical note for those philologists who are apparently too lazy to read up on the history of the subject. In geocentric cosmology the sun was regarded as the ruler of the planets because, in the most commonly accepted order of the orbits, it occupies the central position in the heavens with three inner plants and three outer planets below and above it.

At the end of his chapter on Usher Falk tries a bait and switch. He presents a list of off the wall papers presented at a major Shakespearean conference that he attended whilst researching his book with an argument that Usher’s thesis is no crazier than these. Just because other people spout shit doesn’t make Usher’s shit anymore palatable. I will however give Falk credit, although he does present Usher’s garbage with considerably more sympathy than he deserves he also lets Usher’s critics speak for themselves leaving it to the reader to make up her or his mind on the subject.

What now follows in a chapter on Galileo and the telescopic discoveries made around 1610; in itself not a bad retelling of well-known material. This is included because we now have Usher and others trying to convince us that Shakespeare’s late play Cymbeline contain hidden references to Galileo’s (and Marius’ but he doesn’t get a mention) discovery of the four largest moons of Jupiter. I leave it to Falk’s readers to find if the arguments are convincing.

Because the book’s title is The Science of Shakespeare and not the astronomy or cosmology of Shakespeare Falk now turns to what are now commonly known as the occult sciences. Unfortunately he doesn’t seem to have done his homework here anywhere near as well as he did for the astronomy and cosmology in the main part of the book. We start with astrology and here he fall on his nose at the first hurdle. Falk tells us:

In England, astrology came to have two more or less distinct branches, known as “natural astrology” and “judicial astrology”. Natural astrology was, in fact, something like straight-ahead astronomy; it focused on tracking and predicting the motions of the sun, moon, and planets. Judicial astrology was closer to what we think of today as just plain “astrology – the attempt to link celestial happenings to earthly affairs, and to use astronomical knowledge to predict terrestrial happenings.

Wrong! Astronomy focused on tracking and predicting the motions of the sun, moon, and planets. That’s the difference between astronomy and astrology, although in Shakespeare’s time the two words were still used interchangeably. In fact astrology has four major divisions that go back to antiquity and were not first developed in Renaissance England. These are judicial astrology, electional astrology, horary astrology and natural astrology. Judicial or natal astrology is more or less as Falk describes it. Electional astrology is the casting of horoscopes to determine the correct or propitious time or date to start an undertaking. When should one marry, when lay the foundation stone of a building or new town, when to undertake a journey or even when to start a military campaign. Horary astrology is the attempt to answer questions by astrologers casting horoscopes upon receipt of the question. This is the classic detective story astrology used to detect thieves or to discover the hiding place of stolen goods. Natural astrology is the branch of astrology that deals with the things of the natural world i.e. astro-medicine and astro-meteorology. Theses division are important in the history of astrology, as there were extensive debates and disputes as to the validity of each of them, each of the four having its own champions and opponents. Interestingly even the strongest opponents of astrology in general in the High Middle Ages and the Renaissance tended to accept the validity of natural astrology whilst simultaneously launching vitriolic invective against the widespread judicial astrology.

Although having got off to a bad start Falk’s discussion of judicial astrology in Shakespeare is reasonably good. He acknowledges that Shakespeare’s work is permeated by astrological references, whilst being a good mirror of his own society he also lets the opponents of astrology speak their piece. Unfortunately I got the feeling that Falk was trying to persuade the reader that Shakespeare was an opponent of astrology and that despite the fact that in his biographical chapter on the Bard he warns the reader against trying to determine Shakespeare’s character or personality from his works. I was particularly irritated by statements that Carl Sagen or Richard Dawkins would find favour with a particular anti-astrology speech or Neil deGrasse Tyson and Laurence Krauss would applaud a piece of scepticism. I found these comments out of place and quite frankly somewhat bizarre.

After astrology we turn to magic. This chapter slightly disturbs me, as it is largely about demonic magic, Macbeth’s witches and all that, which unlike natural magic was never considered scientia and thus not science. Towards the end of the chapter Falk does briefly discuss the difference between demonic and natural magic but his definition of natural magic is even more wrong than his definition of natural astrology. I’m not even going to go there, as an attempt to explain natural magic would probably end up as long as this already over long review. Even worse Falk talks about astrology as being magic. This is within the context of a book on Renaissance history a serious category mistake. Astrology is not a form of magic. Falk makes the same category mistake as he discusses alchemy in this chapter. Alchemy gets dismissed in a couple of short paragraphs somewhat of a disappointment as alchemy played a very central role in Elizabethan learned society, with even Elizabeth herself a practicing alchemist. Falk closes out the chapter by stating that “Astrology, witchcraft, alchemy, magic … and science. It was all part of a package; all were thoroughly intertwined in the sixteenth century, and even into the early years of the seventeenth.” This was indeed true although it went much further into the seventeenth century than the early years. However I find it slightly sad that Falk choses to illustrate this with a quick sketch of the live and work of Johannes Kepler. This sketch whilst basically correct doesn’t do Kepler’s scientific achievements justice. We also get the following old myth dished up, “We might note that Kepler was a practicing astrologer, and that he cast horoscopes for the German nobility. It’s not clear, however, how much faith he put in the power of the starts to influence our lives” [my emphasis]. Just for the record Kepler was a 100% convinced astrologer and any claims to the contrary are wishful thinking from those who would prefer their scientific heroes free of the taint of the occult.

Next up is Renaissance medicine a recurring theme in Shakespeare’s plays. An adequate treatment of the subject as far as it goes but neither here nor in his discussion of astrology does Falk even mention let alone discuss astro-medicine. This is a strange omission as astrological medicine was one of the dominant directions in medical practice in Shakespearean times. This chapter contains the strangest claim in the whole book. In his discussion of the differences between physicians, surgeons, apothecaries, and midwifes Falk produces the following gem, “Since the Middle Ages, the practice of medicine had been associated with the Catholic Church and so physicians were forbidden to shed blood”. Now I’m not a historian of medicine but I’ve read a lot of literature on the history of medicine and I’ve never come across anything of the sort in fact I will go as far as to say that this statement is a total myth of the same sort as the claim that the Church had banned dissection. I’m quite prepared to admit that I’m wrong should any of my highly educated readers show Falk to be in the right but somehow I don’t think I’m going to have to.

In the penultimate chapter Falk takes a sharp left turn. The chapter opens with a brief discussion of Lucretius’ De rerum natura and a free advert for Stephen Greenblatt’s The Swerve. As Falk correctly says De rerum natura was a highly popular and influential book in Shakespeare’s time so one might well expect to find this popularity reflected in Shakespeare’s writings. All that Falk can deliver is one instance of the word atomi in Romeo and Juliet. This doesn’t stop him discussing Lucretius and recommending Greenblatt’s book. Greenblatt is one of the experts on Shakespeare that Falk consulted for his book, as he tells us on numerous occasions in the text and he gives an enthusiastic endorsement to Greenblatt’s work on the rediscovery of Lucretius’ poem in the Middle Ages. Unfortunately, this high opinion of The Swerve is not shared by many historians of medieval philosophy including one guest author here at The Renaissance Mathematicus.

Falk now introduces us to the sixteenth-century French essayist Montaigne trying to conceive him as a modern scientific skeptic, again gratuitously name dropping some actual ones, this time Laurence Krauss and Stephen Hawking. He does however admit that the attempt is at best dubious. He lets us know that Montaigne briefly refers to Copernicus, noting that there are now two possible cosmologies however reflecting that maybe in a thousand years a third model will come along and overthrow both of them. For this insight Falk credits Montaigne with being a sixteenth-century Karl Popper. There is however method in all this. We now get shown that Shakespeare was a diligent reader of the English translation of Montaigne’s essays traces of them turning up all over his own writings. This leads Falk to the categorical claim that at least here Shakespeare must have [my emphasis] come across Copernicus and Copernicanism. I always react allergically when somebody writing a historical text having failed to produce a direct link between two things sets up a plausible but speculative link and then says, “must”. There is no must about it. We simply do not know if Shakespeare read all of Montaigne’s voluminous output or only selected essays or if reading the essay in question skipped over the brief lines referring to Copernicus or even reading them gave them no significance and promptly forgot them again. What makes Falk’s last ditch attempt to link Shakespeare and Copernicus all the more questionable, having failed earlier in his book to produce a genuine smoking gun, is that he has spent a lot of words trying to convince the reader that Hamlet is the Bard’s Copernican work, whereas the English translation of the Montaigne essay first appeared in 1603 after Hamlet was written.

The final chapter of the book goes off on another tangent, this time in the direction of atheism. We get a potted history of atheism in the Early Modern Period and parallel to it a synopsis of how lacking in hope King Lear is. Combining this with the fact the Will’s friend Kit Marlowe was accused of atheism Falk ventures the hypothesis that Shakespeare had abandoned a belief in god. At the latest here, it becomes clear that Falk wishes to recreate Shakespeare as a sort of sixteenth-century Richard Dawkins. Enthusiastically embracing, albeit secretly, the new mode of scientific thinking and rejecting humanities dependency on god. However having come this far Falk baulks at the final hurdle hurriedly qualifying his own hypothesis, “We can’t definitely label Shakespeare an atheist, just as we can’t call him a scientist – even if we suspect we are seeing hints of such a world view.” In my opinion Falk has made a valiant effort to find facts to support his thesis but for me his argument is far too full of gaping holes to be really convincing.

Although this is not a an academic book its subject matter is of an academic nature so I think it is fair to ask about the academic apparatus, foot- or endnotes, bibliography and index. The book is equipped with, what I’m told, are hanging endnotes. That is endnotes giving sources for direct quotes in the text but without indications (quote numbers) in the text that they exist. This is possibly the worst solution to the notes problem that exists and I abhor it. I also found several direct quotes in the text for which no endnote exists. What makes this choice even stranger is that the text also has spasmodic footnotes referring to quotes in the text. Why some quotes earn footnotes and others hanging endnotes is not at all clear to me. The bibliography is quite extensive and gives ample evidence of the work that Falk has obviously invested in his book. There is no index! I find the omission of an index in this age of advance word processors, which make the compilation of an index child’s play, unforgivable.

I realise that if anybody has stayed with me up to here that they might think that having made so many negative comments I would not recommend Falk’s book, they would be wrong. On the whole I found the book well written, entertaining and informative. It is not free of errors but very few popular books on the history of science ever are. One of the very positive aspects of the book is that when even Falk presents a speculative theory concerning some aspect of science and a Shakespearean play he makes very clear that it is speculative and also presents alternative explanations for the text in question leaving it up to the readers to decide for themselves whether to accept the proffered hypothesis or not. On the whole I enjoyed reading this book and would recommend it as a stimulating read for anybody interested in the subject matter, although they should be on their toes whilst reading.

 

 

[1] Dan Falk, The Science of Shakespeare: A New Look at the Playwright’s Universe, Thomas Dunne Press, St. Martin’s Press, New York, 2014.

18 Comments

Filed under History of Alchemy, History of Astrology, History of Astronomy, Myths of Science, Renaissance Science

Everyday Renaissance Astrology.

One of the joys of having run a moderately successful history of science blog for a number of years, and thus become somehow respectable, is that I occasionally get to review books; this is one of those reviews.  Regular readers will know that I tend to bang on a bit about astrology. This is not because I particularly like it or that I’m one of those people who won’t put a foot in front of the door without consulting their horoscope for the day but because of its historical significance. Justifying a popular lecture on the history of astrology that I held in January I said that astrology had played a central role in, not only the history of science but in the social, economical and political histories of Europe for a period of about two thousand years. The role of astrology was ignored by historians of every colour for a very long time. In the eighteenth century during what is commonly known as the Enlightenment astrology, along with alchemy, magic, witchcraft, etc., was consigned to the dustbin of human history. Following this degradation, historians applying a mixture of the Whig interpretation of history and presentism thought it was in order to ignore astrology as a historical error, which humanity had now grown out of. This attitude led to a crass falsification of history. In more recent decades historians became aware of this failure on their part and began to treat the history of astrology with the seriousness it deserves, although their first efforts concentrated almost exclusively on investigating the reasons for humanity, or at least the intellectual part of humanity, freeing itself from this pernicious superstition. This in its own way led to more perversion of history. There are quite a lot of texts out there pointing out how Pico della Mirandolla killed off the belief in astrology with his posthumously published Disputationes adversus astrologiam divinatricem. The only problem with this claim is that astrology was still very much alive and kicking and occupying a central position in European discourse one hundred and fifty years later.

After a couple of centuries of total rejection and then a somewhat unfortunate initial phase I can happily report that the history of astrology has become a well established discipline producing some excellent work, even if quite a lot of academics still tend to reward it with nasty looks.  It is now generally recognised and acknowledged that astrology played a central role in Renaissance culture and most historians will make suitable comments in this regard when talking about the Renaissance. However what exactly was the day-to-day role of astrology during the Renaissance? Although we now have a growing pile of specialist academic literature on various aspects of astrology there has been up till now a surprising lack of general literature explain the role of astrology within the context of everyday life in the Renaissance. One important recent publication that attempts to fill part of this gap is Monica Azzolini’s The Duke and the Stars: Astrology and Politics in Renaissance Milan.[1]

THe Duke and the Stars

 

I will start off by saying straight out that this is an excellent book, if you have any interest in the history of astrology in the Early Modern Period obtain a copy of this book and read it! I guarantee you won’t regret it. So if you take my advice and acquire the book what do you get?

Azzolini deals with the problem of giving us an overview of everyday Renaissance astrology by presenting us with an extended case study of the use made of astrology by four Sforza dukes of Milan starting with Francesco Sforza (ruled 1450 – 1466) through to Ludovico (ruled 1494 – 1499). However before she starts in on the twisted family politics of the Sforza dynasty Azzolini introduces us to the world of the fifteenth century medical astrology. In her opening chapter Azzolini tries to reconstruct the corpus of books that a student of medicine would have studied at the University of Pavia in the fifteenth-century in order to acquire the necessary knowledge of astrology that he would need to exercise his profession as an astrological physician, what she terms a Corpus Astrologicum. This task is not made easy, as there are no surviving curricula or similar documents with a suitable reading list for the students of the medical faculty. Azzolini’s analysis is therefore per force speculative. However her speculations are always both well argued and solidly founded on the available indirect information that she has brought together to undertake this task. This first chapter alone repays the student of the history of astrology for having undertaken the task of reading this book.

In the four subsequent chapters we get introduced one by one to the four Sforza dukes of Milan and to the use each of them made of astrology during their respective reigns. Through this device we get introduced to the various aspects of the art of astrology as practiced in this period in Renaissance Italy and to those practitioners who served the Sforza dukes.

Azzolini takes us in turn through medical astrology, natal astrology, the use of astrology in planning dynastic marriages and the timing of the consummation of the resulting partnerships, astrology used in political decision making and in the case of Ludovico astrology used daily for almost every single act in his rather turbulent life. At each stage in our journey through the Sforza family history Azzolini explains clearly and lucidly the social and political background to all that is taking place, as well as giving clear explanations of how the astrologers go about their tasks.

The book is very well written and a pleasure to read but it is so multi-layered and dense in detail that it pays to read slowly and with maximum concentration so as not to miss some nugget of information on a multitude of historical topics. Azzolini is a first class historian but she wears her scholarship with ease.

This book is an academic book and for me an academic book lives and dies on the quality of, what I term, its academic apparatus, i.e. foot- or endnotes, bibliography and index. In all three aspects this book is absolutely first class. Although I am on record as preferring footnotes to endnotes I feel in this case the decision to use endnotes is justified. The 212 pages of text are followed by a whopping 108 pages of highly detailed endnotes, enough to satisfy even the most pedantic citation fetishist. Endnote four to the introduction is in itself a masterpiece. We get presented with a multilingual list of books and papers on Renaissance astrology that would serve as a reading list for any university course on the subject. (However it does contain one of my few objections to Azzolini’s book. In this endnote she lists Claudia Brosseder’s Im Bann der Sterne. Casper Peucer, Philipp Melanchthon and andere Wittenberger Astrologen, now I personally think that all copies of this book should be collected in and ceremonially burnt in the courtyard of Wittenberg University, it’s that bad in my anything but humble opinion.)  The thirty-page bibliography more than matches the high standard set by the endnotes and up till now I have found no reason to complain about the comprehensive index. This is an all round excellent book, which is also, as one would expect from Harvard UP, nicely presented.

This is as I said an academic book and its first audience is of course historians of astrology, however it can and should be read by historians of politics, of medicine, of science, of the Renaissance and of general history at all levels from the undergraduate to the expert historian. All of them can learn much from this book and all would profit from reading it. Although I am now repeating myself, this is an excellent book, which deserves to become a classic and almost certainly will and I regard it as a privilege that I have been allowed to review it.

 

 


[1] Monica Azzolini, The Duke and the Stars: Astrology and Politics in Renaissance Milan, Harvard University Press, Cambridge, Massachusetts, London, England, 2013.

4 Comments

Filed under History of Astrology

It was written in the stars: An improbable encounter on a country bus.

If people ask me where I live the answer varies depending on who’s doing the asking. If it’s someone who knows Franconia or the German universities then I answer (the university town of) Erlangen. If less well informed I answer near Nürnberg because, thanks to Dürer and the Nuremberg Tribunal, it’s well known internationally. However in reality I don’t actually live in Erlangen but in a small village on the outskirts of the town, about six kilometres from the town centre.

At about five o’clock on Friday evening I was travelling back home from the town on a bus which winds its way through the villages to the east of Erlangen. As usual when I travel by bus or train I had my nose buried in a book. In fact I do a fair amount of my reading whilst using public transport. On this occasion the volume that was holding my attention was Monica Azzolini’s excellent The Duke and the Stars: Astrology and Politics in Renaissance Milan, of which a review will appear here in due time. Mentally deep in the arcane structures of Renaissance astrology I gradually became aware of a man standing next to my elbow. Clearing his throat he apologised for disturbing, in a pleasant mild American accent, “but that book you are reading, I know the author!” Momentarily struck dumb by the total improbability of the whole situation I finally managed to stumble out a, “you know Monica‽”

It turned out that my fellow passenger was historian of astrology Darrel Rutkin who, unbeknown to me, is doing research for his forth-coming book on the history of astrology at Erlangen University. We then spent a chilly but happy half an hour on a bus stop, Darrel lives in the next village, exchanging surprise at finding a fellow history of astrology enthusiast on a country bus in Middle Franconia and thoughts on the importance of studying the subject. Later in the evening we exchanged PDFs and website URLs per email agreeing to meet up in the near future to continue a wonderful conversation.

As I wrote to Monica in an email later on in the evening it was one of those situations that if it had occurred in a book or a film, then the reader or viewer would probably think, “oh come on, you don’t expect us to swallow that do you, two historians of astrology meet on a country bus, highly unlikely!” I enjoyed Monica’s reply, which closed with the following thought, “Books have many merits, of course. That to put readers in contact is clearly one of them!”

1 Comment

Filed under Autobiographical, History of Astrology

Dying to make life easier for historians.

There is a clichéd view of history encouraged by bad teaching that presents the subject as the memorising of long lists of dates that somebody has designated as being significant, 55 BC, 1066, 1492, 1687, 1859, 1914 etc., etc. Now whilst in reality history is much more concerned with what happened and why it happened than with when it happened dates are the scaffolding on which historians hang up their historical facts for inspection.

When presenting biographies of scientists two key dates that the historical biographer has to remember are those of the birth and the death of her or his subject. One of my favourite Renaissance mathematici mathematics teacher, astronomer, astrologer, cartographer and globe maker, Johannes Schöner, about whom I have already blogged in the past, made life easier for historians by dying on his seventieth birthday. He was born on 16th January 1477 in Karlstadt am Main and died on 16th January 1547 in Nürnberg.  This means one only has to remember his birthdate and them simply add seventy to get his date of death.

 

1 Comment

Filed under History of Astrology, History of Astronomy, History of Cartography, History of Mathematics, Renaissance Science